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Parkinson’s disease (PD) is the second most common neurodegenerative disorder characterized by progressive loss of dopaminergic
neurons in the substantia nigra. -e precise mechanism underlying pathogenesis of PD is not fully understood, but it has been widely
accepted that excessive reactive oxygen species (ROS) are the keymediator of PD pathogenesis.-e causative factors of PD such as gene
mutation, neuroinflammation, and iron accumulation all could induce ROS generation, and the later would mediate the dopaminergic
neuron death by causing oxidation protein, lipids, and othermacromolecules in the cells. Obviously, it is ofmechanistic and therapeutic
significance to understand where ROS are derived and how ROS induce dopaminergic neuron damage. In the present review, we try to
summarize and discuss the main source of ROS in PD and the key pathways through which ROS mediate DA neuron death.

1. Introduction

Parkinson’s disease (PD) is an age-dependent, progressive
neurodegenerative disease, characterized by selective loss of
dopaminergic (DA) neurons residing in an area of the
midbrain known as the substantia nigra [1, 2]. As the second
most common neurodegenerative disease, PD remains in-
curable, which might be underlined by the fact that
mechanism for PD pathogenesis is not fully illustrated.

With the intensive studies, it is now widely accepted that
genetic background, environment factors, and aging are the
key contributors of PD pathogenesis. In recent years, some
PD-associated genes have been identified, including α-syn-
uclein (SNCA), PTEN-induced putative kinase 1 (PINK1),
parkin, DJ-1 (PARK7), and leucine rich repeat kinase 2
(LRRK2), mutations of which lead to the familial forms of PD
(early-onset) [3]. Even in the rest of 90% of the sporadic cases
of PD, mutations of those genes could also increase the PD
susceptibility [4]. Environmental factors such as heavymetals,
drugs, and exposure to neurotoxic compounds can induce PD

via interfering dopamine transporter activity, dopamine
metabolism, mitochondrial function, and proteasome activity
[5–7]. Aging could result in misfolding of proteins as well as
mitochondrial dysfunction, which are all closely related to the
PD pathogenesis [8]. Although the underlying mechanisms of
neuronal degeneration in PD remain to be better understood,
it is well established that all of the PD-related factors men-
tioned above can cause excessive generation of ROS [9].

ROS, as the by-products of cellular metabolism, are
defined as a group of reactive molecules derived from
molecular oxygen, which include superoxide anion (O−2 ),
hydroxyl radical (·OH), and hydrogen peroxide (H2O2) [10].
ROS are essential for maintaining many physiological
processes such as apoptosis, autophagy, and immunological
defense [11]. But if the balance between production and
elimination of ROS is disturbed, pathogenic consequences
such as neurodegeneration would happen [12].

In this review, we will focus on discussing how the PD-
associated factors induce ROS generation and how ROS lead
to dopaminergic neuron death in PD (Figure 1).
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2. ROS and PD-Associated Factors

Numerous evidences suggest that PD-associated factors such
as genes mutation, mitochondrial dysfunction, dopamine
auto-oxidation, neuroinflammation, iron accumulation, and
external toxicants accumulation, all could induce ROS
generation.

2.1. PD-Related Genetic Mutations and ROS. It has been
recognized that the genetic mutations such as α-synuclein,
PINK1, parkin, DJ-1, and LRRK2 are causative factors of the
familial forms of PD [13, 14]. Mutation or multiplication of
the α-synuclein gene facilitates the accumulation of
α-synuclein, which is a major component of Lewy bodies,
the pathological hallmark of PD [15]. It was indicated that
accumulation of α-synuclein caused oxidative stress by two
parallel pathways: directly stimulating the generation of
excessive ROS or indirectly interfering scavenge of damaged
mitochondria from which majority of ROS were derived
[16, 17]. PINK1 is the kinase that could phosphorylate and
activate parkin in the process of damaged mitochondria
clearance by autophagy, which exerts neuroprotection
against ROS overproduction [18]. It was reported that loss of

