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Abstract
Here we demonstrate that heat shock protein 90 (HSP90) interacts with calpain-1, but not

with calpain-2, and forms a discrete complex in which the protease maintains its catalytic

activity, although with a lower affinity for Ca2+. Equilibrium gel distribution experiments

show that this complex is composed by an equal number of molecules of each protein part-

ner. Moreover, in resting cells, cytosolic calpain-1 is completely associated with HSP90.

Since calpain-1, in association with HSP90, retains its proteolytic activity, and the chaper-

one is displaced by calpastatin also in the absence of Ca2+, the catalytic cleft of the protease

is not involved in this association. Thus, calpain-1 can form two distinct complexes depend-

ing on the availability of calpastatin in the cytosol. The occurrence of a complex between

HSP90 and calpain-1, in which the protease is still activable, can prevent the complete inhi-

bition of the protease even in the presence of high calpastatin levels. We also demonstrate

that in basal cell conditions HSP90 and calpain-1, but not calpain-2, are inserted in the

multi-protein N-Methyl-D-Aspartate receptor (NMDAR) complex. The amount of calpain-1

at the NMDAR cluster is not modified in conditions of increased [Ca2+]i, and this resident

protease is involved in the processing of NMDAR components. Finally, the amount of

calpain-1 associated with NMDAR cluster is independent from Ca2+-mediated transloca-

tion. Our findings show that HSP90 plays an important role in maintaining a given and prop-

er amount of calpain-1 at the functional sites.

Introduction
Calpains are proteolytic enzymes that belong to a family of the Ca2+-dependent proteases, in-
cluding the ubiquitously expressed calpain-1 and the calpain-2, which are distinguished by the
optimal Ca2+ concentration for maximal activity. [1–3]. The activity of calpains can have either
physiological or pathological roles depending on the extent and duration in [Ca2+]i [4–6]. To
express the physiological functions calpains require: 1) specific recognition of digestible
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substrates; 2) selective cellular localization; 3) proper mechanisms for regulating calpain activa-
tion and activity.

As up to now 200 proteins have been identified as calpain targets [3], specificity require-
ments of calpain cannot just be concerned with the nature of the substrate but rather with the
translocation of the protease in close proximity to the appropriate target protein [7–10].

This hypothesis implies that selective processes could operate on the translocation and regu-
lation of both the activation and activity of calpain. The mechanisms so far proposed involve
variations in [Ca2+]i and the interaction of calpain with its natural inhibitor calpastatin. This
association prevents both translocation and expression of calpain activity [11, 12]. However,
based on the present knowledge and on the fact that the amount of calpastatin largely exceeds
that of calpain, it is currently still difficult to understand how calpain can translocate and ex-
press proteolytic activity. Yet, translocation of calpain could be involved in the localization of
various calpain isoforms in mithocondria [7] as well as in nuclei [8, 9]. Moreover, calpain is
able to specifically degrade members of protein complexes localized at the plasma membranes.
These clusters contain both channels/receptors and enzymes that are required to regulate and
elicit specific cell responses. For example, the ionotropic glutamate receptors NMDAR and
AMPAR, the voltage gated sodium channel (NaCh) and the cystic fibrosis transmembrane con-
ductance regulator (CFTR) are all calpain substrates [13–18]. The function of these channels is
regulated by several proteins, specifically assembled in membrane clusters [19–22], that could
represent a suitable model to establish how calpain can reach these structures and catalyze se-
lective, limited, and controlled proteolysis. We have previously demonstrated that the revers-
ible phosphorylation of calpastatin is responsible for changes in localization of the inhibitor
[23]. This process capable of regulating the amount of calpastatin that interacts with calpain,
essentially allows calpain to escape from calpastatin [23]. More recently it has been shown in
neurons that calpain-1 and-2 undergo recruitment in different cell compartments where each
one can apparently express different functions [14]. All these findings point to the existence of
different mechanisms that leave calpain free from calpastatin restriction, and allow the translo-
cation of the protease to selective functional sites.

In this paper we demonstrate for the first time that HSP90 specifically associates with cal-
pain-1 and causes in the bound-calpain a decrease in the affinity for Ca2+. In resting JA3 cells
which contain high levels of HSP90 [24, 25], cytosolic calpain-1 is associated with the chaper-
one. Moreover, since calpastatin competes with HSP90 for association to calpain-1, two differ-
ent and discrete complexes can be present in cell cytosol. In the first one which contains
calpain-1 and calpastatin, neither proteolytic activity nor translocation of the protease occurs.
In the second one, in which calpain is associated with HSP90, the protease is only partially in-
hibited and trafficking of calpain-1 is not impaired.

Furthermore, we demonstrate that calpain-1 is also associated with the HSP90 at the
NMDAR protein complex, and that the activation of this protease causes the functional prote-
olysis of specific components belonging to the channel cluster. Accordingly, we propose a new
role for HSP90 in controlling the physiological amount and activity of calpain-1 at specific
cellular localizations.

