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MOTIVATION Creating whole-brain predictors using functional MRI data can be challenging, especially in
large datasets due to the computational burden of large number of features, large numbers of observations,
and cross-validation. Our method exploits the analytical properties of the partial least squares algorithm to
significantly reduce model fitting time as well as provide cross-validation-based tuning with nearly zero
computational overhead.
SUMMARY
Researchers often seek to decode mental states from brain activity measured with functional MRI. Rigorous
decoding requires the use of formal neural prediction models, which are likely to be the most accurate if they
use the whole brain. However, the computational burden and lack of interpretability of off-the-shelf statistical
methods can make whole-brain decoding challenging. Here, we propose a method to build whole-brain neu-
ral decoders that are both interpretable and computationally efficient. We extend the partial least squares
algorithm to build a regularized model with variable selection that offers a unique ‘‘fit once, tune later’’
approach: users need to fit the model only once and can choose the best tuning parameters post hoc. We
show in real data that our method scales well with increasing data size and yields interpretable predictors.
The algorithm is publicly available in multiple languages in the hope that interpretable whole-brain predictors
can be implemented more widely in neuroimaging research.
INTRODUCTION

Predicting mental states from brain activity can be immensely

useful, especially for researchers who study cognitive or internal

processes that are hard to measure via overt behavior. Such

brain decoding is widely used in different areas of neuroscience

from basic animal research to applied human research. For

example, in basic research, predictive models from hippocam-

pal place cell activity have shown that rats navigating a maze

pre-play the maze ahead before deciding which way to turn

(Johnson and Redish, 2007), and brain-wide electrical activity

in mice can reveal their affective responses to stress (Hultman

et al., 2018). In applied research, researchers have built brain-

computer interfaces (BCIs) that read real-time neural activity to

control robotic arms (Hochberg et al., 2012) or to type computer

text (Willett et al., 2021) for patients who are paralyzed.

Brain decoding of mental states from human neuroimaging,

however, has a somewhat fraught history. In early neuroimaging

studies, researchers would often draw conclusions about mental

states from brain images without actually building a formal pre-
Cell R
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dictive model. Typically, researchers would observe significant

activity in a particular brain region and, given the previous

(assumed or partially empirically understood) association of

that region with a mental construct, conclude that their experi-

mental paradigm involves said mental construct. This practice

of informal reverse inference has been strenuously criticized,

as observing brain activity in a single region usually provides

very weak evidence regarding the engagement of specific

mental processes (Poldrack, 2006). Instead, drawing rigorous

conclusions about mental states from brain activity requires

formal reverse inference, or brain decoding, as applied in other

areas of neuroscience—training and testing a formal statistical

(and typically multivariate) model that predicts mental states

from brain activity measurements (Kohoutová et al., 2020; Pol-

drack, 2011, Poldrack et al., 2020).

Such statistical techniques have been applied widely in human

neuroimaging to address questions about regional coding, by

building multivariate predictors from activity in a priori regions

of interest (ROI; Cox and Savoy, 2003) or a handful of local voxels

at a time, as in searchlight multivoxel pattern analysis (MVPA)
eports Methods 2, 100227, June 20, 2022 ª 2022 The Author(s). 1
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(Etzel et al., 2013; Kriegeskorte et al., 2006). However, if the goal

is formal reverse inference about mental states, using signals

from the entire brain to build a decoder should improve speci-

ficity and sensitivity. While any single brain region can be active

for multiple reasons, it is much less likely for two distinct cogni-

tive processes to exhibit the exact same pattern of brain activity

across the entire brain. Also, whole-brain predictors can provide

higher decoding power than regional ones given that they have

access to more potential (uncorrelated) signals. Accordingly, re-

searchers have started to build whole-brain predictors for formal

reverse inference, constructing successful whole-brain predic-

tors of pain (Wager et al., 2013), valuation (Smith et al., 2014),

negative affect when viewing pictures (Chang et al., 2015), and

distinct emotional states (Kassam et al., 2013; Kragel and LaBar,

2014). There have also been models based on functional

connectivity, albeit usually based on resting-state functional

magnetic resonance imaging (fMRI) (Kucyi et al., 2021;

Miranda-Dominguez et al., 2018; Rosenberg et al., 2016; Yama-

shita et al., 2018).