PINK1 or parkin induced mitochondrial dysfunction and
consequent overproduction of ROS, while overexpression of
PINK1 or parkin protected against ROS-induced cell death
[19, 20]. Parkin is an E3 ubiquitin ligase, and loss of function
leads to autosomal recessive PD [21]. Mutation of parkin
impairs its function in the elimination of damaged mito-
chondria, the latter generated ROS [22]. DJ-1 is a small
compact protein that localized on the outer mitochondrial
membrane (OMM). -e sulfhydryl group of DJ-1 could
react with ROS to form the cysteine sulfinic acid, which
functions as a ROS quencher [23]. Loss of DJ-1 renders
increased ROS levels and ultimately caused dopaminergic
neuron death [19]. LRRK2 is a large multidomain protein
and its mutation leads to autosomal dominant PD. A
proposed mechanism for the increased vulnerability of
LRRK2 mutant cells to oxidative stress is via the kinase-
dependent interaction between LRRK2 and dynamin-like
protein (DLP1), which facilitates DLP1 translocation to
mitochondria and subsequentmitochondrial fission [24, 25].
Another mechanism is through the interaction of LRRK2
with peroxiredoxin 3 (PRDX3), which is a mitochondrial
member of the antioxidant family of thioredoxin peroxi-
dases. Mutations in the LRRK2 kinase domain increase
phosphorylation of PRDX3 leading to decreased peroxidase
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Figure 1: Schematic pathway of ROS generation and induction of DA neurons death. Mitochondria dysfunction, dopamine, neuro-
inflammation, iron, and genetic mutations solely or synergistically induce ROS generation, which could induce dopaminergic neurons death
via protein, lipid, and DNA oxidation.
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activity, increased ROS production, and increased cell death
[26, 27]. Notably, postmortem analysis of brains from PD
patients carrying the G2019S mutation in the kinase domain
of LRRK2 has shown marked increase in phosphorylated
PRDX3 compared to normal brains [28].

2.2. Mitochondrial Dysfunction and ROS. Mitochondria are
known as the “power houses” of cells, the place generating
adenosine triphosphate (ATP) through oxidative phos-
phorylation (OXPHOS) [29]. During ATP production, ROS
also generate from the electron transport chain [30]. -e
ROS from complex I are released to the mitochondrial
matrix, while the ROS from complex III are released to both
the mitochondrial matrix and the inner membrane space
(IMS) [31]. Mitochondrial dysfunction leads to increased
ROS generation; in return, ROS are also harmful to the
electron transport chain itself, leading to even higher pro-
duction of ROS [32, 33]. It was suggested that mitochondria-
induced overproduction of ROS was a key factor responsible
for cell death and the progression of late-onset neurode-
generative diseases, particularly in idiopathic PD [32, 34].
Mitochondrial dysfunction leads to the deficiency of ATP,
which is indispensable especially to dopaminergic neurons
to propagate electrical signals, maintain ionic gradients and
secrete dopamine [35]. -e fact that the activity of the
mitochondrial electron transport chain in the substantia
nigra of PD patients was decreased compared with age-
matched controls, further supported the role of mito-
chondrial dysfunction in PD [36]. In summary, mito-
chondrial dysfunction can cause PD though the
overproduction of ROS, which underlines the dopaminergic
neuron death in PD.

2.3. Dopamine and ROS. Dopamine (DA), the neurotrans-
mitter produced from DA neurons, is responsible for the
regulation of excitatory and inhibitory synaptic transmission
for ensuring smooth coordinated movement [37]. -e
movement disorder displayed in PD patients is basically
underlined by the deficiency of DA. Noteworthy, dopamine
is an unstable molecule that may auto-oxidize to form
quinones and H2O2 [38, 39]. H2O2 could react with iron or
oxygen to form more active _OH [40]. DA quinones could
react with the sulfhydryl groups of the cysteine in proteins,
particularly glutathione (GSH), a ROS scavenger, resulting
in lower GSH levels, and higher ROS level [41]. In addition,
ROS, especially H2O2, are generated as by product in the
process of dopamine oxidative metabolism by monoamine
oxidases B [42, 43]. Besides the synthesis and degradation,
the transport and storage of dopamine also contribute to
elevated ROS production. Dopamine is synthesized in the
cytosol and rapidly stored into synaptic vesicles for pro-
viding a stable environment for DA before released out [15],
which is dependent on vesicular monoamine transporter 2
(VMAT2). Dopamine reuptake, occurred with the help of
dopamine active transporter (DAT), is essential for precisely
tuning the dopamine level in synaptic cleft [44]. Obviously,
any perturbation to the storage and reuptake of dopamine
would elevate cytoplasmic dopamine, which enhances the

susceptibility to be oxidation. Consist with that, mutant
α-synuclein, which linked to inherited forms of PD, is as-
sociated with enhanced dopamine reuptake and down
regulates VMAT2 [45]. In addition, DAT is involved in
dopamine neurotoxicity by reuptake dopamine from ex-
tracellular space to cytosol leading to accumulation of do-
pamine [46]. Conclusively, dopamine is an unstable
molecule and prone to auto-oxidize in cytoplasm. Any
perturbation elevating cytoplasmic dopamine can increase
dopamine auto-oxidization and subsequently ROS and
eventually PD pathogenesis.

