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Mosquito community influences 
West Nile virus seroprevalence in 
wild birds: implications for the risk 
of spillover into human populations
Josué Martínez-de la Puente   1,4, Martina Ferraguti1, Santiago Ruiz2,4, David Roiz1,5, 
Francisco Llorente3, Elisa Pérez-Ramírez3, Miguel Ángel Jiménez-Clavero3,4,  
Ramón Soriguer1,4 & Jordi Figuerola1,4

Mosquito community composition plays a central role in the transmission of zoonotic vector-borne 
pathogens. We evaluated how the mosquito community affects the seroprevalence of West Nile virus 
(WNV) in house sparrows along an urbanisation gradient in an area with the endemic circulation of 
this virus. We sampled 2544 birds and 340829 mosquitoes in 45 localities, analysed in 15 groups, each 
containing one urban, one rural and one natural area. WNV seroprevalence was evaluated using an 
epitope-blocking ELISA kit and a micro virus-neutralization test (VNT). The presence of WNV antibodies 
was confirmed in 1.96% and 0.67% of birds by ELISA and VNT, respectively. The VNT-seropositive birds 
were captured in rural and natural areas, but not in urban areas. Human population density was zero in 
all the localities where VNT-positive birds were captured, which potentially explains the low incidence 
of human WNV cases in the area. The prevalence of neutralizing antibodies against WNV was positively 
correlated with the abundance of the ornithophilic Culex perexiguus but negatively associated with the 
abundance of the mammophilic Ochlerotatus caspius and Anopheles atroparvus. These results suggest 
that the enzootic circulation of WNV in Spain occurs in areas with larger populations of Cx. perexiguus 
and low human population densities.

The mosquito-borne West Nile virus (WNV; Flaviviridae) circulates naturally in wild birds1. Occasionally, 
infected mosquitoes transmit WNV to mammals, which are dead-end hosts of this virus. Most WNV infections 
in humans are asymptomatic or associated with mild symptoms, and only a small percentage of patients develop 
more severe neurological diseases such as aseptic meningitis or encephalitis2,3. Nevertheless, in North America, 
where WNV was first detected in 1999 in New York City, WNV has spread throughout the country and caused 
hundred of human fatalities2. Contrary to the situation in North America, in Europe WNV infections are usually 
asymptomatic in birds4–6. WNV has been endemic in Spain since at least 2003, with a seroprevalence of up to 
42.9% in some bird species7–9. However, only six cases of WNV disease in humans have ever been reported, one 
in 200410, two in 201011 and three in 201612.

Mosquitoes of the genus Culex play a key role in WNV circulation in Europe13,14, although WNV has 
also been detected in mosquitoes belonging to the genera Aedes, Anopheles and Culiseta14. A multi-species 
Susceptible-Infectious-Recovered (SIR) transmission model published recently by Roche et al.15 suggests that 
an increase in vector species richness enhances pathogen transmission due to a concomitant greater abundance 
of vectors, which translates into more competent vectors for pathogen transmission15. In addition to the dif-
ferences between mosquito capacity for transmitting WNV (vector competence), blood feeding patterns may 
determine the contact rate between mosquitoes and susceptible hosts and hence ultimately determine WNV 
epidemiology16–18. Muñoz et al.17 estimated the WNV transmission risk for different mosquito species in southern 
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Spain based on mosquito abundance, vector competence and the fraction of blood meals taken from birds. These 
authors’ analysis indicated that Cx. perexiguus was the main vector for the enzootic cycle of WNV and that the 
risk of WNV transmission to humans was very low in the studied area17.

Here, we study the role of the abundance of mosquitoes and species richness explaining the seroprevalence 
of WNV in wild bird, the house sparrows (Passer domesticus), in southern Spain. Active circulation of WNV 
occurs here, as is shown by virus isolation from mosquitoes14,19, seroconversions in wild birds20, the presence 
of antibodies in juvenile birds21, and the incidence of disease in humans and horses11,22. In this region, house 
sparrows are common hosts of mosquitoes17, competent hosts for WNV23 and may play a key role in WNV 
amplification and transmission to humans24–26. Taking into account the above-mentioned studies, we first com-
pared the prevalence of WNV antibodies in urban, rural and natural areas (defined in terms of human population 
density) to determine how the distributions of mosquitoes, WNV and people explain the low incidence of WNV 
in humans in Spain. Secondly, we tested the assumption in the Roche et al.15 model of a positive relationship 
between vector species richness and vector abundance, as well as the model prediction that vector richness should 
be positively related to WNV prevalence. Finally, we analysed the relationship between WNV seroprevalence and 
the abundance of mosquito species that, according to Muñoz et al.17, may contribute in different ways to WNV 
amplification.