Materials and Methods

Materials
Aprotinin, leupeptin, calcium ionophore A23187, NMDA (N-methyl-D-aspartate), CI-1 (cal-
pain inhibitor-1), Sephacryl S-300 HR, ferritin, aldolase, carbonic anhydrase, ovalbumin and
IPTG (isopropyl β-D-1-thiogalactopyranoside) were purchased from Sigma-Aldrich. Pefabloc
SC (4-(2-aminoethyl) benzenesulfonylfluoride, AEBSF) was obtained from Fluka. Foetal
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bovine serum (FBS), penicillin, streptomycin and L-glutamine were obtained from EuroClone.
Geneticin was obtained from Invitrogen. ECL ADVANCE Detection System, PreScission Pro-
tease, and Protein G-Sepharose were obtained from GE Healthcare. Monoclonal anti-calpain-1
(calpain I, subunit p80) clone 15C10 and monoclonal anti-calpain-2 (Domain III/IV) clone
107–82 were obtained from Sigma-Aldrich. Monoclonal anti-HSP90 (clone 68), monoclonal
anti-NMDAR2B (clone 13/NMDAR2B), and monoclonal anti-nNOS/NOS type I (clone 16)
antibodies were obtained from BD Biosciences. Anti-NR1, CT monoclonal antibody was pur-
chased fromMillipore. Calpastatin was detected with the monoclonal antibody 35.23 [28] and
monoclonal anti-calpastatin (Domain IV) clone 1F7E3D10 purchased from Calbiochem.

Human erythrocyte calpain (calpain-1) was isolated and assayed as reported in [3, 26].
HSP90 and calpain-2 were purified from rat brain as reported in [24, 27].

Ethics Statement
Human erythrocytes and peripheral blood mononuclear cells (PBMC) were isolated from
blood samples obtained from healthy donors (age range: 25�60), that gave written informed
consent prior to inclusion in the study, as well as permission to store the samples and to use
them for research exclusively. The study protocol conforms to the provisions of the Declaration
of Helsinki and of G. Gaslini Children Hospital, Genoa, Italy. The documentation related to
participants consent is stored and recorded by G. Gaslini Children Hospital, Genoa Italy.
Blood samples are collected and provided to the DIMES, Section of Biochemistry, anonymous-
ly under the supervision of Dr. L. Minicucci. The approval from the Ethics Committees is not
required since our analysis were carried out on blood samples obtained from anonymous par-
ticipants during their routine clinical examinations at the hospital and not for the purpose of
this study.

The adult male rats (Milan strain 200–250 g) used for purification of HSP90 and calpain-2
were sacrificed by decapitation. The animals were housed at constant temperature (22±1°C)
and relative humidity (50%) under a regular light-dark schedule (lights on 7 AM-7 PM). Food
and water were freely available. Experimental procedures and animal care complied with the
European Communities Council Directive of 24 November 1986 (86/609/EEC) and were ap-
proved by the Italian Ministry of Health in accordance with Decreto Ministeriale 116/1992
(protocol number 22698 of 17 September 2013). The related project dealt with the ethical and
animal care aspects and was approved by the Committee set by the Ministry of Health at the
National Institute of Health (Rome). Any effort was made to minimize the number of animals
used and their suffering.

Cell culture
Human leukemic T cell line (JA3), human neuroblastoma SK-N-BE cells (Interlab Cell Line
Collection, ICLC, HTL96015, Italy) and rat pheochromocytoma PC12 cells, purchased from
the American Type Culture Collection (A.T.C.C.) (Rockville, MD, USA) were cultured at 37°C
(5% CO2) with RPMI 1640 growth medium containing 10% FCS, 10 U/ml penicillin,
100 μg/mL streptomycin and 4 mM L-glutamine. JA3-cast cells [28] were cultured in the same
growth medium in the presence of 0.1 mg/mL geneticin.

Preparation of recombinant calpastatin Type III
Mouse brain calpastatin Type III (GenBank AK029293) was obtained by amplification from
single stranded cDNA generated from 5 µg total RNA. The amplicon was cloned into pGEX-
6P-1 GST Expression Vector (GE Healthcare) using the forward primer Sn-EcoRI 5’-
AAGAATTCATGAGTACCACAGAGACTAAGGCAATT and the reverse primer Asn-SalI

HSP90-Calpain-1 Interaction

PLOS ONE | DOI:10.1371/journal.pone.0116738 January 9, 2015 3 / 19



5’-AAAGTCGACGCTGAATTTCTATTCAGATACCCA. PCR reaction was cycled at an ini-
tial denaturating temperature of 98°C for 1 min followed by 35 cycles at 95°C for 30 s, 57°C an-
nealing temperature for 30 s, and 72°C extension time for 2 min. A 5 min extension step at
72°C was performed after the last cycle of PCR. Library Efficiency DH5α Competent Cells
(Invitrogen) were transformed with pGEX-6P-1/calpastatin Type III construct and ampicillin-
resistant cells were selected. The sequence of cloned calpastatin Type III was confirmed by se-
quencing with CEQ 2000XL DNA analysis system (Beckman Coulter).

The GST fusion protein expression was induced in growing transformed DH5α cells by ad-
dition of 1 mM IPTG for 4 h at 37°C. Recombinant calpastatin Type III was purified to at least
95% homogeneity by GSH-agarose affinity chromatography followed by digestion with Pre-
Scission Protease in order to remove GST.