2.4. Neuroinflammation and ROS. Neuroinflammation is
a protective response of nervous system to various kinds of
tissue insults and damage. It would induce release of trophic
factors and ROS to protect against stimulus so as to facilitate
the regeneration and the repair [47]. Once inflammation is
overwhelmed, it would cause accumulation of ROS and
consequently cell death [48]. A large body of research shows
that chronic inflammation involves in chronic neurode-
generative diseases, particularly the pathogenesis of PD.

Microglial cells, resident immune cells in the central
nervous system (CNS), are main participants of the in-
flammatory response. Activated microglia releases various
cytokines and chemokines to initiate corresponding pro-
cesses to recruit additional microglia and leukocytes to the
site of injury [49]. Cytokines such as, TNF-α, IL-1β, and
IFN-c, are proinflammatory, which will activate NADPH
oxidases (Nox). Nox2, one isoform of Nox, is mainly
expressed in the nervous system involved in the production
of ROS as a result of the catalyzing the electron transfer from
NADPH to oxygen [50]. In addition, TNF-α could cause the
depletion of endogenous antioxidants such as GSH of DA
neurons, which renders DA neurons more susceptible to
ROS [51]. IL-1β causes aberrant mitochondrial membrane
potential and the depletion of ATP through facilitating the
formation of peroxynitrite, ultimately leading to mito-
chondria dysfunction and consequent increased ROS
[52, 53]. Beside cytokines and chemokines, microglia can
also be activated by endogenous proteins such as α-synuclein
[54]. α-Synuclein directly promotes activation of Nox2 in
microglia leading to a burst of ROS. Conclusively, cytokines
and chemokines released by microglia can induce NAPDH
oxidase activity, which are capable of markedly enhancing
the level of ROS and therefore PD pathogenesis.

2.5. Iron and ROS. Iron accumulation is another important
hallmark of PD, which has been supported by multiple of
evidences, especially increased iron level observed in the
substantia nigra of PD patients compared to age-matched
controls [55]. Iron is indispensable for many fundamental
biological processes, but excessive iron is cytotoxic. Neurons
therefore tightly regulate iron levels via controlling both iron
uptake and iron storage. As established, the homeostasis of
cellular iron is coordinated mainly by two iron regulatory
proteins (IRP1 and IRP2) [56, 57], which could bind to DNA
iron-response elements (IREs) and regulate their trans-
lations [58]. With aging, the regulation machinery of iron
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tends to be compromised and abnormal iron accumulation
and increased free iron concentration subsequently occurred
[59].

Excessive iron ions can cause an exacerbated ROS
production via Fenton and Haber–Weiss reactions. Iron also
catalyzes the conversion of excess dopamine to neuro-
melanin, during which ROS are generated [60]. Consistent
with that, N-acetyl-l-cysteine (NAC), an antioxidant, which
could decrease iron levels, showed neuroprotective effect in
PD models [61]. Moreover, desferrioxamine (DFO) and
VAR10303 (VAR), two kinds of iron chelator, reduced the
ROS and rescued the MPTP induced PD mouse phenotypes
[62, 63]. Collectively, iron can also contribute to patho-
genesis of PD via aggravating ROS production.

3. Pathological Role of ROS in the
PD Pathogenesis

In cells, ROS are strictly regulated by antioxidant defense
systems, which mainly consist of superoxide dismutase
(SOD), glutathione peroxidase (GPx), catalase (CAT),
ascorbic acid (vitamin C), α-tocopherol (vitamin E), and
GSH [64] (Table 1). Once the formation of ROS overwhelms
the antioxidant defense system, oxidative stress will be in-
duced. As motioned above, various PD causative factors can
lead to excessive ROS generation, which further emphasizes
the pivotal role of ROS in the PD pathogenesis. ROS par-
ticipated in PD pathogenesis involving the peroxidation of
lipid, protein, and nucleic acid [65].