Results
In all, 340829 female mosquitoes belonging to 13 species and five genera were trapped. The commonest spe-
cies was Culex theileri Theobald (n = 282891), followed in descending order by Ochlerotatus caspius Pallas 
(n = 21155), Culex pipiens Linnaeus (n = 19268), Culex perexiguus Theobald (n = 5939) and Anopheles atropar-
vus Van Thiel (n = 5387). In addition, 1237 females of the potential WNV vector Culex modestus Ficalbi were 
captured. The other species were trapped in relatively low numbers and for this reason—and also because they are 
not involved in the transmission of WNV—were not considered in any of the analyses (with the exception of the 
species richness calculation). A positive relationship was found between the overall abundance of mosquitoes and 
the richness of vector species (est = 2.45, z = 6.05, p < 0.001).

Sera obtained from 2544 house sparrows were analysed to detect WNV antibodies. According to the ELISA 
tests, 50 birds (1.96%) from 18 different localities tested positively (Table 1), while 113 (4.44%) provided doubtful 
results. Of these birds, 17 (0.67% of the total individuals sampled) had neutralizing antibodies against WNV as 
confirmed by VNT (Table 1). These 17 WNV-positive birds were captured in five of the 45 studied localities, 
all of them in rural and natural areas in Huelva province (Fig. 1). WNV seroprevalence in these five localities 
ranged from 1.6% to 8.5%. Specific USUV-neutralizing antibodies were detected in a single bird (0.04%) cap-
tured in a natural area in Seville province. The human population density tended to be lower (0 in all cases) in 
areas with VNT-positive birds than in areas with negative cases (mean human population = 77.6, range: 0–1,424) 
(est = −1.90, z = 1.88, p = 0.06).

The relationships between ELISA and VNT seroprevalence rates and the number of mosquitoes captured and 
species richness are summarised in Tables 2 and 3, respectively. Only those variables included in the selected 
models (those with ∆AIC ≤ 2 compared to the best model) are shown. WNV seroprevalences estimated by ELISA 
were positively related to mosquito richness and the number of Cx. perexiguus captured but negatively related to 
the number of Oc. caspius and Cx. theileri captured. Similarly, for the case of the model based on the WNV sero-
prevalence according to the VNT, the prevalence of neutralizing antibodies against WNV was positively related to 
the number of Cx. perexiguus captured (Fig. 2) but negatively associated with the number of both the Oc. caspius 
and An. atroparvus.

Discussion
Both West Nile virus and USUV antibodies were found in wild house sparrows from southern Spain. The 
seroprevalence of WNV in house sparrows estimated by VNT was positively related to the abundance of Cx. 

Birds sampled ELISA positive VNT positive

Natural

 Cadiz 154 3 0

 Huelva 265 17 7

 Seville 313 2 0

Rural

 Cadiz 225 0 0

 Huelva 368 18 10

 Seville 263 0 0

Urban

 Cadiz 238 4 0

 Huelva 439 5 0

 Seville 279 1 0

Total 2544 50 17

Table 1.  Number of house sparrows sampled and number with WNV antibodies according to ELISA and VNT 
assays. Birds were captured in three habitat categories (natural, rural and urban areas) in three provinces (Cadiz, 
Huelva and Seville) in southern Spain.
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perexiguus but negatively to the abundances of both An. atroparvus and Oc. caspius. These results confirm the 
important role of Cx. perexiguus in the circulation of WNV in Spain. Transmission risk estimates based on abun-
dances, vector competence and blood meal analyses indicate that the risk of transmission of WNV by Cx. per-
exiguus is at least an order of magnitude higher than for the other mosquito species analysed17. It is important 
to note that WNV has been detected in Spain mainly in Cx. perexiguus and Cx. pipiens pools14,19. Moreover, Cx. 
perexiguus is an abundant ornithophilic mosquito that commonly uses house sparrows as hosts17,27,28.