HSP90 cloning and transfection
Human HSP90 (HSP90AB1, GenBank NM_007355.3) transcript was obtained by amplification
of single stranded cDNA generated from 5 µg total RNA extracted from peripheral blood mono-
nuclear cells. The amplicon was cloned into pcDNA3.1 (+) mammalian expression Vector (Invi-
trogen) using the forward primer Sn-NheI 5’-AAATTGCTAGCAAGATGCCTGAGGAAGTGC
and reverse primer Asn-NotI 5’-TAAGCGGCCGCTCCTAACCTAATCGACTTCTTCCAT.
PCR conditions were: a denaturation step for 1 min at 98°C; then 95°C for 30 s, 55°C for 30 s
and 72°C for 2 min, for 35 cycles. A 5 min extension step at 72°C was performed after the last
cycle of PCR. One Shot TOP10 Chemically Competent E. Coli (Invitrogen) were transformed
with pcDNA3.1/HSP90 construct, the ampicillin-resistant cells were selected, and the vector
was purified using HiSpeed Plasmid Maxi Kit (Qiagen). The sequence of cloned human
HSP90 was confirmed by sequencing with CEQ 2000XL DNA analysis system (Beckman
Coulter).

JA3-cast cells (250 000/well) were transfected with pcDNA3.1/HSP90 vector (2.5 μg) using
3 μL of DMRIE-C (Invitrogen) following the manufacturer’s instructions. At 40 h post-
transfection, cells were harvested and processed for immunoprecipitation experiments or
confocal microscopy analysis.

Confocal microscopy
JA3, JA3-cast or JA3-cast transfected with HSP90 (JA3-cast-HSP90) cells (2 × 106) were col-
lected by centrifugation at 300 g for 10 min and washed three times with PBS. Cells were fixed
and permeabilized with Triton/paraformaldehyde method [29]. Calpastatin was detected using
the anti-calpastatin mAb 35.23 [29] as primary antibody. Chicken anti-(mouse IgG) Alexa
fluor 488-conjugate (Life Technologies) was used as secondary antibody. The excitation/
emission wavelengths were 488/522 nm. Images were collected using a Bio-Rad MRC1024 con-
focal microscopy, with a 60× Plan Apo objective with numerical aperture 1.4. The cytosolic
fluorescence intensity in each collected image was quantified using LaserPix software (Bio-
Rad) and followed the procedure described in [30].

Immunoprecipitation and Immunoblotting
Aliquots (1.5 µg) of purified calpain-1- or-2 were incubated with different amounts of purified
HSP90 in the presence or absence of different amounts of calpastatin Type III. The mixtures
were immobilized to Protein G-Sepharose resin using monoclonal anti-HSP90 antibody (1 µg)
in 100 µL (final volume) of 50 mM sodium borate buffer (pH 7.5) containing 1 mM EDTA, fol-
lowing a previously reported procedure [24]. After incubation, the immunoprecipitated mate-
rial was eluted with 30 µL of SDS-PAGE loading buffer [31], heated for 5 min at 95°C, and
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submitted to 8% SDS-PAGE. Proteins were blotted onto a nitrocellulose membrane (Bio-Rad)
and probed with anti-calpain-1 or anti-calpain-2 antibodies. The immunoreactive bands were
developed with an ECL detection system, detected with a Bio-Rad Chemi Doc XRS apparatus,
and quantified using the Quantity One software, release 4.6.1 (Bio-Rad). Alternatively, HSP90
(3 µg) was incubated with different amounts of calpain-1 and the immunoprecipitation was
performed using monoclonal anti-calpain-1 (1 µg) as described above. Co-immunoprecipitated
HSP90 was analysed and quantified by immunoblotting.

JA3, JA3-cast or JA3-cast-HSP90 cells (5 × 105) were lysed in 50 µL of 50 mM sodium borate
buffer (pH 7.5) containing 1 mM EDTA, 10 µg/mL aprotinin, 100 µg/mL leupeptin, and 2 mM
Pefabloc SC by three freeze-thaw cycles and briefly sonicated. Cell cytosolic fraction was
obtained by centrifugation at 100 000 g for 15 min at 4°C and pre-treated with protein
G-Sepharose. Immunoprecipitation was carried out with 0.5 μg of monoclonal anti-HSP90
antibody. Proteins (input, bound to HSP90, and output) were separated by 8% SDS-PAGE and
subjected to immunoblotting.

SK-N-BE cells (107), PBMC (107) isolated as previously described [32], PC12 cells (106) and
JA3 cells (107) were lysed as described above and the membrane fraction was washed in 50 mM
sodium borate buffer (pH 7.5) containing 0.1 mM EDTA and solubilized in 50 mM sodium bo-
rate buffer (pH 9.0), containing 0.1 mM EDTA and 1% sodium deoxycholate, at 37°C for
60 min. After centrifugation at 100 000 g for 30 min at 4°C, the pH was adjusted to pH 8.0, and
Triton X-100 was added to a final concentration of 0.1%. The detergent-soluble portion was di-
alyzed against IP buffer [50 mM sodium borate buffer (pH 7.5), 0.1 mM EDTA, 0.1% Triton
X-100] by diafiltration using centrifugal filter devices (10 kDa cut-off) Amicon Ultra-4 (Milli-
pore). Before immunoprecipitation procedure, samples were pre-cleared for 60 min at 4°C
using 30 µl of Protein G-sepharose diluted 1:1 with IP buffer. Immunoprecipitation was carried
out using 1 µg of anti-NR1 antibody. Proteins were separated by 8% SDS-PAGE and subjected
to immmunoblotting. The immunoreactive bands obtained by using the specific mAbs (indi-
cated elsewhere) were quantified as described above.