Unfortunately, there are two challenges in buildingwhole-brain

decoders with off-the-shelf statistical methods. A first difficulty is

interpretability: A good whole-brain predictor should distinguish

brain regions that are predictive from those that are not. Several

methods incorporate no variable selection, such that the entire

brain has non-zero coefficients. These include ridge regression

(Grosenick et al., 2013), support vector machines (Whitehead

and Armony, 2019), partial least squares (PLS) (McIntosh et al.,

1996), and PCR-LASSO (principal component regression-least

absolute shrinkage and selection operator), which uses prin-

cipal-component analysis (PCA) for data reduction and then

LASSO regression to select the most useful components (Wager

et al., 2013). These approaches typically use the entire brain’s

coefficients for prediction, but later threshold the coefficients,

at an arbitrary level or by bootstrap, to improve interpretability

in inference (McIntosh et al., 1996; Wager et al., 2013). Alterna-

tively, some methods do provide variable selection, but less

helpfully: LASSO selects the most useful variables (voxels) for

prediction, but does sowithout regard for spatial contiguity (Gro-

senick et al., 2013), resulting in predictive maps with scattered

‘‘sparkles of coefficients’’ across the brain rather than any inter-

pretable clusters or regions. One method that does yield inter-

pretably clustered coefficients is GraphNet, which combines

the elastic net penalty with spatial contiguity information (Grose-

nick et al., 2013).

However, there is also a second difficulty, which is computa-

tional efficiency. This difficulty is particularly acute in regard to

scaling for use in larger datasets, the collaborative collection of

which is an increasing focus of human neuroimaging research

(Allen et al., 2014; Bjork et al., 2017; Satterthwaite et al., 2014;

Van Essen et al., 2012). Since neuroimaging data provide a

substantial number of predictors (often >50,000), purely likeli-

hood-based approaches often face the problem of computing

gradients for a large number of variables. Adding to the compu-

tational burden, modernmodels often need to be fitted hundreds

of times to find the best tuning parameters (i.e., hyperpara-

meters). Parallelization, which commonly is a solution to such

computational challenges, is also difficult for this class of predic-

tive models. Mass-univariate approaches can be easily parallel-
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ized at the run level or subject level by carrying over the uncer-

tainty of the run level estimates to higher-level analyses so that

the final estimate at the group level accounts for the uncertainty

of each run and subject (e.g., the approach taken in FSL by using

Markov chainMonte Carlo sampling). Predictivemodels, howev-

er, typically do not use generalized linear model (GLM) ap-

proaches but instead opt for machine learning methods, penal-

ized regressions, or data-reduction techniques that require all

of the data to obtain the final predictor, hence limiting the possi-

bility of parallelization.

Given these constraints, previous whole-brain predictors

used as inputs either down-sampled images (i.e., coarser)

with fewer voxels (e.g., Grosenick et al., 2013; Wager et al.,

2013) or refined contrast maps that reduce the number of ob-

servations at the expense of foregoing trial-level predictions

(Chang et al., 2015; Poldrack et al., 2009). As an alternative

to purely likelihood-based methods, data-reduction ap-

proaches such as PCA can help by reducing the number of var-

iables, thereby reducing the model fitting time. However, in

larger datasets, PCA itself can become a bottleneck for

computation time and memory usage, as it requires computa-

tion of the variance-covariance matrix of predictors. Also,

PCA components are ordered in terms of variance explained

in X, which is not necessarily relevant in predicting Y (Lever

et al., 2017); hence, the most useful PCA component for pre-

diction may be the 100th, 1,000th, or 10,000th one. These

computational costs prevent the widespread use of whole-

brain prediction methods in neuroimaging, especially for those

without access to high-performance computing clusters.

Here, we propose our method, thresholded partial least

squares (T-PLS, pronounced ‘‘tea, please’’), which provides

interpretable whole-brain predictors that are computationally

efficient enough to run on personal laptops for most datasets.