Interestingly, we found negative relationships between the abundance of two common mosquito species, An. 
atroparvus and Oc. caspius, and the prevalence of WNV antibodies in wild house sparrows. Both species have a 
mammal-biased feeding pattern, even though they can feed on birds17,27. Although WNV has been detected in 
wild collected Oc. caspius29, this species is described as an inefficient vector of WNV by the only experimental 
study of the vector competence of Oc. caspius conducted to date in Europe13. At least two factors help explain 

Figure 1.  Distribution of the 45 studied localities that consisted of 15 urban (blue), 15 natural (green) and 15 
rural (red) areas. Localities with birds with WNV positive sera according to VNT analyses are marked with 
squares. This map was created using ArcGIS v10.2.1 (ESRI, Redland).

est z p

Mosquito species richness 2.24 2.18 0.03

Cx. perexiguus 1.93 2.04 0.03

Cx. theileri −2.81 2.41 0.02

Oc. caspius −2.54 2.14 0.02

Explained variance 35%

Table 2.  Results of the LMMs explaining variance in WNV seroprevalence estimated by ELISA (N = 45 
localities). Only estimate (est), z and p values of the independent variables included in the final LMMs are 
shown; significant associations are marked in bold. Habitat category and the number of Cx. pipiens captured did 
not significantly improve the fit of the models.

est z p

Mosquito species richness 0.77 1.72 0.09

Cx. modestus −0.69 1.64 0.10

Cx. perexiguus 1.39 2.82 0.01

Cx. theileri −0.92 1.87 0.06

Oc. caspius −0.94 2.02 0.04

An. atroparvus −1.01 1.99 0.05

Explained variance 44%

Table 3.  Results of the LMMs explaining variance in WNV seroprevalence estimated by micro virus-
neutralization test (VNT) (N = 45 localities). Only estimate (est), z and p values of the independent variables 
included in the final LMMs are shown; significant associations are marked in bold. Habitat category and the 
number of Cx. pipiens captured did not significantly improve the fit of the models.
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the negative association between these two mosquito species and WNV. Firstly, Oc. caspius prefers saltmarshes 
as larval breeding sites and An. atroparvus is commonest in sand dunes and scrubland, while Cx. perexiguus is 
frequently found in rice fields30. Consequently, Oc. caspius and An. atroparvus are probably more abundant in 
areas where Cx. perexiguus and/or other potential vector species for WNV such as Cx. pipiens and Cx. modestus 
are rarer. Secondly, the greater abundance of these mosquito species in the study area, where they feed mainly 
on mammals that are non-competent hosts for WNV, could lead to a reduction in the overall prevalence of 
WNV in birds. However, we were not able to identify any mechanisms that might support this hypothesis. Due 
to its mammal-biased diet and low vector competence, we would expect their abundance to have a low—but not 
negative—effect on WNV amplification. This is mainly because WNV transmission may be maintained by other 
vector-competent mosquito species present in the area.

In addition, we observed a positive association between mosquito species richness and the seroprevalence 
detected by ELISA. The same non-significant tendency was found for WNV neutralizing antibodies detected by 
VNT. ELISA is a less specific technique than VNT and, consequently, individuals with positive sera for ELISA but 
negative for VNT have probably been exposed to other unidentified flaviviruses antigenically related to WNV. 
Using a SIR model, Roche et al.15 concluded that mosquito species richness may increase the transmission suc-
cess of vector-borne pathogens. However, such an association has never been tested empirically and could be the 
product of the assumption made in the model that species richness and vector abundance are positively related, 
a conjecture that, in fact, was supported by our data (see below). Consequently, our results support both the 
assumption of a positive relationship between vector richness and abundance, and the prediction of a positive 
relationship between vector richness and pathogen prevalence. Although Cx. perexiguus is the main vector of 
WNV in the area, other species such as Cx. pipiens and Cx. modestus may contribute significantly to WNV trans-
mission31,32. These mosquito species, in addition to the others that co-exist in the area, could play a role in the 
transmission of certain flaviviruses. A number of flaviviruses have been isolated from mosquitoes (including Cx. 
pipiens) in Spain19, which potentially explains the positive correlation found between ELISA seroprevalence and 
mosquito species richness.

