ORIGINAL RESEARCH

Prognosis of Claims- Versus Trial-Based Ischemic and Bleeding Events Beyond 1 Year After Coronary Stenting

Neel M. Butala , MD, MBA; Kamil F. Faridi , MD; Eric A. Secemsky , MD, MSc; Yang Song, MS; Jeptha Curtis, MD; Charles Michael Gibson, MD, MS; Dhruv Kazi , MD, MS; Changyu Shen, PhD; Robert W. Yeh , MD, MSc

BACKGROUND: It is unknown whether clinical events identified with administrative claims have similar prognosis compared with trial-adjudicated events in cardiovascular clinical trials. We compared the prognostic significance of claims-based end points in context of trial-adjudicated end points in the DAPT (Dual Antiplatelet Therapy) study.

METHODS AND RESULTS: We matched 1336 patients aged \geq 65 years who received percutaneous coronary intervention in the DAPT study with the CathPCI registry linked to Medicare claims. We compared death at 21 months post-randomization using Cox proportional hazards models among patients with ischemic events (myocardial infarction or stroke) and bleeding events identified by: (1) both trial adjudication and claims; (2) trial adjudication only; and (3) claims only. A total of 47 patients (3.5%) had ischemic events identified by both trial adjudication and claims, 24 (1.8%) in trial adjudication only, 15 (1.1%) in claims only, and 1250 (93.6%) had no ischemic events, with annualized unadjusted mortality rates of 12.8, 5.5, 14.9, and 1.26 per 100 person-years, respectively. A total of 44 patients (3.3%) had bleeding events identified with both trial adjudication and claims, 13 (1.0%) in trial adjudication only, 65 (4.9%) in claims only, and 1214 (90.9%) had no bleeding events, with annualized unadjusted mortality rates of 11.0, 16.8, 10.7, and 0.95 per 100 person-years, respectively. Among patients with no trial-adjudicated events, patients with events in claims only had a high subsequent adjusted mortality risk (hazard ratio (HR) ischemic events: 31.5; 95% CI, 8.9–111.9; HR bleeding events 23.9; 95% CI, 10.7–53.2).

CONCLUSIONS: In addition to trial-adjudicated events, claims identified additional clinically meaningful ischemic and bleeding events that were prognostically significant for death.

Key Words: claims
clinical trials
DAPT
end points
prognosis

Real-world data are rapidly changing the conduct of cardiovascular clinical trials. Large-scale trials have leveraged real-world data from registries and wearable devices to generate clinical evidence.^{1,2} Furthermore, the US Food and Drug Administration evaluates evidence from real-world data to support regulatory decision-making, including the approval of new drugs.³ The use of administrative claims data to ascertain outcomes in cardiovascular clinical trials offers opportunity to improve clinical trial data collection and

reduce trial costs.⁴⁻⁶ However, it is unknown whether clinical events identified with claims data have similar prognoses compared with traditional, trial-adjudicated clinical events.

Understanding the significance of clinical events is particularly important after percutaneous coronary intervention (PCI), where subtle changes in definitions of trial end points can lead to differences in patient prognosis and trial results.^{7–9} Both spontaneous bleeding and myocardial infarction (MI) after PCI are associated

Correspondence to: Robert W. Yeh, MD MSc, Richard A. and Susan F. Smith Center for Outcomes Research in Cardiology, Department of Medicine, Division of Cardiovascular Disease, Beth Israel Deaconess Medical Center, 375 Longwood Ave, Boston, MA 02215, USA. E-mail: ryeh@bidmc.harvard.edu Supplementary Material for this article is available at https://www.ahajournals.org/doi/suppl/10.1161/JAHA.120.018744

JAHA is available at: www.ahajournals.org/journal/jaha

For Sources of Funding and Disclosures, see page 10.

^{© 2021} The Authors. Published on behalf of the American Heart Association, Inc., by Wiley. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

CLINICAL PERSPECTIVE

What Is New?

 In addition to trial-adjudicated events in the DAPT (Dual Antiplatelet Therapy) study, administrative claims identified additional clinically meaningful ischemic and bleeding events that were prognostically significant for death.

What Are the Clinical Implications?

• These results demonstrate the incremental value of claims-based end points in identifying additional clinically meaningful events for sub-sequent adjudication in clinical trials and support the use of claims to augment clinical trial end point ascertainment in future cardiovascular clinical trials.

Nonstandard Abbreviations and Acronyms

DAPTdual antiplatelet therapyNCDRnational cardiovascular data registry

with increased long-term mortality.^{10,11} Furthermore, in patients treated with dual antiplatelet therapy for at least 1 year after PCI in the DAPT (Dual Antiplatelet Therapy) study, late ischemic events and bleeding events were both associated with a high risk of mortality.¹² The prognostic significance of claims-based events in comparison with trial-adjudicated events in this clinical context is unknown.

In this study, we compared the prognostic significance of claims-based ischemic and bleeding end points in context of trial-adjudicated ischemic and bleeding end points in the DAPT study. Such results can inform the use of claims-based end points for evaluation of clinical events post-PCI and thereby shed light on the clinical use of claims-based end points in cardiovascular clinical trials more broadly.

METHODS

EXTEND-DAPT Study Overview

This analysis was performed as part of the Extending Trial-Based Evaluations of Medical Therapies Using Novel Sources of Data (EXTEND) Study, which is funded by the National Heart, Lung, and Blood Institute (1R01HL136708). An overview of the aims and methods, including data linkage, has been previously described.¹³ The EXTEND-DAPT substudy used data from the DAPT study linked to the American College of Cardiology's NCDR (National Cardiovascular Data Registry) CathPCI Registry and Medicare fee-for-service beneficiary claims.

The DAPT study was a randomized, placebocontrolled clinical trial which enrolled patients who underwent percutaneous coronary intervention and received DAPT consisting of aspirin and a thienopyridine for 1 year.¹⁴ At 12 months following PCI, patients without post-PCI ischemic or bleeding events were randomized to either placebo (12 total months of DAPT) or continued thienopyridine for another 18 months (30 total months of DAPT). The trial was conducted by the Baim Institute for Clinical Research.

Study Population

We included all US patients aged ≥65 years in the DAPT study who could be successfully linked via the NCDR CathPCI registry to the Centers for Medicare and Medicaid Services inpatient claims data for all fee-for-service Medicare-insured patients. Linkage was performed using deterministic algorithms based on age or date of birth, sex, PCI date and stent type, hospital discharge date, and hospital identifiers and has been previously described.¹³ These data were also linked to the Medicare Master Beneficiary Summary File to determine dates of death. Patients who could not be linked to the CathPCI registry because of inexact matching characteristics or who were not subsequently found in Centers for Medicare and Medicaid Services fee-for-service claims or the Medicare Master Beneficiary Summary File were excluded. After applying these criteria to 11 648 patients randomized in the DAPT study, a total of 1336 individuals were included in the linked EXTEND-DAPT cohort (Figure S1). Patients were excluded because of age <65 years (5984 patients), patients outside of the United States (1756 patients), lack of corresponding record in the CathPCI registry (1350 patients), lack of corresponding record in Medicare data (530 patients), and insurance coverage with Medicare Advantage (692 patients). Notably, US patients aged ≥65 years who were able to be successfully matched to the Centers for Medicare and Medicaid Services master file were similar to unmatched patients with regard to most measured covariates, apart from being more often women, having a higher rate of peripheral artery disease, and more often presenting initially with stable angina (Table S1).15

All baseline characteristics were obtained from information collected in the DAPT study. The study period was from time of randomization (12 months following PCI) to 21 months post-randomization (33 months following PCI), as specified in the DAPT study. This study was approved by the institutional review board at Beth Israel Deaconess Medical Center and the requirement for informed consent was waived because of retrospective analysis of preexisting data.