T-PLS extends PLS by providing an additional tuning parameter

that selects the original variables, based on their importance, by

cross-validation. More specifically, regular PLS uses cross-vali-

dation to decide on the optimal number of PLS components,

while T-PLS uses cross-validation to decide on both the optimal

number of PLS components and the number of original predictor

variables to include in the model. This improves the interpret-

ability of the final predictivemodel aswell as its predictive perfor-

mance. This additional variable selection step also has near-zero

computational overhead, as it exploits the analytical properties

of amodified PLS algorithm to offer a unique ‘‘fit once, tune later’’

approach in which the user fits the model only once and then

evaluates the best tuning parameter as many times as needed

without re-fitting the model. This is in stark contrast to most, if

not all, modern methods that require re-fitting the model for

every tuning parameter. Furthermore, it allows researchers to

explore the variable importance ranking to make the trade-off

decision between parsimony and predictive power. Here, we

describe the algorithm and showcase its performance against

other methods in a large neuroimaging dataset. In addition, we

provide the T-PLS package online for MATLAB at github

(https://github.com/sangillee/TPLSm), for R at CRAN (https://

CRAN.R-project.org/package=TPLSr), and for Python at github

(https://github.com/sangillee/TPLSp) as (we hope) this becomes

a practical tool for others.

https://github.com/sangillee/TPLSm
https://CRAN.R-project.org/package=TPLSr
https://CRAN.R-project.org/package=TPLSr
https://github.com/sangillee/TPLSp


Figure 1. Schematic of T-PLS fitting procedures

T-PLS model fitting first requires extracting the partial least squares (PLS) components from the predictor matrix and obtaining the back projection maps of the

components (PLSweight), their regression coefficients, and their z statistic. Next, the regression coefficients and the z statistics are back-projected into the voxel

space using theweight maps, thus yielding awhole-brain coefficientmap and awhole-brain voxel importancemap, which is then ranked in absolute size between

0 and 1. Finally, the coefficient map is thresholded based on the voxel importance map to select voxels that are the most important.
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RESULTS

Method overview
T-PLS, like many modern regression methods, requires two

steps when training a model—fitting and parameter tuning. In

the fitting step, the goal is to calculate the coefficient and the var-

iable importance of each original voxel (Figure 1). In detail, the

fitting step first extracts the PLS components that maximally

explain the covariance between X (e.g., brain voxels) and Y

(e.g., behavioral or cognitive state). The regression coefficients

of these components are automatically calculated in the compo-

nent extraction process. Then, the coefficients and the z statis-

tics of the components are back-projected into the original var-

iable space to calculate a coefficient and a variable importance

measure for each voxel.

In the tuning step, two parameters are chosen—the number of

PLS components used and the variable importance threshold

that controls the number of voxels retained (Figure 2). For

example, a T-PLS model that uses the first 21 PLS components

and retains 50% of the original voxels may provide the highest

out-of-sample cross-validation performance. Intuitively, the

number of PLS components controls the degree of regulariza-

tion, while the voxel threshold controls the level of parsimony.

This is different from likelihood-based approaches such as

LASSO, ridge, or elastic-net, in which the degree of regulariza-

tion also controls the level of parsimony.
The key computational benefit of T-PLS comes from the fit

once, tune later feature. The user can choose among an infinite

number of tuning parameter combinations without having to

re-fit the model, as all of the information required is already

calculated in a one-time fitting. This is because once a T-PLS

model with m components has been fit, all of the models with

fewer components are also available (i.e., a 1-component,

2-component, ., m-component model). Since PLS compo-

nents are orthogonal to one another, their regression coefficients

do not change based on the number of components kept, thus

allowing the user to choose the necessary components without

re-fitting. While PCA components also have this feature, when

Y is a vector, PLS computation only requires vector multiplica-

tions, which are fast and memory efficient, while PCA requires

singular value decomposition of matrices, which has computa-

tion time that grows quadratically with data (PLS also uses singu-

lar value decompositions when Y is a matrix).

Using simulated data and a real neuroimaging dataset

(involving an economic decision-making task), we compared

the interpretability and computational efficiencies of ordinary

least squares (OLS), PLS, LASSO, PCR-LASSO, and T-PLS.