All positive cases of WNV-specific antibodies by VNT in bird sera were found in Huelva province, where evi-
dence of WNV active circulation has existed since 2003, as demonstrated by the molecular detection of the virus 
in mosquitoes and the seroprevalence found in birds33. In addition, birds with WNV-specific antibodies by VNT 
were only detected in rural and natural habitats; none of the birds sampled in urban areas (n = 956) were sero-
positive. Moreover, the negative, marginally significant relationship we found between WNV seroprevalence and 
human population density may explain why WNV cases in humans are so uncommon in the study area despite 
the active circulation of the virus between vectors and avian hosts. Our results suggest that WNV, its main vec-
tor (Cx. perexiguus) and humans are not all present together in the same places. The seroprevalence of WNV in 
humans in southern Spain is very low (0.6%) and, mirroring the results for house sparrows in our study, a higher 
seroprevalence was detected in humans in rural areas than in suburban and urban areas34. Moreover, greater 
numbers of Cx. perexiguus were captured in natural and rural areas than in urban ones; likewise, the abundance 
of this species decreases as the percentage of land covered by built-up areas increases35. Indeed, only Cx. pipiens 
represents a risk for the transmission of WNV in urban areas35.

In conclusion, this study provides evidence of the central role of Cx. perexiguus in the enzootic circulation of 
WNV in southern Spain. The fact that WNV seropositive birds were found in both natural and rural areas, and 

Figure 2.  Number of Culex perexiguus captured in areas with and without WNV seropositive House sparrows, 
as determined by VNT.
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tended to be present in areas with lower human densities, may explain the low incidence of WNV in humans in 
the area despite the local circulation of this virus between mosquitoes and wild birds.

Materials and Methods
Study area.  This study was conducted in Andalusia, southern Spain (Fig. 1). This area is characterized by 
a Mediterranean climate with most precipitations concentrated during winter, while summer represents a long 
dry season. The study was conducted in 2013 at 45 different sites in Cadiz, Huelva and Seville provinces (south-
ern Spain). The sampling sites (15 in each province) were situated in geographically close groups of three, each 
with one locality in a natural habitat, one in a rural habitat and one in an urban habitat (Fig. 1). The mean dis-
tance between localities within the same triplet was 5,740 m. Selection of the three habitat categories was per-
formed after visual inspection of the areas based on the following criteria: urban habitats contained more densely 
human-populated areas than the other two habitat types; rural habitats had higher density of livestock than urban 
and natural areas; and natural habitats were selected on the basis of both lower human and livestock densities 
than in the other two habitat types, and a generally better conserved landscape.

Mosquito and bird sampling and identification.  Mosquitoes were captured at the 45 sampling sites in 
April–December, the period with maximum mosquito activity in southern Spain30,36. We used BG-sentinel traps 
baited with BG-lure and dry ice as a source of CO2, which is considered an effective method for mosquito diver-
sity and abundance characterization35. At each site, once every 45 days, three traps were operated for 24 hours 
in each of the three localities of the same triplet. Overall, 135 traps (3 traps x 45 localities), with a mean distance 
between traps of 119 m (range 20–636 m), were employed during each mosquito trapping session for a total trap-
ping effort of 810 trap nights. Mosquito sampling was conducted during days with favourable weather conditions 
(e.g. clear nights without rain). This procedure was repeated during 5–6 trapping sessions throughout the study 
period. Female mosquitoes were identified to species level following the morphological keys in Schaffner et al.37 
and Becker et al.38. Mosquitoes belonging to the univittatus complex were identified as Culex perexiguus based on 
male genitalia (see Harbach39). For the case of samples compromising several thousands of mosquitoes captured 
per trap per night, we visually identified 500 individuals. These 500 mosquitoes were separated in five groups of 
100 individuals, which were weighted to the nearest 0.001 g. This approach was used to estimate the proportion of 
individuals of each species for the rest of the sample based on the weight of the total number of mosquitoes cap-
tured35. Mosquito species richness, which ranged from 2 to 10, was calculated as the number of different species 
captured at each locality during the sampling period35. For each locality, the mean number of captures of the five 
commonest mosquito species in the study area (Anopheles atroparvus, Ochlerotatus caspius, Culex theileri, Culex 
pipiens and Cx. perexiguus) and of Cx. modestus, a potential WNV vector in the area14,17,31, were calculated.

House sparrows were sampled using mist-nests at the same localities during capture sessions in July–October, 
i.e. immediately after the breeding season to maximize the capture of juvenile birds and to better reflect virus 
circulation during the season from hatching until capture. Each bird was individually marked with a metal ring, 
sexed and aged40. A blood sample was taken from the jugular vein of each bird using a sterile syringe and pre-
served in a cool-box during the fieldwork session. In the laboratory, blood was allowed to clot at 4 °C overnight 
and was then centrifuged for 10 minutes at 4,000 rpm to separate the serum from the cellular fractions. Serum 
samples were frozen at −80 °C until further analysis.