Study Variables

The primary outcome was death at 21 months after randomization (33 months after coronary stenting) as captured in the DAPT study.

The primary exposures were ischemic events (MI and non-hemorrhagic stroke) and bleeding events occurring 12 to 33 months after coronary stenting in trial data and in claims.

Clinical events in trial data were determined based on adjudication by the DAPT study Clinical Events Committee, which was blinded to randomization status. The trial used pre-specified definitions of MI and stroke for adjudication.¹⁶ Major bleeding in this study was defined as any adjudicated event that met criteria for either moderate or severe bleeding according to the Global Utilization of Streptokinase and Tissue Plasminogen Activator for Occluded Arteries classification, or Type 3 or 5 bleeding according to the Bleeding Academic Research Consortium.

Clinical events in administrative claims were defined based on a comprehensive list of previously validated International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9) diagnosis codes associated with inpatient hospitalizations.^{15,17} For each outcome, we identified ICD-9 codes based on clinical relevance as well as prior literature (Table S2).¹⁸⁻²² Given that transfusions were included in trial definitions of bleeding, ICD-9 procedure codes for blood transfusions were also used. An event was counted if the corresponding codes were present in either the primary or secondary billing position during the hospitalization associated with the event. An event in claims data was counted as a match with a Clinical Events Committeeadjudicated event if the hospitalization admission date occurred within 14 days of the event date determined in the trial.

Statistical Analysis

We compared characteristics and outcomes among 4 groups: (1) those with clinical events identified in both the trial and claims; (2) those with clinical events identified in the trial only; (3) those with clinical events identified in claims only; and (4) those with no clinical events. Categorical variables were reported as counts and percentages, and continuous variables were reported as means (SDs). Between-group differences were assessed using an ANOVA test for continuous variables or a Pearson χ^2 test for categorical variables.

Among the randomized study population, we examined (1) the number of patients with ischemic and bleeding events after randomization in both the trial and in claims-based measures and (2) the annualized mortality rate per 100 person-years after each event. Patients experiencing both ischemic and bleeding events contributed data to both the ischemic events groups and the bleeding events groups; however, for patients with >1 of the same type of event in the trial or in claims, only the earliest event was included.

Cox proportional hazards regression models with exposure status as a time-dependent variable were created to evaluate the independent association of ischemic events or bleeding events with mortality. The time-updated models allowed for patients to contribute both unexposed (ie, before event) and exposed (ie, after event) person-time. Given the limited sample size, ischemic events and bleeding events models were adjusted for a single variable indicating the predicted probability of having ischemic events or bleeding events, respectively, at 21 months using previously developed risk adjustment models that formed the basis of the DAPT score.²³ Hazard ratios (HRs) among different pairs of groups were compared using a Wald test as well as a global Chi-squared statistic and Wald test.

In a supplemental post-hoc analysis, we examined the percentage of patients with claims-only events who had Bleeding Academic Research Consortium Type 2 bleeding events. We additionally compared the annualized mortality rates among any patients with ischemic or bleeding events in trials and all patients with ischemic or bleeding events in claims, including patients with bleeding events in both trials and claims in both groups. Statistical analyses were performed using a software program (SAS, version 9.4; SAS Institute Inc).

RESULTS

Of the 1336 patients in the EXTEND-DAPT cohort, 47 patients (3.5%) had ischemic events identified with both trial adjudication and claims, 24 (1.8%) had trial-adjudicated ischemic events only, 15 (1.1%) had ischemic events in claims only, and 1250 (93.6%) had no ischemic events (Figure 1A). These 4 groups of patients had similar baseline characteristics with the exception of treated vessel and drug-eluting stent type (Table 1). A total of 44 patients (3.3%) had bleeding events identified with both trial adjudication and claims, 13 (1.0%) had trial-adjudicated bleeding events only, 65 (4.9%) had bleeding events in claims only, and 1214 (90.9%) had no bleeding events (Figure 1B). Notably, of the 65 patients with bleeding events in claims alone, 18 (28%) had Bleeding Academic Research Consortium Type 2 bleeding events in the trial data. These 4 groups of patients also had similar baseline characteristics with the exception of presentation with stable angina and treated vessel (Table 2).

Figure 1. Frequency of ischemic and bleeding events in trial vs claims and subsequent annualized mortality rate during the 21-month post-randomization period.

(A) Ischemic events; (B) Bleeding events. The annualized rate was calculated as: (number of subjects who died after a clinical event)/(total follow-up years for each of the 3 cohorts after a clinical event). For the 'no event' group, the annualized mortality rate is calculated as: (number of subjects who died/total follow-up years). Error bars indicate 95% Cls.

The unadjusted annualized mortality rate after an ischemic event identified with both trial adjudication and claims, an ischemic event identified with trial adjudication only, an ischemic event identified with claims only, and among those without an ischemic event was 12.8, 5.5, 14.9, and 1.26 per 100 person-years, respectively (Figure 1A). The unadjusted annualized mortality rate after a bleeding event identified with both trial adjudication and claims, a bleeding event identified with trial adjudication only, a bleeding event identified with trial adjudication only, a bleeding event identified with claims only, and among those without a bleeding event was 11.0, 16.8, 10.7, and 0.95 per 100 person-years, respectively (Figure 1B).

The adjusted HRs for mortality following an ischemic event were 21.5 (95% Cl, 9.1–50.4) when identified with both trial adjudication and claims, 9.5 (95% Cl, 2.2–40.9) when identified with trial adjudication only, and 31.5 (95% Cl, 8.9–111.9) when identified with claims only, relative to those who did not have an event (Figure 2A). Although Cls for point estimates were wide, the lower bound of the Cls in each group did not cross 1. There was no significant difference in the mortality HR in pair-wise comparisons across these 3 groups.

The adjusted HRs for mortality following a bleeding event were 17.7 (95% Cl, 7.0–44.8) when identified with trial adjudication and claims, 48.7 (95% Cl, 13.6–73.6) when identified with trial adjudication only, and 23.9 (95% Cl, 10.7–53.2) when identified with claims only, relative to those who did not have an event (Figure 2B). Once again, although Cls for point estimates were wide, the lower bound of the Cls in each group did not cross 1. Again, there was no significant difference in the mortality HR in pair-wise comparisons across these 3 groups.

In supplemental analysis, the unadjusted annualized mortality rate after any ischemic event identified via trial adjudication (n=71) was 10.1 person-years (95% CI, 5.4–18.8) and the unadjusted annualized mortality rate after any ischemic event identified via claims (n=62) was 5.5 person-years (95% CI, 1.4– 22.0; Table S3). Additionally, the unadjusted annualized mortality rate after any bleeding event identified via trial adjudication (n=57) was 12.3 person-years (95% CI, 6.6–22.8) and the unadjusted annualized mortality rate after any ischemic event identified via claims (n=109) was 10.8 person-years (95% CI, 6.7–71.4).

DISCUSSION

This study examined the prognosis of claims-based versus trial-based clinical events in the DAPT study. We found that, in addition to trial-adjudicated events, ischemic and bleeding events ascertained using claims were prognostically significant for death. These results demonstrate the incremental value of claims in identifying additional clinically meaningful outcomes in future cardiovascular clinical trials.