Equilibrium distribution experiments in Sephacryl S-300 HR
Equilibrium gel distribution (gel penetration) experiments were carried out according to the
procedure described by Ackers [33] and modified by Fahien and Smith [34] and
MacGregoret al. [35]. Briefly, protein samples (indicated elsewhere) were diluted in 0.25 mL of
50 mM sodium borate buffer (pH 7.5) containing 1 mM EDTA, 0.5 mM 2-mercaptoethanol
and 0.15 M NaCl (buffer A) and added to 0.25 mL of packed Sephacryl S-300 HR previously
equilibrated with buffer A. The mixtures were rotated end-over-end for 2 h at 4°C and finally
the resin was packed. The distribution coefficient, that indicates the accessibility of the protein
molecules to the gel bed internal space, was determined analysing aliquots (0.1 mL) of the clear
aqueous phase as described in [33–35].

Results

Interaction of calpain-1 with HSP90
Immunoprecipitation experiments (Fig. 1A and B) revealed that calpain-1 can associate to
HSP90 in a saturable fashion. The interaction between the two proteins seems specific as no
complex with HSP90 was detected when calpain-1 was replaced by calpain-2. The addition to
the immunoprecipitation mixture of Ca2+ ions (Fig. 1A and B, triangles), known to promote a
significant conformational change in calpain molecule, had no effect on the association be-
tween the two proteins. Even when we performed the same experiments in the presence of a
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calpain substrate (such as human globin) or of an indigestible protein (data not shown), we
only observed a complex between calpain-1 and HSP90.

Thus, both catalytic cleft and the Ca2+-binding sites seem not directly involved in the inter-
action between HSP90 and calpain-1. By comparing the data shown in Fig. 1A and B, it can be
seen that the plateau was reached in both conditions at 1:1 molar ratio chaperone to calpain,
suggesting the formation of a discrete complex containing an equal number of both molecules.

Figure 1. Interaction between calpain and HSP90. (A) Purified calpain-1 or-2 (1.5 µg) was incubated for 1
hour at 25°C with the indicated amounts of purified HSP90. Immunoprecipitation was carried out using 1 µg of
anti-HSP90 antibody. Immunoprecipitated material (IP HSP90) was submitted to SDS-PAGE and analysed
by immunoblotting using monoclonal anti-calpain-1 (�) or anti-calpain-2 (■). Inset: a representative blot for
calpain-1 is shown. (B) Alternatively, HSP90 (3 µg) was incubated for 1 hour at 25°C with the indicated
amounts of purified calpain-1. Immunoprecipitated material (IP Calpain-1), obtained using 1 µg of monoclonal
anti-calpain-1, was submitted to SDS-PAGE and analysed by immunoblotting using monoclonal anti-HSP90.
Inset: a representative blot is shown. Immunoprecipitations were also performed in the presence of 1 mM
CaCl2 and 100 µg/mL leupeptin (Δ). Each point corresponds to the arithmetic mean ± SD of five
different experiments.

doi:10.1371/journal.pone.0116738.g001
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To better characterize the HSP90-calpain-1 interaction, equilibrium gel distribution experi-
ments [33–35] were carried out. As shown in Fig. 2A the distribution coefficient of calpain-1 in
Sephacryl S-300 HR progressively decreased as a function of the amount of HSP90 added until
a 1:1 molar ratio between the two proteins was reached. Higher levels of HSP90 did not pro-
mote further decrease in the distribution coefficient of calpain-1. Conversely, the distribution
coefficient of calpain-2 was unaffected by the additions of HSP90, confirming the selectivity of
the chaperone for calpain-1.

The formation of a 1:1 HSP90-calpain-1 complex has been confirmed by the calibration
curve reported in Fig. 2B showing that this complex had a molecular mass of approximately
300 kD, corresponding to the MW sum of the two proteins.

Effect of HSP90 on calpain-1 catalytic properties
As the association of the HSP90 with calpain-1 does not involve the catalytic region of the pro-
tease, we explored if the binding of calpain to HSP90 could affect the protease activity
(Fig. 3A). Incubation of calpain-1 at a molar ratio of 1:1 with HSP90, at increasing Ca2+ con-
centrations, resulted in a significant decrease of calpain proteolytic activity at [Ca2+] up to
40 µM. At higher [Ca2+] when calpain expressed 100% activity, the inhibiting effect of HSP90
was no more detectable. This observation is consistent with a decrease in the affinity of cal-
pain-1 for Ca2+ ions as, in the presence of HSP90, the [Ca2+] required to promote 50% activity
of calpain-1 was increased from 16–18 µM to 40–45 µM. However, as it is known that HSP90
is a calpain substrate [24, 36], it is difficult to explain how the chaperone could at the same
time associate with calpain-1 and undergo to proteolytic digestion by calpain-1 itself. We then
mixed a fixed amount of calpain-1 with increasing concentrations of HSP90 (HSP90:calpain-1
molar ratios 0.5, 1, 2, 3) and monitored the chaperone digestion. As shown in Fig. 3B we de-
tected HSP90 degradation only when the molar amount of the chaperone exceeded that of cal-
pain-1. These data indicate that HSP90 binds to calpain-1 in a site distinct from the active cleft,
leaving this site accessible to free HSP90 molecules.