We focused on comparing T-PLS to PLS, LASSO, and PCR-

LASSO because these methods have been used previously to

build whole-brain predictors and provide interpretable linear

models. We did not include a comparison with non-linear

models, which have been used previously in partial-brain
Cell Reports Methods 2, 100227, June 20, 2022 3



Figure 2. Example T-PLS model tuning

Left panel shows an example cross-validation

performance surface as a function of the 2 tuning

parameters of T-PLS—number of PLS compo-

nents (1–25) and proportion of voxels left (0–1).

The highest CV performance point is marked with

a blue dot, with the corresponding whole-brain

predictor shown on the right top panel. In addition,

the model with the fewest voxels within 1 standard

error of the performance of the best model is

indicated with a yellow dot, with the correspond-

ing map shown on the right center panel. The right

bottom panel illustrates how the number of re-

maining voxels with coefficients reduce as the

proportion of voxels left are reduced. The positive

coefficients are marked with warm colors, the

negative with cold colors, and the units are arbi-

trary because fMRI signals are in arbitrary units.
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analysis (especially the visual cortex; e.g., Kay et al., 2008),

because at the scale of the whole brain, non-linear models are

harder to interpret and do not seem to predict better than linear

models (Schulz et al., 2020; Thomas et al., 2020).

Simulated data comparisons
We used simulated data to illustrate the interpretability of pre-

dictors from different methods. We simulated a 17-by-17 voxel

grid in which only the center 5-by-5 voxels had signal that

could be used for predicting a mental state (Y). The center

5-by-5 voxels were correlated with Y at r = 0.1 (a modest

amount), while other voxels were uncorrelated with Y (Fig-

ure 3A). We smoothed this simulated map to account for the

natural smoothness of brain images (Figure 3B). Then, we

used different models (OLS, PLS, LASSO, PCR-LASSO, and

T-PLS) to predict the mental state (Y) from the 17-by-17 voxel

grid. The PLS map shows accurate capturing of the smoothed

simulated signal, but does not offer variable selection, thus re-

sulting in the entire map having non-zero coefficients (Fig-

ure 3C). T-PLS yields a predictor that most closely resembles

the ground-truth signal, detecting the positively predictive

5-by-5 signal grid in the center and eliminating all of the other

voxels (Figure 3D). These clustered coefficients distinguish

the regions that are predictive from those that are not. The

OLS predictor highlights the canonical problem with fMRI im-

ages—multicollinearity. The OLS predictor resulted in voxel co-

efficients that were tessellating in alternating signs, which

makes it hard to determine the actual voxel-level patterns or

even whether the signal is positively or negatively predictive

(Figure 3E). PCR-LASSO uses PCA data reduction to create

locally smooth predictors that reflect the smoothness of fMRI

images. However, there is no built-in voxel selection, making

it more difficult to distinguish regions that are predictive from

those that are not, and the predictor contains PCA-based arti-
4 Cell Reports Methods 2, 100227, June 20, 2022
facts (Figure 3F; negative coefficients on

the edges of the image). Finally, LASSO

deals with multicollinearity by selecting

only those variables that are the most

useful in prediction and removing the
rest. The resulting predictor, therefore, is very sparse, making

it difficult to identify the regional pattern (Figure 3G).

Real data comparisons
To compare these methods in real data, we used a large neuro-

imaging dataset from Kable et al. (2017) that involved two eco-

nomic decision-making tasks—intertemporal choice and risky

choice. In intertemporal choice, participants made choices be-

tween a smaller immediate monetary amount of $20 and a larger

but delayed monetary amount (e.g., $40 in 30 days). In risky

choice, subjects made choices between a smaller certain mon-

etary amount of $20 and a larger but probabilistic monetary

amount (e.g., $40 with 60% probability of winning). We com-

bined data across the two tasks to create a whole-brain predic-

tor of value-based choice.