This study extends prior knowledge on prognosis of ischemic and bleeding events post-PCI. Previous studies have evaluated the relationship between post-PCI clinical events and mortality with differing definitions of end points and duration of follow-up. In the CHAMPION-PHEONIX trial, both centrally Clinical Events Committee-adjudicated MI and site investigator-identified MI had independent prognostic significance for higher 30-day death.²⁴ Ischemic and bleeding events ascertained from electronic health records have also previously been demonstrated to identify patients with poor prognosis in the first year after PCI.¹⁰ Additionally, trial-adjudicated bleeding events have been associated with worse outcomes up to 1 year,²⁵ and registry-based ascertainment of bleeding events was associated with increased risk of death up to 2 years post-PCI.^{11,26} A sub-analysis of the DAPT study found that both trial-adjudicated

Table 1. Baseline Characteristics of Patients With Ischemic Events in Trials and Claims Data

Characteristics	Event in Both Trial and Claims (n=47)	Event in Trial Only (n=24)	Event in Claims Only (n=15)	No Event (n=1250)	P Value*		
Clinical characteristics							
Age, y							
Mean±SD, n	72.3±6.3 (47)	71.0±4.2 (24)	73.9±5.4 (15)	71.8±5.5 (1250)	0.312		
Median (Q1, Q3)	71.0 (67.1, 74.0)	70.3 (68.0, 74.5)	73.0 (69.0, 76.0)	71.0 (67.0, 75.0)			
Range (min, max)	(65.0, 89.0)	(65.0, 80.0)	(65.0, 84.0)	(65.0, 91.0)			
Women	38.3% (18/47)	33.3% (8/24)	33.3% (5/15)	32.5% (406/1250)	0.954		
Race							
American Indian or Alaska Native	0.0% (0/47)	0.0% (0/24)	0.0% (0/15)	0.2% (3/1244)	0.691		
Asian	0.0% (0/47)	0.0% (0/24)	0.0% (0/15)	0.6% (8/1244)			
Black	4.3% (2/47)	4.2% (1/24)	0.0% (0/15)	3.9% (48/1244)			
Native Hawaiian or Other Pacific Islander	0.0% (0/47)	0.0% (0/24)	0.0% (0/15)	0.2% (2/1244)			
White	93.6% (44/47)	87.5% (21/24)	100.0% (15/15)	93.4% (1162/1244)			
Other	2.1% (1/47)	8.3% (2/24)	0.0% (0/15)	1.7% (21/1244)			
Hispanic or Latino	2.2% (1/46)	12.5% (3/24)	0.0% (0/14)	2.3% (29/1246)	0.095		
Body mass index, Kg/m ²							
Mean±SD, n	29.3±.2 (47)	29.3±6.0 (24)	27.9±3.7 (15)	29.7±5.3 (1250)	0.650		
Median (Q1, Q3)	28.6 (25.6, 31.3)	28.3 (25.8, 32.3)	26.9 (24.8, 31.2)	29.0 (26.0, 32.5)			
Range (min, max)	(22.0, 46.3)	(20.8, 43.0)	(22.0, 35.0)	(15.7, 52.2)			
Diabetes mellitus	46.8% (22/47)	52.2% (12/23)	26.7% (4/15)	32.4% (405/1249)	0.290		
Insulin	21.3% (10/47)	13.0% (3/23)	0.0% (0/15)	8.1% (101/1249)	0.144		
Oral medications	21.3% (10/47)	34.8% (8/23)	20.0% (3/15)	20.7% (258/1249)	0.428		
Diet controlled or no treatment	4.3% (2/47)	4.3% (1/23)	6.7% (1/15)	3.7% (46/1249)	1.000		
Hypertension	89.4% (42/47)	83.3% (20/24)	100.0% (15/15)	84.8% (1057/1246)	0.244		
Peripheral artery disease	17.0% (8/47)	18.2% (4/22)	6.7% (1/15)	10.1% (124/1233)	0.714		
Congestive heart failure	19.1% (9/47)	8.3% (2/24)	13.3% (2/15)	5.8% (72/1241)	0.510		
Previous myocardial infarction	22.2% (10/45)	34.8% (8/23)	33.3% (5/15)	20.5% (250/1217)	0.481		
Stroke/transient ischemic event	6.4% (3/47)	0.0% (0/22)	6.7% (1/15)	5.4% (68/1249)	0.501		
Prior procedures							
Previous percutaneous coronary intervention	46.8% (22/47)	58.3% (14/24)	53.3% (8/15)	34.1% (424/1242)	0.673		
Coronary artery bypass graft	23.4% (11/47)	20.8% (5/24)	20.0% (3/15)	16.2% (202/1248)	1.000		
Indication for index procedure							
Acute coronary syndrome	25.5% (12/47)	16.7% (4/24)	13.3% (2/15)	14.7% (184/1250)	0.625		
STEMI	0.0% (0/47)	0.0% (0/24)	6.7% (1/15)	4.2% (52/1250)	0.174		
NSTEMI	25.5% (12/47)	16.7% (4/24)	6.7% (1/15)	10.6% (132/1250)	0.306		
Unstable angina ³	12.8% (6/47)	16.7% (4/24)	6.7% (1/15)	15.2% (190/1250)	0.754		
Stable angina	31.9% (15/47)	37.5% (9/24)	66.7% (10/15)	45.4% (568/1250)	0.060		
Other	29.8% (14/47)	29.2% (7/24)	13.3% (2/15)	24.6% (308/1250)	0.534		
Procedural characteristics							
Treated vessel							
Left main	0.0% (0/60)	0.0% (0/30)	5.0% (1/20)	1.3% (21/1658)	0.030		
LAD	38.3% (23/60)	20.0% (6/30)	40.0% (8/20)	37.7% (625/1658)			
RCA	28.3% (17/60)	53.3% (16/30)	45.0% (9/20)	33.2% (550/1658)			
Circumflex	23.3% (14/60)	26.7% (8/30)	10.0% (2/20)	23.4% (388/1658)			
Venous graft	10.0% (6/60)	0.0% (0/30)	0.0% (0/20)	4.0% (66/1658)			
Arterial graft	0.0% (0/60)	0.0% (0/30)	0.0% (0/20)	0.5% (8/1658)			

(Continued)

Table 1. Continued

Characteristics	Event in Both Trial and Claims (n=47)	Event in Trial Only (n=24)	Event in Claims Only (n=15)	No Event (n=1250)	P Value*		
DES types, identified at index (per patient)							
Cypher	19.5% (8/41)	10.0% (2/20)	21.4% (3/14)	12.8% (149/1160)	0.038		
Endeavor	14.6% (6/41)	5.0% (1/20)	14.3% (2/14)	14.4% (167/1160)			
TAXUS	24.4% (10/41)	0.0% (0/20)	21.4% (3/14)	20.3% (236/1160)			
Xience/PROMUS	41.5% (17/41)	85.0% (17/20)	42.9% (6/14)	50.2% (582/1160)			
>1 DES type	0.0% (0/41)	0.0% (0/20)	0.0% (0/14)	2.2% (26/1160)	1		
Minimum stent diameter (per patient)							
<3	48.9% (23/47)	70.8% (17/24)	40.0% (6/15)	48.1% (601/1250)	0.113		
≥3	51.1% (24/47)	29.2% (7/24)	60.0% (9/15)	51.9% (649/1250)	1		
Total stent lengths, mm (sum per patient)							
Mean±SD, n	27.1±16.0 (47)	27.1±15.2 (24)	25.3±16.6 (15)	26.2±16.2 (1250)	0.917		
Median (Q1, Q3)	20.0 (16.0, 32.0)	25.0 (15.0, 39.0)	24.0 (12.0, 32.0)	23.0 (15.0, 30.0)	1		
Range (min, max)	(8.0, 85.0)	(8.0, 56.0)	(8.0, 74.0)	(8.0, 140.0)			
Randomization group							
Placebo	61.7% (29/47)	54.2% (13/24)	53.3% (8/15)	50.2% (628/1250)	0.762		
Continued thienopyridine	38.3% (18/47)	45.8% (11/24)	46.7% (7/15)	49.8% (622/1250)			

STEMI indicates ST-segment-elevation myocardial infarction; NSTEMI, non-ST-segment-elevation myocardial infarction; LAD, left anterior descending; RCA, right coronary artery; and DES, drug-eluting stent.