Interplay between HSP90 and calpastatin for binding to calpain-1
It is well known that calpastatin, the natural inhibitor of calpain, can bind to the protease at the
active cleft [11]. We have previously reported [37] that the calpastatin forms containing the
N-terminal L-domain can associate with calpain-1 also in the absence of calcium. In these con-
ditions calpain is in its inactive conformation and the catalytic cleft remains inaccessible. We
then established whether in the absence of Ca2+, calpastatin and HSP90 can compete for cal-
pain through interaction at the same region. Fixed amounts of calpain-1 and HSP90 in a 1:1
molar ratio were mixed with increasing concentrations of calpastatin Type III that contains the
L-domain. As shown in Fig. 4A, the calpain-1 bound to HSP90, detected by immunoprecipita-
tion, reduced proportionally to the amounts of calpastatin used. Since addition of 1 mM Ca2+

did not significantly affect the binding competition between calpastatin and HSP90 (Fig. 4B),
we suggest that the accessibility of the catalytic cleft is not important for this protein-
protein interaction.

Interplay among HSP90, calpastatin, and calpain in cytosol of JA3 cells
We then explored whether the association of calpain-1 with HSP90 or calpastatin occurs also
in intact cells. To this purpose we used JA3 cells as a model because they naturally express high
levels of HSP90 [24] and because we have previously selected a clone (JA3-cast) stably overex-
pressing a calpastatin form that contains the L-domain [28]. As shown in Fig. 5A (micro-
graph), in resting JA3 cells, calpastatin is confined in perinuclear aggregates [29]. Instead we
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Figure 2. Molecular properties of the HSP90-calpain-1 complex. (A) HSP90, calpain-1 and calpain-2
were purified as reported in [24, 26, 27]. Calpain-1 or calpain-2 (0.5 μg, corresponding to 4.5 pmoles) were
diluted in 0.25 mL of buffer A and added to 0.25 mL of packed Sephacryl S-300 HR (see Methods). HSP90
was also added to the mixtures in amounts (from 0 to 1.65 µg) corresponding to the indicated HSP90:
calpains molar ratios. The suspensions were rotated end-over-end for 2 h at 4°C. Resin was then packed and
aliquots (0.1 mL) of the clear supernatant were recovered and calpain activity was assayed [26]. Distribution
coefficient of calpain was calculated as described in [33–35]. Each point corresponds to the arithmetic mean
± SD of two different experiments. (B) Distribution coefficient-molecular weight calibration curve was
determined using the indicated standard proteins: ferritin (●), aldolase (▲), anhydrase carbonic (▼) and
ovalbumin (♦). The proteins (10 pmoles) were added to Sephacryl S-300 HR as in (A) and the distribution
coefficients were calculated evaluating the protein concentration, with the Bradford method, in the clear
supernatants as described in [33–35]. The distribution coefficient of calpain-1 (■) and 1:1 HSP90-calpain-1
complex (□) was evaluated as in (A). The distribution coefficient of HSP90 (�) was determined as indicated for
the standard proteins. Each point corresponds to the arithmetic mean ± SD of two different experiments.

doi:10.1371/journal.pone.0116738.g002
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observed by immunoprecipitation that, soluble calpain-1 was entirely complexed with HSP90,
as demonstrated by the absence of the protease in the output (Fig. 5A). Thereby, in basal condi-
tions calpain-1 associates exclusively with HSP90 in a highly specific manner. In fact, calpain-2
was never recovered in association with HSP90 (Fig. 5A). In order to verify whether calpastatin
and HSP90 compete with each other also in intact cells, we used JA3-cast cells [28] in which
over-expressed calpastatin is diffused into the cytosol as a free form (Fig. 5B, micrograph). In
these cells, the amount of calpain-1 complexed with HSP90 was 70–80% reduced and the

Figure 3. Calpain activity in the presence of HSP90. (A) Calpain-1 activity was assayed at the indicated
CaCl2 concentrations in the absence (●) or presence (�) of purified HSP90 in a 1:1 molar ratio with calpain-1.
The arrows indicate the 0.5 Vmax value of each condition. Data are the arithmetic mean ± SD of five different
experiments. (B) The indicated amounts of purified HSP90 were incubated (100 µL final volume) with calpain-
1 (1.5 µg) in 50 mM sodium borate buffer (pH 7.5), containing 0.1 mM EDTA, for 30 min at 37°C in the
presence of 1 mMCaCl2. After incubation, the samples were suspended in SDS/PAGE loading buffer and
aliquots (30 µL) were submitted to SDS/PAGE and analysed by immunoblotting using anti-HSP90 antibody.
The arrow indicates the point corresponding to 1:1 molar ratio between HSP90 and calpain-1. Each point
corresponds to the arithmetic mean ± SD of five different experiments.

doi:10.1371/journal.pone.0116738.g003
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remaining protease was recovered in the HSP90 unbound material. The competition between
HSP90 and calpastatin for binding to calpain-1 was further supported by transfecting the JA3-
cast cells with HSP90. Under these conditions of transient over-expression of HSP90 (Fig. 5C),
we observed a significant increase (p<0.05 according to t test) in the amount of calpain-1 asso-
ciated with the chaperone (Fig. 5C).