Computation time

We compared the model training times of LASSO, PCR-LASSO,

PLS, and T-PLS across varying dataset sizes. OLS was not

included as it cannot fit models with more predictors than obser-

vations. T-PLS showed exceptionally fast model-fitting time that

scaled very easily to large datasets (Figure 4A). In the largest

training dataset size of 512 people (256 sessions of ITC and

256 sessions of risky choice), T-PLS took 2 h 10 min on average

to finish 10-fold cross-validation training. PCR-LASSO was 28

times slower than T-PLS, taking 2.3 days. LASSO was already

taking close to 2 weeks for 256 participants and was too expen-

sive to compute for larger dataset sizes. PLS, at least in its

default off-the-shelf implementation, was approximately twice

as slow as T-PLS. The difference in computation time between

PLS and T-PLS is likely due to the singular value decomposition

step of the default off-the-shelf PLS algorithm, which is unneces-

sary in this case, where the predicted variable Y is a vector and

therefore omitted (among other steps) in T-PLS to optimize

computational efficiency.



Figure 3. Simulated neuroimaging signal

and various predictor fits

(A) A simulated 17-by-17 voxel grid in which only

the center 5-by-5 grid has a signal that is predic-

tive of Y at correlation r = 0.1.

(B) The result of a spatial smoothing filter to (A),

meant to simulate fMRI image smoothness. Coef-

ficients that are exactly 0 were marked as black,

while those that are close to 0 were marked as

near white.

(C)–(G) shows regression coefficients from PLS

regression, T-PLS, OLS regression, PCR-LASSO

regression, and LASSO regression, respectively.

Of the prediction models, only (D) and (G) have

variable selection, thereby making most of the

voxels exactly 0 (marked black).
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Importantly, when the fitting time per participant was as-

sessed, T-PLSwas the only algorithm thatmaintained a constant

model fitting speed (�15 s), whereas PCR-LASSO, LASSO, and

PLS showed increasing fitting time per subject as dataset size in-

creases (Figure 4B). For PCR-LASSO, this increase in fitting time

per subject is likely because PCA requires inversion operations

on the variance covariance matrix of X, which quadratically in-

creases in size until the number of observations matches the

number of variables. For LASSO, this increase in fitting time

per subject is also likely due to the calculation of gradients based

on matrix operations. T-PLS, in contrast, only requires vector

calculations, for which the number of variables is the dominating

factor. The speed of T-PLS will prove useful for large-scale neu-

roimaging studies aswell as studies thatmay trainmany different

predictors for different behaviors or mental constructs. In addi-

tion, since T-PLS only has to be fit once, this will provide an

even greater benefit in computational time.

Memory usage

T-PLS also used a very minimal amount of memory compared to

other algorithms (Figure 4C). We broke downmemory usage into

three parts—default random-access memory (RAM) for loading
Cell Re
the statistical program, RAM for loading

the data, and RAM for computing the

model from the data. The first two parts

were the same across all of the algo-

rithms because all of them needed to

load the program and the data. The differ-

ences across algorithms came from the

differences in RAM usage for model

computation. T-PLS used the least

amount of computation memory, fol-

lowed by LASSO, PCR-LASSO, and

PLS (although in larger datasets, PLS

used less memory than PCR-LASSO).

We again found that T-PLS was the

most scalable out of all of the tested algo-

rithms (Figure 4D). The computation RAM

usage of T-PLS converges to approxi-

mately the same amount as the RAM

needed for loading the data (1.75 to

>0.95 times as dataset size increases).
This is likely because T-PLS requires a mean-centered copy of

the data matrix. Should researchers want, they can mean-center

the data beforehand and use even less memory for T-PLS. In

contrast, the RAM usage of LASSO for computation ranged

from 2.6 to 2.2 times the data RAM size, while the RAM usage

of PCR-LASSO for computation increased rapidly as the dataset

size increased (3 to >4.9 times). PLS memory usage also

decreased as the dataset size increased, which is likely due to

the fact that PLS algorithms are generally scalable, but the off-

the-shelf version likely has some overhead calculations that

are not optimized for this application.

Prediction performance

T-PLS showed the highest predictive performance across all of

the tested dataset sizes (Figure 5), with the caveat that LASSO

was too expensive to compute at the largest dataset size, since

it was expected to take 1 year on average to fit. All three whole-

brain predictors provided predictive performances that

increased from the smallest dataset size to the largest dataset

size. T-PLS showed the highest predictive performances across

all of the dataset sizes. LASSO’s performance was the worst of

the three whole-brain methods in small dataset sizes, but
ports Methods 2, 100227, June 20, 2022 5



Figure 4. Computation resource comparison

(A and B) Ten-fold model training times for each algorithm at various dataset sizes (total time and total time divided by number of subjects, respectively). The lines

show the best fitting cubic polynomial spline fit.