*Between-group differences were assessed using an ANOVA test for continuous variables or a Fisher exact test for categorical variables comparing first 3 columns only (no event column not included).

ischemic and bleeding events beyond 1 year and up to 30 months post-PCI were associated with worse mortality.¹² However, there are limited data on the prognostic impact of clinical events that may not meet strict criteria for trial adjudication at this interval. We found that ischemic and bleeding events identified only via administrative claims have a similar prognosis for death as trial-adjudicated events beyond 1 year after PCI, despite controlling for baseline ischemic or bleeding events continue to have poor prognostic impact beyond 1 year after PCI, irrespective of clinical event definition or ascertainment mechanism.

The results from this study demonstrate the potential value of claims-based approaches to ascertain additional clinically meaningful events in clinical trials. Some have suggested that using claims to augment outcome ascertainment in clinical trials can improve the efficiency of clinical trial data collection.^{4–6} However, studies evaluating the accuracy of claims in ascertaining clinically adjudicated outcomes in large observational studies have found discordant results.^{20,27,28} An analysis of the DAPT study found that claims data had moderate agreement with trial-adjudicated MI, but poor agreement for trialadjudicated bleeding and stroke.^{15,17} Nevertheless, treatment effects of extended-duration DAPT after PCI using claims-derived events were numerically similar to those using adjudicated events.¹⁷ Discrepancies between trial- and claims-based events may stem from differences between the stringent trial end point definitions and the broad inclusion criteria in claimsbased approaches, particular for softer end points. However, these additional claims-based events were not simply mild events not meeting the adjudication threshold, as the vast majority of claims-only bleeding events were also not captured as lesser severity Bleeding Academic Research Consortium Type 2 events in the trial. We find that instances in which claims and trials are discordant in identifying a clinical event are still clinically meaningful for patient mortality after PCI. Thus, claims may help identify additional patients with ischemic and bleeding events with important prognostic implications post-PCI that would have otherwise not been captured in traditional trial adjudication. Future trials can incorporate authorization for linkage to insurance data prospectively using direct identifiers to identify such events in claims, and this can serve as an adjunct to existing trial adjudication processes. Future studies are needed to determine the prognosis of other claims-based end points for their potential to augment cardiovascular clinical trials in other contexts.

This study has implications for use of real-world data to ascertain outcomes in future cardiovascular clinical trial design. As has been seen with the additional events captured with centralized adjudication in

Table 2. Baseline Characteristics of Patients With Bleeding Events in Trials and Claims Data

Characteristics	Event in Both Trial and Claims (n=44)	Event in Trial Only (n=13)	Event in Claims Only (n=65)	No Event (n=1214)	P Value*
Clinical characteristics	1		I		
Age, y					
Mean±SD, n	74.4±6.4 (44)	74.4±6.4 (13)	73.5±5.4 (65)	71.6±5.4 (1214)	0.728
Median (Q1, Q3)	73.0 (70.0, 80.5)	74.0 (70.0, 80.0)	72.0 (70.0, 76.0)	70.0 (67.0, 75.0)	
Range (min, max)	(65.0, 87.0)	(66.0, 85.0)	(65.0, 89.0)	(65.0, 91.0)	
Women	38.6% (17/44)	30.8% (4/13)	43.1% (28/65)	32.0% (388/1214)	0.717
Race	1	1			
American Indian or Alaska Native	0.0% (0/44)	0.0% (0/13)	0.0% (0/65)	0.2% (3/1208)	0.210
Asian	0.0% (0/44)	7.7% (1/13)	0.0% (0/65)	0.6% (7/1208)	
Black	4.5% (2/44)	7.7% (1/13)	3.1% (2/65)	3.8% (46/1208)	
Native Hawaiian or Other Pacific Islander	2.3% (1/44)	0.0% (0/13)	0.0% (0/65)	0.1% (1/1208)	
White	88.6% (39/44)	84.6% (11/13)	95.4% (62/65)	93.5% (1130/1208)	
Other	4.5% (2/44)	0.0% (0/13)	1.5% (1/65)	1.7% (21/1208)	
Hispanic or Latino	4.7% (2/43)	0.0% (0/13)	1.5% (1/65)	2.5% (30/1209)	0.689
Body mass index, Kg/m ²	1	1	L.	L	
Mean±SD, n	28.5±5.3 (44)	29.2±4.6 (13)	29.6±5.5 (65)	29.7±5.3 (1214)	0.538
Median (Q1, Q3)	27.3 (24.6, 31.1)	29.0 (27.0, 31.7)	29.0 (26.1, 31.6)	29.0 (26.0, 32.5)	
Range (min, max)	(19.3, 44.7)	(21.1, 36.1)	(19.0, 47.0)	(15.7, 52.2)	
Diabetes mellitus	32.6% (14/43)	38.5% (5/13)	46.2% (30/65)	32.5% (394/1213)	0.366
Insulin	4.7% (2/43)	7.7% (1/13)	12.3% (8/65)	8.5% (103/1213)	0.425
Oral medications	25.6% (11/43)	30.8% (4/13)	30.8% (20/65)	20.1% (244/1213)	0.840
Diet controlled or no treatment	2.3% (1/43)	0.0% (0/13)	3.1% (2/65)	3.9% (47/1213)	1.000
Hypertension	81.8% (36/44)	92.3% (12/13)	86.2% (56/65)	85.1% (1030/1210)	0.705
Peripheral artery disease	18.6% (8/43)	15.4% (2/13)	15.6% (10/64)	9.8% (117/1197)	0.937
Congestive heart failure	9.1% (4/44)	7.7% (1/13)	10.9% (7/64)	6.1% (73/1206)	1.000
Previous myocardial infarction	19.0% (8/42)	23.1% (3/13)	19.7% (12/61)	21.1% (250/1184)	0.893
Stroke/Transient ischemic attack	7.0% (3/43)	7.7% (1/13)	6.2% (4/65)	5.3% (64/1212)	1.000
Prior procedures					
Previous percutaneous coronary intervention	40.9% (18/44)	30.8% (4/13)	43.8% (28/64)	34.6% (418/1207)	0.745
Coronary artery bypass graft	18.2% (8/44)	23.1% (3/13)	18.5% (12/65)	16.3% (198/1212)	0.890
Indication for index procedure					
Acute coronary syndrome	15.9% (7/44)	23.1% (3/13)	9.2% (6/65)	15.3% (186/1214)	0.263
STEMI	6.8% (3/44)	0.0% (0/13)	4.6% (3/65)	3.9% (47/1214)	0.842
NSTEMI	9.1% (4/44)	23.1% (3/13)	4.6% (3/65)	11.4% (139/1214)	0.090
Unstable angina ³	13.6% (6/44)	7.7% (1/13)	7.7% (5/65)	15.6% (189/1214)	0.681
Stable angina	43.2% (19/44)	15.4% (2/13)	52.3% (34/65)	45.1% (547/1214)	0.046
Other	27.3% (12/44)	53.8% (7/13)	30.8% (20/65)	24.1% (292/1214)	0.206
Procedural characteristics					
Treated vessel					
Left main	0.0% (0/63)	0.0% (0/21)	1.3% (1/80)	1.3% (21/1604)	0.032
LAD	33.3% (21/63)	23.8% (5/21)	52.5% (42/80)	37.0% (594/1604)	
RCA	23.8% (15/63)	52.4% (11/21)	26.3% (21/80)	34.0% (545/1604)	
Circumflex	33.3% (21/63)	19.0% (4/21)	15.0% (12/80)	23.4% (375/1604)	
Venous graft	7.9% (5/63)	0.0% (0/21)	3.8% (3/80)	4.0% (64/1604)	
Arterial graft	1.6% (1/63)	4.8% (1/21)	1.3% (1/80)	0.3% (5/1604)	