Presence of calpain-1 and HSP90 in NMDAR clusters of different cell
types
As we have observed that resting cells contain in cytosol high amounts of HSP90-calpain-1
complex, we investigated whether these two proteins can be detected at well defined cellular

Figure 4. Effect of calpastatin on the interaction between calpain-1 and HSP90. (A) HSP90 and calpain-
1 were purified as reported in [24, 26], recombinant calpastatin type III was purified as described in Methods.
Calpain-1 (1.5 µg) was incubated for 1 hour at 25°C with 3 µg of HSP90 in the presence of the indicated
amounts of recombinant calpastatin type III (CST). The immunoprecipitation was carried out using 1 µg of
anti-HSP90 antibody and the immunoprecipitated material (IP HSP90) was analysed by immunoblotting
using monoclonal anti-calpain-1. (B) The immunoprecipitation described in (A) was also performed in the
presence of the indicated additions. Leupeptin (100 µg/mL) was added in order to avoid calpain activation in
the presence of 1 mM CaCl2. Immunoreactive bands were quantified and the values are reported as the
arithmetic mean ± SD of five different experiments. Insets: representative blots are shown.

doi:10.1371/journal.pone.0116738.g004
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Figure 5. Interaction between calpain-1 and HSP90 in JA3, JA3-cast, and JA3-cast-HSP90 cells.
(A) JA3, (B) JA3-cast, and (C) JA3-cast-HSP90 cells were analysed by confocal microscopy or lysed to
perform immunoprecipitation using 0.5 µg of anti-HSP90 antibody (see Methods). Cytosolic fluorescence of
calpastatin (CST) was quantified as described in [30]. A representative micrograph of 20 cells analysed is
shown. The immunoreactive bands corresponding to calpain-1 or-2 present in the starting material (Input), in
the HSP90-bound material (IP HSP90), and in the unboundmaterial (Output) were quantified and the values
are reported as the arithmetic mean ± SD of five different experiments. Insets: representative blots
are shown.

doi:10.1371/journal.pone.0116738.g005
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localizations, in which some calpain-1 targets are present. One of these proteins is NMDAR, a
Ca2+-permeable NMDA-type glutamate receptor [38] known to undergo a selective processing
by calpain [39–41]. For this purpose, we performed NR1 immunoprecipitation using isolated
membranes from several cell types. Specifically, resting JA3 cells, human peripheral blood
mononuclear cells (PBMC), rat pheochromocytoma PC12 cells, and human neuroblastoma
SK-N-BE cells, all expressing NMDAR [42–47] have been used. As shown in Fig. 6, we observed
detectable amounts of calpain-1 and HSP90 associated to NMDAR in all the cell types analysed.
These results suggest that both HSP90 and calpain-1 are constitutively present in the NMDAR
cluster and could be possibly involved in the physiological function of this protein complex.

Role of HSP90 in calpain-1 activation at the NMDAR cluster
To better investigate whether the association of HSP90 and calpain-1 with NMDAR could play
a role in the activity of the protease, we analysed SK-N-BE cells which, as previously demon-
strated express functional NMDAR [42, 43, 48]. As shown in Fig. 7A, in NR1 immunoprecipi-
tation from resting SK-N-BE cells, we observed in addition to NR1, calpain-1 and high levels of
HSP90, detectable amounts of NR2B. Conversely, neither calpain-2 nor calpastatin (both 110
and 140 kD forms) were associated with the NMDAR cluster. In order to assess a role for this
resident calpain-1, we stimulated SK-N-BE cells with 500 µM NMDA for 30 min to increase
the [Ca2+]i. As shown in Fig. 7B we observed that, the total amount of calpain-1 associated to
the membranes was 3–4 folds increased as compared to untreated cells. Instead, the amount of
calpain-1 detected following immunoprecipitation with anti-NR1, and thus complexed with
NMDAR, remained substantially identical to that recovered in untreated cells. Moreover, the
fraction of calpain-1 translocated at the membranes following cell Ca2+-loading can be washed
out by 0.15 M NaCl solution, leaving the content of resident calpain-1 unmodified (Fig. 7B).
Importantly, as we obtained similar results when cells were loaded directly with 1 μM calcium
ionophore A23187 for 30 min (data not shown), the amount of resident calpain-1 at the

Figure 6. Presence of calpain-1 and HSP90 in NR1 immunoprecipitates from different cell types.
PBMC, JA3, SK-N-BE, and PC12 cells were lysed to perform immunoprecipitation with 1 µg of anti-NR1. The
immunoprecipitated material (IP NR1) was analysed by immunoblotting. Immunoreactive bands
corresponding to HSP90 and calpain-1 were quantified and the values are reported as the arithmetic
mean ± SD of two different experiments.

doi:10.1371/journal.pone.0116738.g006
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NMDAR is independent of the calcium provenience. These data indicate for the first time that
NMDAR cluster contains sites for calpain-1 association that are already saturated in basal con-
ditions. The presence of resident calpain-1 in proximity of the Ca2+ channel could allow a
rapid and limited activation of the protease that could be required for signal
transduction processes.

We then investigated on the calpain targets associated with the NMDAR cluster possibly di-
gested by resident calpain-1. SK-N-BE cells were stimulated as above and the proteins com-
plexed with NR1 have been detected by specific antibodies. As shown in Table 1, both calcium
ionophore and NMDA caused calpain-1 activation, as revealed by the digestion of several tar-
gets included in the NMDAR cluster. Specifically, HSP90 level was reduced up to 25–30%,
whereas NR2B, a known calpain substrate unlike NR1 [39], was more than 60% decreased
under both calpain activating conditions. Native nNOS (160 kD), also associated to the
NMDAR cluster [48], was conservatively converted into the 130 kD active form [48], under
both conditions. When the same experiments were carried out in the presence of synthetic cal-
pain inhibitor-1 (CI-1) no proteolytic modifications occurred.