(C and D) RAM usage of each algorithm at various dataset sizes. (C) Memory decomposition of each algorithm (memory for turning on MATLAB, for loading data,

and for computation). (D) The ratio between RAM usage for loading data and RAM usage for computation (colored versus light gray bar in C).
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increased rapidly to be better than PCR-LASSO. PLS also fol-

lowed a pattern of improvement similar to that of LASSO, being

worse than PCR-LASSO in small dataset sizes, but overcoming it

at larger dataset sizes. The performance difference between PLS

and T-PLS likely highlights the benefit of the additional thresh-

olding/voxel selection step present in T-PLS but not PLS.

We also compared whole-brain prediction methods against

commonly used ROI-based methods by using a meta-analysis

ROI from Bartra et al. (2013) to create ROI-average predictions

(which do not require model training) and ROI-multivariate pre-

dictions (which use the training dataset to create multivariate

predictors from the ROI). Predictors based on only the voxels

within the ROI provided theworst performance across the board,
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with the ROI-multivariate method outperforming the ROI-

average method. This demonstrates howwhole-brain predictors

can harness more signals from across the brain to provide

greater predictive power than regional approaches.

Predictor interpretability

T-PLS provided predictor maps that were easily interpretable

and that differed in important ways from those of other ap-

proaches (Figure 6). T-PLS resulted in whole-brain predictors

with regionally clustered coefficients and voxel selection (Fig-

ure 6A). PCR-LASSO also led to regionally clustered coefficients,

but without voxel selection (Figure 6B). In contrast, LASSO pre-

dictors selected single voxels that were the most important for

prediction; however, single voxels can be very difficult to



Figure 5. Out-of-sample prediction accu-

racy of various algorithms

Out-of-sample prediction performances of 5 al-

gorithmsmeasured via Pearson correlation (A) and

AUROC (B) for predicting value-based accept/

reject choices. The lines show best fitting cubic

polynomial spline fit.
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interpret because it is not always easy to pinpoint the region from

which the voxels originate (Figure 6C). PLS, as expected, re-

sulted in whole-brain predictors with no voxel selection, similar

to PCR-LASSO (Figure 6D).

Apart from the interpretability of the finished predictor, T-PLS

can also provide useful information on the relative importance

of different brain regions by showing the trade off between addi-

tional thresholding and cross-validation performance (Figures 6E

and 6F). Users can experiment with different thresholds to see

how much predictive performance is sacrificed when fewer re-

gions are ‘‘recruited’’ into the predictor. Figures 6G–6I show

various predictors at different thresholds where stringent thresh-

olds (e.g., Figure 6I) highlight the more important brain regions

for prediction. This analysis is possible due to the fit once, tune

later approach of T-PLS, which allows users to generate and

compare as many predictor maps as they want without re-fitting

the model.

DISCUSSION

Brain decoding has become a powerful tool in linking neural ac-

tivity to mental states. With fMRI in particular, decoding from the

whole brain promises to be more specific and sensitive to the

mental state of interest. In this paper, we introduced thresholded

partial least squares (T-PLS) to address two major challenges of

whole-brain prediction—computational load and interpretability.

T-PLS exploits the analytical properties of PLS algorithms to

dramatically reduce model fitting time, use less computational

memory, and still provide high predictive performance. In a real

neuroimaging dataset, T-PLS exhibited a per-subject fitting

time that was fixed and hence scalable, unlike LASSO or PCR-

LASSO. T-PLS also showed higher out-of-sample predictive

performances than other whole-brain methods. Perhaps most

important, T-PLS boasts a unique fit once, tune later feature,

which not only leads to faster cross-validation but also allows re-

searchers to explore various tuning parameters to choose the

best level of sparsity given the trade off between parsimony

and performance.