WNV antibodies detection.  Serum samples from birds were analysed with the epitope-blocking ELISA 
Kit Ingezim West Nile Compac (INGENASA, Madrid, Spain) to determine the presence of WNV antibodies41. 
Positive results from ELISA may reflect past infections by WNV or even other unidentified flaviviruses circulating 
in the area. The cut-off value of this commercial ELISA test is set at 30% percentage of inhibition, while samples 
showing a percentage of inhibition between 30% and 40% are considered doubtful samples as established by the 
manufacturer41. All samples producing ELISA positive and/or doubtful results were subsequently analysed by a 
comparative micro virus-neutralization test (VNT) using WNV (strain Eg-101) and Usutu virus (USUV; strain 
SAAR1776) since the circulation of these flaviviruses has been demonstrated in the study area42. This confirm-
atory test allow to differentiate the specific antibodies against WNV from those elicited by other related flavivi-
ruses. Neutralization titres were assigned based on the highest dilution of each serum capable of neutralizing the 
infection in vitro. Separate VNT were performed using serial (two-fold) dilutions (1:10–1:1280) of each serum 
sample using a micro-VNT method21. For a given sample, WNV-specific antibody responses were assigned when 
the observed VNT titres against WNV were at least four times higher than those observed against USUV43.

Human density quantification.  We estimated the density of human population in the studied areas as the 
number of people living in a grid of 250 × 250 m. This information was obtained from the Andalusian Institute 
of Statistics and Cartography based on the number of residents registered in the local population census on 1 
January 2013 (Base de Datos Longitudinal de Población de Andalucía). This variable was log-transformed to 
normalize its distribution.

Statistical analyses.  To estimate WNV seroprevalence we controlled for variables that operate at individ-
ual level (i.e. age, sex and date of capture) and others that operate at locality level (i.e. mosquito species richness 
and abundance of the different mosquito species). For this reason two-step analyses were performed. First, we 
fitted a generalized linear model to the seroprevalence of WNV using binomial distributed errors and including 
bird sex (fixed factor: male or female), age (fixed factor: juvenile or adult), month (continuous variable) and 
locality (fixed factor) as independent variables. Two different models were fitted using the results of ELISA and 
VNT as the dependent variable, respectively. Second, least square means (lsmeans) were calculated by retain-
ing bird age and sampling locality, the only two significant factors explaining variance between individuals in 
WNV seroprevalence according to the previous models. This procedure allowed us to calculate both the ELISA 
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and VNT seroprevalences for each of the 45 localities while controlling for the potential confounding effect of 
bird age. Third, two Linear Mixed-effects Models (LMM) were fitted using the lsmeans for ELISA and VNT 
seroprevalences as dependent variables. ‘Province’ and ‘triplets’ were included as random factors to account for 
the geographical stratification of the sampling design, and models were fitted using maximum likelihood and 
normal distributed errors. The independent variables included in these models were the three habitat categories 
(fixed factor: urban, rural or natural), the number of captures of each of the six main mosquito species found 
and species richness (continuous variables). Variance Inflation Factors (VIF) were checked to exclude collinear-
ity between independent variables44 and Akaike’s Information Criterion (AIC) was used to select the best final 
models for each ELISA and VNT LMM model. Parameters were estimated by model averaging of all models with 
∆AIC ≤ 245, which were considered to similarly support the data. To normalize their distribution, the numbers of 
each mosquito species captured were log-transformed and the distribution of all predictors and model residuals 
were checked using qq plots in R software. We calculated the respective marginal coefficient of determination (R2) 
for the fixed and random effects of the models according to Nakagawa & Schielzeth46.

Finally, two additional LMMs were fitted. One to test the model assumption of Roche et al.15 of a positive 
correlation between mosquito richness and total abundance, and the other to compare the density of human pop-
ulation, as measured in Ferraguti et al.35, at sampling sites with and without VNT positive birds. All the statistical 
analyses were conducted in R (v. 2.14.2; R Development Core Team 2005) using the packages vegan, lme4, car, 
arm, Matrix, Rcpp, MASS, MuMIn and lsmeans.

Ethics statement.  Bird sampling and mosquito trapping were performed with the necessary permits issued 
by the regional Department of the Environment (Consejería de Medio Ambiente, Junta de Andalucía) and in 
accordance with relevant guidelines and regulations. Procedures were approved by the Ethical Committee of 
CSIC and complied with current Spanish laws. Surveys and sampling on private land and in private residential 
areas were conducted with all the necessary permits and consent, and in the presence of owners. This study did 
not affect any endangered species.
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