Based on these observations we suggest that resident calpain-1 at the NMDAR cluster could
play a physiological role in controlling the Ca2+ influx by the digestion of NR2B. Furthermore,
resident calpain-1 through the conversion of inactive nNOS to the active enzyme form, pro-
motes an increased production of NO [43, 48].

Figure 7. Characterization of calpain-1 insertion in NMDAR cluster. (A) SK-N-BE cells were lysed to perform immunoprecipitation with 1 µg of anti-NR1.
The immunoprecipitated material (IP NR1) was analysed by immunoblotting using the indicated antibodies. Relevant lanes of representative blots are shown.
(B) SK-N-BE cells, untreated (Control) or exposed to 500 µMNMDA for 30 min, were lysed and cell lysate was divided in two equal aliquots. The first aliquot
was centrifuged and the resulting pellet was solubilised in 1% sodium deoxycholate. An aliquot of the solubilised membranes (10 μL) was blocked by adding
6× SDS/PAGE loading buffer (Input) and the remaining membrane fraction was submitted to immunoprecipitation using 1 µg of anti-NR1 antibody. The input
and the immunoprecipitated material (IP NR1) were analysed by immunoblotting using the anti-calpain-1 antibody. The second aliquot of cell lysate was
washed once with 50 mM sodium borate buffer (pH 7.5), containing 0.1 mM EDTA and 0.15 M NaCl, and then solubilised in 1% sodium deoxycholate. An
aliquot of the solubilised membranes (10 μl) was blocked by adding 6× SDS/PAGE loading buffer [Input (washed)] and the remaining membrane fraction was
submitted to immunoprecipitation using 1 µg of anti-NR1 antibody. The Input (washed) and the immunoprecipitated material [IP NR1 (washed)] were
analysed by immunoblotting using the anti-calpain-1 antibody. The immunoreactive bands were quantified and the values are reported as the arithmetic
mean ± SD of five different experiments.

doi:10.1371/journal.pone.0116738.g007
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To confirm that resident calpain-1 is responsible for such proteolytic events at the NMDAR
cluster, we stimulated calpain activity directly in NR1-immunoprecipitated material.
Aliquots of the immunoprecipitated NMDAR was suspended in 50 mM sodium borate buffer,
pH 7.5 and incubated with 100 µM Ca2+ in the absence or presence of 1 µM CI-1.
Following 30 min cell stimulation, the incubation was stopped by addition of SDS-PAGE load-
ing buffer and samples were submitted to immunoblotting. As shown in Table 2, the calpain
substrates were digested at an extent comparable to that observed in intact cells (see Table 1).
CI-1 addition prevented completely the digestion, indicating that the amount of
resident calpain-1 was sufficient to induce the proteolytic modifications detected in
NMDAR complex.

We finally explored the kinetics of calpain-1 digestion in cells exposed to 500 µM NMDA
for different times. As shown in Fig. 8, the digestion of NR2B and the conversion of native
nNOS into the 130 kD form were the first proteolytic events catalyzed by resident calpain-1
whereas, HSP90 remained almost unaffected. The presence of a sufficient amount of HSP90
into the NMDAR cluster may be required to limit calpain-1 activity and maintain the proteo-
lytic events in a physiological range.

Discussion
It is currently considered that, following an increase in [Ca2+]i, activation of calpain occurs in
coincidence with its translocation to sites preferentially located at the cell surface [1–6].

Table 1. Digestion of NMDA-R associated proteins following activation of resident calpain-1.

Stimuli HSP90 NR2B 160 kD nNOS 130 kD nNOS

Vehicle 100 ± 7 100 ± 8 83 ± 8 18 ± 6

NMDA (500 μM) 85 ± 7 56 ± 7 44 ± 7 52 ± 6

NMDA (500 μM) + CI-1 (1 μM) 100 ± 8 103 ± 5 93 ± 7 10 ± 5

Ca2+-ionophore (1 μM) 75 ± 7 49 ± 7 38 ± 9 46 ± 7

Ca2+-ionophore (1 μM) + CI-1 (1 μM) 105 ± 5 106 ± 9 102 ± 7 8 ± 6

SK-N-BE cells were exposed to the indicated stimuli for 30 min at 37°C. The deoxycholate-soluble cell fraction was prepared as described in Methods and

submitted to immunoprecipitation using anti-NR1 antibody. The immunoprecipitated material was analyzed by immunoblotting for the indicated proteins.

The data shown are the quantification of the immunoreactive signals expressed as arbitrary units (means ± SD of five different experiments).

doi:10.1371/journal.pone.0116738.t001

Table 2. In vitro digestion of NMDA-R associated proteins by resident calpain-1 in isolated NR1 immunoprecipitates.