T-PLS builds upon previous uses of PLS in fMRI prediction

(Kragel and LaBar, 2014; McIntosh et al., 1996) by introducing

variable (voxel) selection that is based on fast analytical compu-

tation and cross-validation. T-PLS calculates the z statistics of
Cell Re
the PLS components, which are usually

not needed since PLS components are

created to explain the most covariance

to analytically compute the relative

importance of each voxel by back-pro-

jection. This thresholding by variable

(voxel) importance is an improvement
from previous thresholding approaches, which either used arbi-

trary thresholds for the sake of interpretability (McIntosh et al.,

1996) or time-consuming bootstrap measures to calculate

each voxels’ p values and create a thresholded map (which is

different from the actual map used for prediction; Kragel and

LaBar, 2014). Cross-validation can provide a principled data-

driven method of thresholding that takes into account the

amount of data, signal quality, and generalizability.

While T-PLS is similar to other methods such as PCR-LASSO

that involve data reduction followed by regression, T-PLS has

several beneficial features that aid in predictive performance

and computational efficiency. For one, unlike PCA, PLS compo-

nents are ordered in terms of covariance explained in X and Y,

which ensures that the most useful components are the first

few to be estimated, which in turn reduces the number of com-

ponents to entertain. Also, the component selection method of

T-PLS yields the same result as LASSO selection without having

to fit LASSO. This is because in LASSO regression, if all of the

predictor variables are orthogonal, the variable selection order

follows the absolute size of the coefficients, which in the case

of PLS, coincides with the original order of PLS components,

since components are extracted in the order of most covariance

explained.

As with all whole-brain prediction models, it is important to

distinguish the maps obtained from prediction analyses from

the maps obtained from a mass-univariate GLM analysis. To

the former, the brain data are the predictor, while to the latter,

it is the predicted. Researchers interested inmaking loci-specific

inferences should consider using ROI prediction analyses in par-

allel or converting the T-PLS coefficient map to a map that can

be interpreted like a GLM (Haufe et al., 2014). We see the rela-

tionship between whole-brain prediction methods and ROI-

based prediction methods and GLM analyses as similar to that

between multivariate regression and pairwise bivariate correla-

tion. ROI-based methods and GLM analyses may yield insight

about how one specific region is related to a mental process,

but a whole-brain method can yield insight about how multiple

ROIs combine with one another and contribute to prediction;

they are both important analysis tools that every researcher

must use to understand the whole picture. Concordantly, we

see whole-brain prediction as an important analysis tool in the

coming years in neuroimaging, and we hope that the method
ports Methods 2, 100227, June 20, 2022 7



Figure 6. Final predictors of value-based choice

(A–D) The whole-brain predictor of value-based choice constructed via T-PLS, PCR-LASSO, LASSO, and PLS, respectively.

(E) Ten-fold cross-validation tuning curve for fitting the T-PLS predictor.

(F) Ten-fold cross-validation performance of the T-PLS model at various thresholding levels.

(G–I) Corresponding thresholded predictors from (F). The positive coefficients are marked with warm colors, the negative with cold colors, and the units are

arbitrary because fMRI signals are in arbitrary units.
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Figure 7. Summary of T-PLS fitting algorithm

Matrices are denoted with boldface capital letters, vectors with boldface lowercase letters, and scalars with lightface lowercase letters. ʘ denotes Hadamard

product (element-wise multiplication), / denotes element-wise division, and +2 in the exponent denotes element-wise squaring.
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that we propose here, along with the provided packages, can

make this analysis a convenient and essential part of neuroimag-

ing analysis pipelines.

Limitations of the study
It is important to acknowledge that we did not compare all of

the possible prediction methods. Even PCR and LASSO, which

we have entertained here, have a large number of potential ad-

dendums and improvements (e.g., stochastic PCA that reduces

RAM usage and computation time at the cost of accuracy

[Halko et al., 2011]; stochastic gradient descent methods for

LASSO that use subsamples of the data, which we explored

in the analyses above and found were still much slower than

T-PLS and less accurate than LASSO without stochastic

gradient descent). One method we did not compare is

GraphNet, which is a penalized regression method based on

elastic-net that can yield interpretable whole-brain predictors

(Grosenick et al., 2013). While we believe that GraphNet is a

principled method of addressing whole-brain prediction, previ-

ous research has found that GraphNet yields lower predictive

performance than LASSO (Mohr et al., 2015), which already

showed lower performance than T-PLS in our analyses.