3.1. ROS-Induced Lipid Peroxidation. Lipid is the main
component of the membrane for cell as well as the organ-
elles, such as mitochondria and nuclear. Lipid, especially
polyunsaturated fatty acids, is very vulnerable to the attack
of ROS [66]. A hydrogen moiety of unsaturated carbon of

polyunsaturated fatty acids could easily be attacked and
consequently captured by ROS to form water, leaving an
unpaired electron on the polyunsaturated fatty acids, which
was converted into a peroxyl radical [67]. Once formed,
peroxyl radicals would eventually produce malondialdehyde
(MDA), 4-hydroxynonenal (4-HNE), and other toxic
products [68, 69]. It was suggested that MDA was the major
mutagenic and carcinogenic product of lipid peroxidation,
whereas 4-HNE was less mutagenic and carcinogenic but the
most toxic [70]. 4-HNE could trigger caspase activation and
ultimately cause neuronal apoptosis [71]. In addition, 4-
HNE could also reduce the GSH levels via interplaying with
sulfhydryl groups [72]. Peroxided lipid reacts with poly-
unsaturated fatty acids leading to further oxidation, ulti-
mately disrupting plasma membranes [73]. Accordingly,
ROS-induced lipid peroxidation can cause neuronal dam-
age and contribute to PD progression.

3.2. ROS-Induced Protein Oxidation. It has been demon-
strated that ROS initiates protein oxidation by two parallel
pathways: directly inducing protein chain and side chain
oxidation and indirectly inducing protein oxidation in the
process of lipid peroxidation and glycosylation [74, 75].
Protein oxidation includes the cross-linking and fragmen-
tation of protein and carbonyl group formation [76–78]. It is
noteworthy that surface-exposed methionine and cysteine
residues of proteins are particularly sensitive to oxidation by
almost all forms of ROS. ROS-induced protein oxidation
potentially effects cell survival via disrupting the active site of
enzymes and consequently protein-protein and protein-
DNA interactions [79]. It was demonstrated that loss
function mutation in DJ-1, one familial PD-related gene,
leaded to protein oxidative damage [80]. Supplementation of
antioxidant, vitamin C, could decrease the H2O2 and

Table 1: Antioxidant defense systems and proposed mechanisms against ROS.

Classifications Antioxidants Functions

Enzymatic antioxidant defenses

Superoxide dismutase (SOD)
SOD catalyzes two O2− anions to convert into

a molecule of H2O2 and oxygen
2 O2−+ 2H+→H2O2 +O2

Glutathione peroxidase (GPx)

GPx, a family of multiple isoenzymes containing
selenium, catalyzes the degradation of H2O2 and lipid
peroxides. Moreover, GPx can utilize GSH as an
electron donor for the reduction of peroxides [64].

Catalase (GPx)
Catalase, mainly existing in peroxisomes, is
responsible for converting H2O2 into water

2 H2O2→ 2 H2O+O2

Nonenzymatic antioxidants

Ascorbic acid (vitamin C)

Vitamin C, a water-soluble antioxidant, is capable of
removing ROS by electron transfer. In addition,
vitamin C can act as a cofactor for antioxidant

enzymes [88]; [90]

α-Tocopherol (vitamin E)
Vitamin E, a lipid-soluble antioxidant, can attenuate
the effects of peroxide. In particular, it can protect
against lipid peroxidation in cell membranes [88]

Glutathione (GSH)

GSH, in its reduced form, is known to react with ROS
for the removal of ROS. Moreover, GSH is the

electron donor for the reduction of peroxides in the
GPx reaction [64]
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oxidized protein level [81]. -erefore, protein oxidation by
ROS involves in PD pathogenesis.

3.3. ROS-Induced DNA Oxidation. It is acknowledged that
OH can bind with DNA molecule, leading to oxidation of
bases and the deoxyribose backbone [82]. -e key product
of DNA oxidation is 8-hydroxy-deoxyguanosine (8-
OHdG), which results in transcriptional mutagenesis and
generation of mutated species of protein that contributed
to PD pathogenesis [83, 84]. Notably, mitochondrial DNA
(mtDNA) oxidation by ROS would lead to mtDNA ab-
normality and consequently trigger the expression of ab-
errant mitochondrial proteins and mitochondrial
dysfunction, collectively exacerbating ROS production
[85, 86]. It is therefore unsurprising to note that there is
a vicious cycle between mtDNA oxidation and increased
ROS production, which ultimately leads to neuronal death
and PD pathogenesis.