(Continued)

Table 2. Continued

Characteristics	Event in Both Trial and Claims (n=44)	Event in Trial Only (n=13)	Event in Claims Only (n=65)	No Event (n=1214)	P Value*		
DES types, identified at index (per patient)							
Cypher	12.2% (5/41)	23.1% (3/13)	15.3% (9/59)	12.9% (145/1122)	0.613		
Endeavor	12.2% (5/41)	7.7% (1/13)	10.2% (6/59)	14.6% (164/1122)			
TAXUS	22.0% (9/41)	7.7% (1/13)	25.4% (15/59)	20.0% (224/1122)			
Xience/PROMUS	51.2% (21/41)	53.8% (7/13)	49.2% (29/59)	50.4% (565/1122)			
>1 DES type	2.4% (1/41)	7.7% (1/13)	0.0% (0/59)	2.1% (24/1122)			
Minimum stent diameter (per patient)	Minimum stent diameter (per patient)						
<3	40.9% (18/44)	46.2% (6/13)	52.3% (34/65)	48.5% (589/1214)	0.509		
≥3	59.1% (26/44)	53.8% (7/13)	47.7% (31/65)	51.5% (625/1214)			
Total stent lengths, mm (sum per patient)							
Mean±SD, n	28.9±20.4 (44)	28.8±16.4 (13)	22.8±12.0 (65)	26.3±16.2 (1214)	0.113		
Median (Q1, Q3)	22.5 (16.5, 29.0)	28.0 (15.0, 41.0)	18.0 (15.0, 28.0)	23.0 (15.0, 31.0)			
Range (min, max)	(8.0, 99.0)	(8.0, 61.0)	(8.0, 80.0)	(8.0, 140.0)			
Randomization group							
Placebo	45.5% (20/44)	30.8% (4/13)	41.5% (27/65)	51.6% (627/1214)	0.695		
Continued thienopyridine	54.5% (24/44)	69.2% (9/13)	58.5% (38/65)	48.4% (587/1214)			

STEMI indicates ST-segment-elevation myocardial infarction; NSTEMI, non-ST-segment-elevation myocardial infarction; LAD, left anterior descending; RCA, right coronary artery; and DES, drug-eluting stent.

*Between-group differences were assessed using an ANOVA test for continuous variables or a Fisher exact test for categorical variables comparing first 3 columns only (no event column not included).

clinical trials,24 claims-based end points can identify additional meaningful events beyond trial adjudication as well as patients with poor prognosis, both of which can inform the understanding of an intervention's broader long-term effects. Thus, predetermined definitions in clinical trials may be missing key events that have important prognostic value. However, given that claims-based end point ascertainment may not be as precise in identifying specific clinical events, it may be best suited to operate in parallel with traditional trial adjudication processes. A hybrid model in which claimsbased events can trigger further trial adjudication and review may enhance the efficiency of clinical trial event ascertainment. It is important to note that, while both trial-adjudicated and claims-based clinical events are clinically meaningful, events of both types may not be in the causal pathway of a particular intervention being studied. Subtle differences in definitions of clinical events can have different prognostic implications and trial results,⁷⁻⁹ as in the case of the EXCEL (Evaluation of XIENCE versus Coronary Artery Bypass Surgery for Effectiveness of Left Main Revascularization) trial in which variations in definition of periprocedural MI can lead to differing conclusions.^{29,30} As such, incorporation of claims into the case definition of any trial must align with the intended construct of the outcome meant to be tested in the trial hypothesis. Although no statistically significant differences were found between claims versus trial-based definitions of events, this study was underpowered to detect some clinically meaningful differences. Future studies will be important to determine if claims capture clinically distinct phenotypes that may have different long-term clinical prognoses for a given intervention.

This study's findings must be interpreted in context of its limitations. First, our cohort included only a subset of the full DAPT study that could be linked to Medicare claims data, as a large number of DAPT study patients were aged <65 years or enrolled outside of the United States. The results thus may not be generalizable to other claims data sets or populations. Second, the number of events in our study is small, leading to wide CIs for HR estimates. Finally, this study only used ICD-9 codes, and results may differ with International Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10) codes, although sensitivity of ICD-9 versus ICD-10 codes in ascertaining cardiovascular end points is generally similar,³¹ and most of the specific codes for MI and bleeding diagnoses across classification schemes are the same. Future research should investigate the prognostic significance of ICD-10 codes for ascertaining events.

In examining patients in the DAPT study linked to administrative claims data, we found that clinical events identified with claims data had a prognostic impact similar to clinical events identified via trial adjudication. These results demonstrate the incremental value of claims-based end points in identifying additional clinically meaningful events for subsequent adjudication and support the use of claims to augment clinical trial

Figure 2. Adjusted risk of mortality after trial vs claims-based ischemic or bleeding events during the 21-month post-randomization period.

(A) Ischemic events; (B) Bleeding events. Hazard ratios compare risk of death of patients with clinical events relative to those without such events. Models are adjusted for predicted probability of having ischemic or bleeding events at 21 months based on models from the DAPT (Dual Antiplatelet Therapy) study. The DAPT study ischemic risk model includes whether a patient had a myocardial infarction at presentation, prior percutaneous coronary intervention or MI, history of heart failure or left ventricular ejection fraction <30%, vein graft percutaneous coronary intervention, stent diameter <3 mm, use of a paclitaxel-eluting stent, smoking status, diabetes mellitus, peripheral artery disease, hypertension, and renal insufficiency. The DAPT study bleeding risk model includes age, peripheral artery disease, hypertension, and renal insufficiency. For ischemic events, pairwise P value comparing both trial and claims vs trial only, 0.304; pairwise P value comparing both trial and claims vs claims only, 0.576; and pairwise P value comparing trial only vs claims only, 0.193, based on the Wald test. Global Chi-squared statistic comparing all ischemic event 3 groups, 2.861; and P value from Wald test comparing all 3 groups, 0.239. For bleeding events, pairwise P value comparing both trial and claims vs trial only, 0.145; pairwise P value comparing both trial and claims vs claims only, 0.545; and pairwise P value comparing trial only vs claims only, 0.283 based on the Wald test. Global Chi-squared statistic comparing all 3 bleeding event groups, 2.878; and P value from Wald test comparing all 3 groups, 0.237.

end point ascertainment in future cardiovascular clinical trials. Future studies will be important to determine the prognosis of other claims-based end points and whether claims capture clinically distinct phenotypes that may have different implications for a given intervention in other contexts.

ARTICLE INFORMATION

Received September 23, 2020; accepted January 11, 2021.

Affiliations

From the Richard A. and Susan F. Smith Center for Outcomes Research in Cardiology, Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA (N.M.B., E.A.S., D.K., C.S., R.W.Y.); Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA (N.M.B.); Section of Cardiovascular Medicine, Department of Medicine, Yale School of Medicine, New Haven, CT (K.F.F., J.C.); and Baim Institute for Clinical Research, Boston, MA (Y.S., C.M.G., R.W.Y.).

Sources of Funding

This research was supported by the National Heart, Lung, and Blood Institute (1R01HL136708) and the American College of Cardiology's NCDR. The views expressed in this article represent those of the authors, and do not necessarily represent the official views of the NCDR or its associated professional societies identified at CVQuality.ACC.org/NCDR.