Resident calpain-1 substrates

Conditions HSP90 NR2B 160 kD nNOS 130 kD nNOS

Control 100 ± 6 100 ± 8 80 ± 6 22 ± 6

Vehicle 100 ± 8 100 ± 8 86 ± 5 18 ± 7

CaCl2 (1 mM) 80 ± 8 27 ± 8 32 ± 7 58 ± 8

CaCl2 (1mM) + CI-1 (1 μM) 100 ± 5 96 ± 8 79 ± 7 24 ± 6

SK-N-BE cells were lysed and the deoxycholate-soluble cell fraction was prepared, as described in Methods. The samples were submitted to

immunoprecipitation using anti-NR1 antibody. The immunoprecipitated material was left untreated (Control) or incubated in the indicated conditions for 30

min at 37°C and then analyzed by immunoblotting for the listed proteins. The data shown are the quantification of the immunoreactive signals expressed

as arbitrary units (means ± SD of five different experiments).

doi:10.1371/journal.pone.0116738.t002
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Figure 8. HSP90, NR2B, and nNOS levels in calcium-loaded SK-N-BE cells. SK-N-BE cells were treated
with 500 µMNMDA for the indicated times. After treatment, the cells were lysed and submitted to
immunoprecipitation using 1 µg of anti-NR1. The immunoprecipitated material (IP NR1) was submitted to
immunoblotting to detect (A) HSP90, (B) NR2B, and (C) nNOS [160 kD (●) and 130 kD (�) forms]. The
immunoreactive signals of five different experiments were quantified and are reported in the graphs as
arithmetic mean ± SD. Insets: representative blots are shown.

doi:10.1371/journal.pone.0116738.g008
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However, a “simple” Ca2+-induced translocation seems unable to assure the high degree of se-
lectivity required for the physiological functions of calpain. At present no precise information
are available on the existence of mechanisms driving calpain to specific sites of action.

We propose the involvement of HSP90, known to assist a large number of proteins involved
in cell signalling [49, 50], in the intracellular trafficking of calpain-1. Although HSP90 shows a
low degree of specificity, in our conditions it is highly selective distinguishing calpain-1 from
calpain-2.

HSP90-calpain-1 interaction occurs through the formation of a complex with a molecular
mass of approximately 300 kD that results from the association of an equal number of mole-
cules of each protein. The chaperone bound to calpain-1 is protected from the digestion by the
protease although the active site is not affected by this interaction since the catalytic cleft re-
mains accessible to free HSP90 molecules.

In the present paper we suggest that HSP90 is involved in the dynamic activation of calpain.
We here observed that HSP90 competes with calpastatin for binding to calpain-1. Since it is
known that in resting cells calpastatin is preferentially present in aggregates [29], cytosolic
calpain-1 is predominantly associated to HSP90. When [Ca2+]i is increased and calpastatin dif-
fuses in the cytosol, calpain-1, interacting with the inhibitor, can form two binary complexes.
In the first one, constituted by HSP90 and calpain-1, the protease is still activable whereas, in
the second one, composed by calpastatin and calpain-1, the protease is inactive and unable to
reach the activation sites.

Our findings suggest that HSP90 has a role in the dynamic activation of cytosolic calpain-1
during transient and moderate elevations in [Ca2+]i. In these conditions HSP90 associated with
calpain-1 maintains the protease in a low active state without affecting the Ca2+-dependent
translocation of the enzyme. We have also established that in resting cells calpain-1 is present
together with HSP90 as an integral component of the NMDAR cluster. This association is very
specific since calpain-2 was never present at the NMDAR complex, and it is stable, as the
amount of calpain-1 associated with the complex remains unaffected also following cell
Ca2+-loading. Resident calpain-1 could be functionally important as it may be promptly activat-
ed following the stimulation of NMDAR. The local and rapid increase in [Ca2+] overcomes not
only the high calcium requirement for calpain activation but also the effect exerted by HSP90
on the protease. The efficacy of calpain-1 associated with NMDAR derives also from the fact
that the protease is in proximity of its targets. The rapid calpain-1-mediated digestion of NR2B,
which is known to be involved in the control of the Ca2+ influx, could represent a possible de-
fense mechanism against calcium overload [51]. We have demonstrated that the digestion of
calpain targets at the NMDAR is mediated exclusively by resident calpain-1. This important ob-
servation, first obtained in intact cells, has been confirmed by activating directly the calpain-1
inserted in isolated NMDAR clusters. At this regard it has been recently reported [14] a relation-
ship between the localization of both calpain-1 and-2 and their functional role in nervous cells.

In conclusion, the HSP90 that specifically interacts and associates with calpain-1, assists the
protease by increasing its Ca2+-requirement and by regulating its recruitment at selective cell
sites. We demonstrate for the first time that, in basal conditions, calpain-1 is stably localized at
NMDAR cluster in an integrated form together with HSP90. Both HSP90 and calpain-1 could
be responsible for those NMDAR physiological processes occurring following activation of this
glutamate-gated ionotropic receptor.

It is tempting to speculate that HSP90 could be involved in targeting proper amounts of
calpain-1 at the NMDAR multiprotein complex. This resident calpain-1 may regulate the
transduction signalling elicited by Ca2+ influx across the channel pore.

We have previously demonstrated that calpain-1 and HSP90 are also associated with the
cystic fibrosis transmembrane conductance regulator (CFTR) protein clusters [52]. Several
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members of this complex are digested by calpain-1 as observed in the NMDAR clusters. Since
many calpain targets [13–18] are associated with channels/receptors, we can propose that
calpain-1-HSP90 interplay may have a general involvement in the regulation and function of
these multi-protein structures.
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