4. Anti-ROS with Compounds for the
Therapeutics of PD

In light of the above-mentioned evidence on the crucial role
of ROS in the pathogenesis of PD, anti-ROS therapy has
been an attractive strategy to counteract the oxidative stress-
induced neuronal cell death in PD [87]. Classic antioxidants
mainly include vitamin C, vitamin E, Coenzyme Q10
(CoQ10), GSH, NAC, and creatine. Vitamin C and vitamin
E are members of antioxidant defense systems. Vitamin E
could scavenge hydroxyl and peroxyl radicals, thus pro-
tecting against lipid peroxidation [88]. Vitamin C could not
only directly remove O2

− and _OH, but also indirectly fa-
cilitate vitamin E to counteract overproduced ROS to show
neuroprotection in PD [89, 90]. It was reported that
a combination of vitamin C and vitamin E administered to
patients with early PD may slow the progression of the
disease [91, 92]. CoQ10, a constituent of the mitochondrial
electron transport chain (ETC), prevented electrons leaking
along the ETC which would generate ROS [93]. It was re-
ported that oral administration of CoQ10 in PD animal
models and PD patients attenuated mitochondrial dys-
function and deficit of dopamine [94]. Mechanically, CoQ10
acted as antioxidant to scavenge H2O2 or as a cofactor and
activator of mitochondrial uncoupling proteins to decrease
the generation of ROS [93, 95]. GSH, the major endogenous
antioxidant molecule, was found to reduce in the substantia
nigra of PD patients [96]. However, direct administration of
GSH did not achieve expected effect of scavenging ROS due
to its susceptibility to oxidation by various ROS [97]. NAC,
a precursor of GSH, was alternatively utilized to restore GSH
levels by providing the rate-limiting substrate for GSH
synthesis [98]. Moreover, NAC could also directly act as
a scavenger of ROS and ameliorate dopaminergic neuronal
loss in PD models [99, 100]. Creatine is a nitrogenous
guanidine molecule with antioxidant properties, which
could retain mitochondrial dysfunction and protect DA
neuron death in PD models [101, 102]. As known, most of
the ROS are produced during ATP production though

OXPHOS. Resveratrol, a natural polyphenolic compound, is
showed to protect against Parkin deficiency-induced mi-
tochondria dysfunction and oxidative stress via activating
AMPK/SIRT1/PGC-1α axis [103]. Pinocembrin (PB) could
mitigate MPP (+) induced SH-SY5Y cells oxidative stress
and apoptosis [104].

Nuclear factor erythroid 2-related factor 2 (Nrf2) con-
trols the antioxidant and detoxifying response in mam-
malian [105]. Recently, it was reported that carnosic acid
(CA) exerts antioxidant effects through activation of Nrf2,
the latter upregulating expression of some of endogenous
antioxidants such as GPx, glutathione reductase (GR) [106].
Moreover, isothiocyanate sulforaphane (SFN), another Nrf2
activator, also displays neuroprotective effects in PD models
[107]. All those studies suggest that Nrf2 is a pivotal me-
diator of cellular antioxidative stress system.

Noteworthy, antioxidants show the promising effect for
antagonizing oxidative stress in animal PD models, and they
do not display the equivalent efficacy in clinical trials. More
work need to do before antioxidant could be applied for PD
treatment in clinic.

5. Conclusions

PD is the secondmost common neurodegenerative disorder,
and the mechanisms of neuronal degeneration in PD are
poorly known and remain to be fully illustrated. It is widely
accepted that genetic mutations, mitochondrial dysfunction,
dopamine auto-oxidation, neuroinflammation, and iron
accumulation contribute significantly to the pathogenesis of
PD. Interestingly, all of the PD-related factors can cause
excessive generation of ROS. Once ROS overwhelm anti-
oxidant defense systems, excess ROS can induce lipid per-
oxidation, protein oxidation, and DNA oxidation to trigger
PD-related cell loss in the SN. In the future, the molecular
signal pathway of ROS inducing PD pathogenesis needs be
further explored. Antioxidants which could be utilized for
PD treatment should be developed.
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