Disclosures

Dr. Butala is funded by the John S. LaDue Memorial Fellowship at Harvard Medical School, Boston, MA, and reports consulting fees and ownership interest in HiLabs, outside the submitted work. Dr. Secemsky receives grants from AstraZeneca, BD Bard, Boston Scientific, Cook Medical, CSI, Medtronic, Philips, and UCSF. He consults for BD Bard, CSI, Medtronic, and Philips and is on the speaking bureau of BD Bard, Cook Medical, and Medtronic. Dr. Curtis receives salary support under contracts with the American College of Cardiology and Centers for Medicare and Medicaid Services. Dr. Gibson reports grants and personal fees from Angel Medical Corporation, grants and personal fees from Bayer Corporation, grants and personal fees from CSL Behring, grants and personal fees from Janssen Pharmaceuticals, grants and personal fees from Johnson & Johnson Corporation, personal fees from The Medicines Company, personal fees from Boston Clinical Research Institute, personal fees from Cardiovascular Research Foundation, personal fees from Eli Lilly and Company, personal fees from Gilead Sciences, Inc., personal fees from Novo Nordisk, personal fees from Web MD, personal fees from UpToDate in Cardiovascular Medicine, and grants and personal fees from Portola Pharmaceuticals. Dr Gibson also reports personal fees from Amarin Pharma, Amgen, Boehringer Ingelheim, Chiesi, Merck & Co, Inc., PharmaMar, Sanofi, Somahlution, St. Francis Hospital, Verreseon Corporation, Boston Scientific, Duke Clinical Research Institute, Impact Bio, LTD, MedImmune, Medtelligence, Microport, PERT Consortium; other from nference; non-financial support from Baim Institute; grants from Bristol-Myers Squibb; grants from SCAD Alliance; personal fees from GE Healthcare, Caladrius Bioscience, CeleCor Therapeutics, Thrombolytic Science, AstraZeneca, Eidos Therapeutics, and Kiniksa Pharmaceuticals. Dr. Yeh has research grants from Abbott Vascular, Abiomed, AstraZeneca, Cook, BD Bard, Boston Scientific, Medtronic, and Philips, and consulting fees from Abbott Vascular, AstraZeneca, Boston Scientific, and Medtronic.

Supplementary Material

Tables S1–S3 Figure S1

REFERENCES

 Fröbert O, Lagerqvist BO, Olivecrona GK, Omerovic E, Gudnason T, Maeng M, Aasa M, Angerås O, Calais F, Danielewicz M, et al. Thrombus aspiration during st-segment elevation myocardial infarction. N Engl J Med. 2013;369:1587–1597. DOI: 10.1056/NEJMoa1308789.

- Perez MV, Mahaffey KW, Hedlin H, Rumsfeld JS, Garcia A, Ferris T, Balasubramanian V, Russo AM, Rajmane A, Cheung L, et al. Largescale assessment of a smartwatch to identify atrial fibrillation. *N Engl J Med.* 2019;381:1909–1917. DOI: 10.1056/NEJMoa1901183.
- U.S. Food and Drug Administration. Use of real-world evidence to support regulatory decision-making for medical devices: guidance for industry and food and drug administration staff. Docket number: Fda-2016-d-2153. 2017.
- Choudhry NK. Randomized, controlled trials in health insurance systems. N Engl J Med. 2017;377:957–964. DOI: 10.1056/NEJMra1510058.
- Eisenstein EL, Lemons PW 2nd, Tardiff BE, Schulman KA, Jolly MK, Califf RM. Reducing the costs of phase III cardiovascular clinical trials. *Am Heart J.* 2005;149:482–488. DOI: 10.1016/j.ahj.2004.04.049.
- Sertkaya A, Wong HH, Jessup A, Beleche T. Key cost drivers of pharmaceutical clinical trials in the United States. *Clin Trials*. 2016;13:117– 126. DOI: 10.1177/1740774515625964.
- Ruel M, Falk V, Farkouh ME, Freemantle N, Gaudino MF, Glineur D, Cameron DE, Taggart DP. Myocardial revascularization trials. *Circulation*. 2018;138:2943–2951. DOI: 10.1161/CIRCULATIONAHA.118.035970.
- Cho MS, Ahn JM, Lee CH, Kang DY, Lee JB, Lee PH, Kang SJ, Lee SW, Kim YH, Lee CW, et al. Differential rates and clinical significance of periprocedural myocardial infarction after stenting or bypass surgery for multivessel coronary disease according to various definitions. *JACC Cardiovasc Interv.* 2017;10:1498–1507. DOI: 10.1016/j.jcin.2017.05.051
- Ben-Yehuda O, Chen S, Redfors B, McAndrew T, Crowley A, Kosmidou I, Kandzari DE, Puskas JD, Morice M-C, Taggart DP, et al. Impact of large periprocedural myocardial infarction on mortality after percutaneous coronary intervention and coronary artery bypass grafting for left main disease: an analysis from the excel trial. *Eur Heart J.* 2019;40:1930–1941. DOI: 10.1093/eurheartj/ehz113.
- Kazi DS, Leong TK, Chang TI, Solomon MD, Hlatky MA, Go AS. Association of spontaneous bleeding and myocardial infarction with long-term mortality after percutaneous coronary intervention. J Am Coll Cardiol. 2015;65:1411–1420. DOI: 10.1016/j.jacc.2015.01.047
- Genereux P, Giustino G, Witzenbichler B, Weisz G, Stuckey TD, Rinaldi MJ, Neumann FJ, Metzger DC, Henry TD, Cox DA, et al. Incidence, predictors, and impact of post-discharge bleeding after percutaneous coronary intervention. *J Am Coll Cardiol.* 2015;66:1036–1045. DOI: 10.1016/j.jacc.2015.06.1323
- Secemsky EA, Yeh RW, Kereiakes DJ, Cutlip DE, Cohen DJ, Steg PG, Cannon CP, Apruzzese PK, D'Agostino RB, Massaro JM, et al. Mortality following cardiovascular and bleeding events occurring beyond 1 year after coronary stenting: a secondary analysis of the dual antiplatelet therapy (DAPT) study. *JAMA Cardiol.* 2017;2:478–487. DOI: 10.1001/ jamacardio.2017.0063.
- Strom JB, Tamez-Aguilar H, Zhao MY, Valsdottir L, Curtis J, Brennan JM, Shen C, Popma JJ, Mauri L, Yeh RW. Validating the use of registries and claims data to support randomized trials: Rationale and design of the extending trial-based evaluations of medical therapies using novel sources of data (extend) study. *Am Heart J*. 2019;212:64–71. DOI: 10.1016/j.ahj.2019.02.007.
- Kereiakes DJ, Yeh RW, Massaro JM, Driscoll-Shempp P, Cutlip DE, Steg PG, Gershlick AH, Darius H, Meredith IT, Ormiston J, et al. Antiplatelet therapy duration following bare metal or drug-eluting coronary stents: the dual antiplatelet therapy randomized clinical trial. *JAMA*. 2015;313:1113–1121. DOI: 10.1001/jama.2015.1671.
- Faridi KF, Tamez H, Butala NM, Song Y, Shen C, Secemsky EA, Mauri L, Curtis JP, Strom JB, Yeh RW. Comparability of event adjudication versus administrative billing claims for outcome ascertainment in the DAPT study: findings from the extend-DAPT study. *Circ Cardiovasc Qual Outcomes*. 2021;14. DOI: 10.1161/CIRCOUTCOMES.120.006589.
- Mauri L, Kereiakes DJ, Yeh RW, Driscoll-Shempp P, Cutlip DE, Steg PG, Normand S-L, Braunwald E, Wiviott SD, Cohen DJ, et al. Twelve or 30 months of dual antiplatelet therapy after drug-eluting stents. *N Engl J Med.* 2014;371:2155–2166. DOI: 10.1056/NEJMoa1409312.
- Faridi KF, Tamez H, Strom JB, Song Y, Butala NM, Shen C, Secemsky EA, Mauri L, Curtis JP, Gibson CM, et al. Use of administrative claims data to estimate treatment effects for 30 versus 12 months of dual antiplatelet therapy after percutaneous coronary intervention: findings from the extend-DAPT study. *Circulation*. 2020;142:306–308. DOI: 10.1161/ CIRCULATIONAHA.120.047729.
- Hlatky MA, Ray RM, Burwen DR, Margolis KL, Johnson KC, Kucharska-Newton A, Manson JE, Robinson JG, Safford MM, Allison M. Use of medicare data to identify coronary heart disease outcomes in the

women's health initiative. *Circ Cardiovasc Qual Outcomes*. 2014;7:157–162. DOI: 10.1161/CIRCOUTCOMES.113.000373

- Guimaraes PO, Krishnamoorthy A, Kaltenbach LA, Anstrom KJ, Effron MB, Mark DB, McCollam PL, Davidson-Ray L, Peterson ED, Wang TY. Accuracy of medical claims for identifying cardiovascular and bleeding events after myocardial infarction: a secondary analysis of the TRANSLATE-ACS study. *JAMA Cardiol.* 2017;2:750–757. DOI: 10.1001/ jamacardio.2017.1460.
- Lowenstern A, Lippmann SJ, Brennan JM, Wang TY, Curtis LH, Feldman T, Glower DD, Hammill BG, Vemulapalli S. Use of medicare claims to identify adverse clinical outcomes after mitral valve repair. *Circ Cardiovasc Interv.* 2019;12:e007451. DOI: 10.1161/CIRCINTERVENTIO NS.118.007451.
- Andrade SE, Harrold LR, Tjia J, Cutrona SL, Saczynski JS, Dodd KS, Goldberg RJ, Gurwitz JH. A systematic review of validated methods for identifying cerebrovascular accident or transient ischemic attack using administrative data. *Pharmacoepidemiol Drug Saf.* 2012;21:100–128. DOI: 10.1002/pds.2312
- Yeh RW, Sidney S, Chandra M, Sorel M, Selby JV, Go AS. Population trends in the incidence and outcomes of acute myocardial infarction. N Engl J Med. 2010;362:2155–2165. DOI: 10.1056/NEJMoa0908610.
- Yeh RW, Secemsky EA, Kereiakes DJ, Normand S-L, Gershlick AH, Cohen DJ, Spertus JA, Steg PG, Cutlip DE, Rinaldi MJ, et al. Development and validation of a prediction rule for benefit and harm of dual antiplatelet therapy beyond 1 year after percutaneous coronary intervention. JAMA. 2016;315:1735–1749. DOI: 10.1001/jama.2016.3775.
- Olivier CB, Bhatt DL, Leonardi S, Stone GW, Gibson CM, Steg PG, Hamm CW, Wilson MD, Mangum S, Price MJ, et al. Central adjudication identified additional and prognostically important myocardial infarctions in patients undergoing percutaneous coronary intervention. *Circ Cardiovasc Interv.* 2019;12:e007342. DOI: 10.1161/CIRCINTERVENTIO NS.118.007342.

- Ducrocq G, Schulte PJ, Becker RC, Cannon CP, Harrington RA, Held C, Himmelmann A, Lassila R, Storey RF, Sorbets E, et al. Association of spontaneous and procedure-related bleeds with short- and long-term mortality after acute coronary syndromes: an analysis from the plato trial. *EuroIntervention*. 2015;11:737–745. DOI: 10.4244/EJJY14M09_11.
- Koskinas KC, Räber L, Zanchin T, Wenaweser P, Stortecky S, Moschovitis A, Khattab AA, Pilgrim T, Blöchlinger S, Moro C, et al. Clinical impact of gastrointestinal bleeding in patients undergoing percutaneous coronary interventions. *Circ Cardiovasc Interv.* 2015;8:e002053. DOI: 10.1161/CIRCINTERVENTIONS.114.002053.
- Psaty BM, Delaney JA, Arnold AM, Curtis LH, Fitzpatrick AL, Heckbert SR, McKnight B, Ives D, Gottdiener JS, Kuller LH, et al. Study of cardiovascular health outcomes in the era of claims data: the cardiovascular health study. *Circulation*. 2016;133:156–164. DOI: 10.1161/CIRCULATIO NAHA.115.018610.
- Guimarães PO, Krishnamoorthy A, Kaltenbach LA, Anstrom KJ, Effron MB, Mark DB, McCollam PL, Davidson-Ray L, Peterson ED, Wang TY. Accuracy of medical claims for identifying cardiovascular and bleeding events after myocardial infarction: a secondary analysis of the translate-acs study. *JAMA Cardiol.* 2017;2:750–757. DOI: 10.1001/ jamacardio.2017.1460.
- Stone GW, Kappetein AP, Sabik JF, Pocock SJ, Morice M-C, Puskas J, Kandzari DE, Karmpaliotis D, Brown WM, Lembo NJ, et al. Five-year outcomes after PCI or CABG for left main coronary disease. *N Engl J Med.* 2019;381:1820–1830. DOI: 10.1056/NEJMoa1909406.
- Mahase E. Surgical association withdraws support for stent advice after controversy over study. *BMJ*. 2019;367:17006. DOI: 10.1136/bmj.I7006.
- Butala NM, Strom JB, Faridi KF, Kazi DS, Zhao Y, Brennan JM, Popma JJ, Shen C, Yeh RW. Validation of administrative claims to ascertain outcomes in pivotal trials of transcatheter aortic valve replacement. *JACC Cardiovasc Interv.* 2020;13:1777–1785. DOI: 10.1016/j.jcin.2020.03.049.

SUPPLEMENTAL MATERIAL

	Matched FFS Patients	UnMatched Patients	
Measure	(N=1336 Patients)	(N=2572 Patients)	P-value
Demographics			
Age (years)			
Age Mean±SD (N)	71.8±5.5 (1336)	71.5±5.3 (2572)	0.094
Female	32.7% (437/1336)	29.5% (759/2572)	0.041
Race-Non-White	6.6% (88/1330)	7.5% (190/2544)	0.359
Hispanic or Latino	2.5% (33/1330)	3.6% (91/2534)	0.068
BMI (Kg/m ²) Mean±SD (N)	29.6±5.3 (1336)	29.7±5.3 (2550)	0.761
Medical History			
Diabetes mellitus	33.2% (443/1334)	34.4% (883/2569)	0.476
Hypertension	85.1% (1134/1332)	83.1% (2134/2569)	0.099
Current cigarette smoker or within past year ¹	11.3% (149/1322)	10.8% (276/2546)	0.704
Stroke/TIA	5.4% (72/1333)	4.8% (123/2564)	0.439
History of major bleeding	1.0% (13/1330)	1.1% (29/2559)	0.745
Congestive heart failure	6.4% (85/1327)	6.8% (173/2562)	0.734
Peripheral arterial disease	10.4% (137/1317)	8.2% (207/2525)	0.027
Previous percutaneous coronary intervention	35.2% (468/1328)	37.0% (947/2562)	0.292
Coronary artery bypass graft	16.6% (221/1334)	18.0% (462/2567)	0.267
Atrial fibrillation	4.8% (63/1326)	4.8% (124/2560)	0.937
Indication for Index Procedure			
ACS	15.1% (202/1336)	19.1% (490/2572)	0.002
STEMI	4.0% (53/1336)	6.6% (170/2572)	<.001
NSTEMI	11.2% (149/1336)	12.4% (320/2572)	0.254
Unstable Angina ³	15.0% (201/1336)	16.1% (414/2572)	0.405
Stable Angina	45.1% (602/1336)	40.9% (1053/2572)	0.014
Other	24.8% (331/1336)	23.9% (615/2572)	0.555

Table S1. Characteristics and Outcomes of Matched and Unmatched Patients ≥65 Years Old in the EXTEND-DAPT Study.

BMI = body mass index, NSTEMI = non-STE elevation myocardial infarction, SD = standard deviation, STEMI = ST-elevation myocardial infarction, TIA = transient ischemic attack

Reproduced with permission from Faridi et al¹⁵ © 2021 American Heart Association, Inc.

Table S2. ICD-9 Codes Used to Assess Clinical Events.

Outcome	ICD-9 code	Description			
Myocardial Infarction	410.xx (excluding 410.x2)	Acute myocardial infarction (excluding subsequent episode of care)			
Stroke	433.11	Occlusion and stenosis of carotid artery with cerebral infarction			
	434.01	Cerebral thrombosis with cerebral infarction			
	434.11	Cerebral embolism with cerebral infarction			
	434.91	Cerebral artery occlusion, unspecified with cerebral infarction			
	435.9	Unspecified transient cerebral ischemia			
	997.02	Iatrogenic cerebrovascular infarction or hemorrhage			
Major Bleeding	285.1	Acute posthemorrhagic anemia			
	362.81	Retinal hemorrhage			
	379.23	Vitreous hemorrhage			
	423.0	Hemopericardium			
	430.x	Subarachnoid hemorrhage			
	431.x	Intracerebral hemorrhage			
	432.x	Other and unspecified intracranial hemorrhage			
	432.9	Intracranial hemorrhage not otherwise specified			
	455.2	Internal hemorrhoids with complication including bleeding			
	455.5	External hemorrhoids with complication including bleeding			
	455.8	Unspecified hemorrhoids with complication			
	456.0	Esophageal varices with bleeding			
	456.20	Esophageal varices in diseases classified elsewhere, with bleeding			
	459.0	Hemorrhage, unspecified			
	530.21	Ulcer of esophagus with bleeding			
	530.70	Gastroesophageal laceration-hemorrhage syndrome			
	530.82	Esophageal hemorrhage			
	531.0	Acute gastric ulcer with hemorrhage			
	531.01	Acute gastric ulcer with hemorrhage, with obstruction			
	531.20	Acute gastric ulcer with hemorrhage and perforation			
	531.21	Acute gastric ulcer with hemorrhage and perforation, with obstruction			
	531.40	Chronic or unspecified gastric ulcer with hemorrhage			
	531.41	Chronic or unspecified gastric ulcer with hemorrhage, with obstruction			
	531.60	Chronic or unspecified gastric ulcer with hemorrhage and perforation			
	531.61	Chronic or unspecified gastric ulcer with hemorrhage and perforation with obstruction			
	532.0	Acute duodenal ulcer with hemorrhage			
	532.01	Acute duodenal ulcer with hemorrhage, with obstruction			

532.20	Acute duodenal ulcer with hemorrhage and
	A sute duadanal place with ham amhaga and
532.21	perforation with obstruction
532.40	Chronic duodenal ulcer with hemorrhage
532.41	Chronic duodenal ulcer with hemorrhage, with
	obstruction
532.60	Chronic duodenal ulcer with hemorrhage and
	perforation
532.61	Chronic duodenal ulcer with hemorrhage and
	perforation with obstruction
533.0	Acute peptic ulcer with hemorrhage
533.01	Acute peptic ulcer with hemorrhage, with obstruction
533.20	Acute peptic ulcer with hemorrhage and perforation
533.21	Acute peptic ulcer with hemorrhage and perforation,
	with obstruction
533.40	Chronic peptic ulcer with hemorrhage
533.41	Chronic peptic ulcer with hemorrhage, with
	obstruction
533.60	Chronic peptic ulcer with hemorrhage and
	perforation
533.61	Chronic peptic ulcer with hemorrhage and
524.0	perforation, with obstruction
534.0	Acute gastrojejunal ulcer with hemorrhage
534.01	Acute gastrojejunal ulcer with hemorrhage, with
524.20	obstruction
534.20	Acute gastrojejunal ulcer with hemorrhage and
524.21	A sute asstration where with homembers and
334.21	Perforation with obstruction
534.40	Chronic gastroieiunal ulcer with hemorrhage
534.40	Chronic gastrojejunal ulcer with hemorrhage with
557.71	obstruction
534.60	Chronic gastroieiunal ulcer with hemorrhage and
334.00	perforation
534.61	Chronic gastroieiunal ulcer with hemorrhage and
	perforation, with obstruction
535.01	Acute gastritis with hemorrhage
535.21	Gastric mucosal hypertrophy with hemorrhage
535.31	Alcoholic gastritis with hemorrhage
535.41	Other gastritis with hemorrhage
535.51	Unspecified gastritis and gastroduodenitis with
	hemorrhage
535.61	Duodenitis with hemorrhage
536.71	Eosinophilic gastritis with hemorrhage
537.83	Angiodysplasia of stomach and duodenum with
	hemorrhage
537.84	Hemorrhagic Dieulafoy lesion of stomach and
	duodenum
562.02	Diverticulosis of small intestine with hemorrhage
562.03	Diverticulitis of small intestine with hemorrhage
562.12	Diverticulosis of colon with hemorrhage
562.13	Diverticulitis of colon with hemorrhage
568.81	Hemoperitoneum

569.3	Hemorrhage of rectum and anus
569.85	Angiodysplasia of intestine with hemorrhage
569.86	Hemorrhagic Dieulafoy lesion of intestine
578.0	Hematemesis
578.1	Blood in stool
578.9	Hemorrhage of gastrointestinal tract, unspecified
596.7	Hemorrhage into bladder wall
599.70	Hematuria
599.71	Gross hematuria
623.8	Noninflammatory disorders of vagina including
	hemorrhage
626.2	Excessive menstruation
626.6	Metrorrhagia
626.8	Other disorders of menstruation and other abnormal
	bleeding from female genital tract
627.0	Premenopausal menorrhagia
627.1	Postmenopausal menorrhagia
719.10-19	Hemarthrosis
729.92	Nontraumatic hematoma of soft tissue
770.3	Pulmonary Hemorrhage
784.7	Epistaxis
784.8	Hemorrhage from throat
786.30	Hemoptysis, unspecified
786.39	Other hemoptysis
852.0x	Traumatic subarachnoid hemorrhage
952.1-	Subarachnoid hemorrhage following injury with
852.18	open intracranial wound
852.2x	Subdural hemorrhage following injury
952.24	Subdural hemorrhage following injury with open
832.58	intracranial wound
852.4x	Extradural hemorrhage following injury
852 5v	Extradural hemorrhage following injury with open
852.5X	wound
853.x	Other and unspecified intracranial hemorrhage
	following injury
997.02	Iatrogenic cerebrovascular infarction or hemorrhage
998.11	Hemorrhage complicating a procedure
998.12	Hematoma complicating a procedure
9900.00-04	Blood transfusion
(Procedure codes)	

Table S3. Annualized mortality rate after clinical event in trial versus claims during the 21-month post-randomization period.

	Ischemi	ic events	Bleeding events		
	Event in trial (N = 71)	Event in claims (N = 62)	Event in trial (N = 57)	Event in claims (N = 109)	
n per 100 person-years annualized mortality rate after an event	10.1 (5.4, 18.8)	5.5 (1.4, 22.0)	12.3 (6.6, 22.8)	10.8 (6.7, 17.4)	