Furthermore, given that the penalties are based on elastic-

net, which has more tuning parameters than LASSO, we expect

this algorithm to be slower than LASSO, which was already the

slowest algorithm in our analyses. Finally, we also left out non-

linear methods such as neural nets (Thomas et al., 2019),

Gaussian processes (Marquand et al., 2010), or naive-Bayes

(Kassam et al., 2013), as these have been used mostly in re-

gion-based decoding and would be expected to be consider-

ably slower, given many more tuning parameters, as well as

harder to interpret than linear models. Previous studies have

also found that non-linear methods applied to the whole-brain

fMRI data do not seem to yield higher performances than linear

methods (Schulz et al., 2020; Thomas et al., 2020).

In addition, we tested only task-based prediction of value-

based choice in this paper. A general caveat is that the highest

performing algorithm can vary depending on the specifics of

the dataset and the goal. For example, the predictive power of

PCR-LASSOmay depend heavily on whether the predictive neu-

ral signal explains a large amount of variance in the brain image;

if so, then it is likely that the more prediction-pertinent compo-

nents would be extracted earlier. However, the computational

benefits of T-PLS over likelihood-based methods such as

LASSO will be more apparent in high-dimensional data (in both

the number of variables and number of observations). Based

on the results in this paper, we expect T-PLS to be particularly

useful in general high-dimensional prediction problems in which

the relevant predictive signal constitutes only a small portion of

the total variance of the predictors. We have made the T-PLS

package available in multiple statistical languages so that re-

searchers may try it easily and compare it with other methods

in their research.
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METHOD DETAILS

T-PLS algorithm - Fitting
The fitting algorithm for T-PLS is a combination of three parts: amodified SIMPLS algorithm for PLS (de Jong, 1993), back-projection,

and calculation of z-statistics (Figure 7). The one modification that we make to the SIMPLS algorithm is in normalizing the PLS com-

ponents to have weighted unit variance (step 4 in Figure 7). This facilitates computation of z-statistics later in the algorithm (step 7 in

Figure 7). Below we detail the back-projection and z-statistic calculation steps of T-PLS as the remaining steps are typical proced-

ures of a SIMPLS algorithm.

Back-projection
After PLS components have been calculated (up to k th component), we now have a k-component PLS regression model. To improve

the interpretability of this PLSmodel, we can convert thePLS regression coefficients into coefficients for the original voxels. SincePLS

components are created via weighted sums of original voxels (i.e., component = weight * voxels), one can simply multiply the PLS co-

efficient to the weights to create back-projected coefficients (i.e., coefficient * component = coefficient * weight * voxels = back-pro-

jected coefficient * voxels). This expresses the PLS regression in terms of each voxel’s coefficients, which can make the predictor

easier to interpret by identifying which regions are positively or negatively predictive of behavior or mental states. Back-projection

is also used in the PCR-LASSO method applied by Wager et al. (2013), but with PCA components rather than PLS.

Z-statistic calculation
We then calculate each voxel’s measure of variable importance. We start by calculating the heteroscedasticity-consistent standard

errors (also known as sandwich estimators; White, 1980):

VarðbÞ =
�
CTdiagðwÞC

�� 1

CTdiagðwÞMdiagðwÞTC
�
CTdiagðwÞC

�� 1
(Equation 1)

where b denotes the coefficient estimates, w denotes the observation (trial) weights, M denotes the variance-covariance matrix

for the observations, and C denotes the PLS components in a column-wise matrix. Here is where our modification to the SIMPLS

algorithm becomes useful. Since the PLS components (matrix C) are all orthonormal (in weighted space), CTdiagðwÞC becomes

an identity matrix, which cancels out the ‘breads’ of the sandwich and leaves us with VarðbÞ = CTdiagðwÞMdiagðwÞTC. Since
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we only need the diagonals of the variance-covariance matrix, we can express the standard error estimates concisely as the

following:

seðbÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��

C+2
�T�

w+21r+2
��s

(Equation 2)

where r+2 denotes the squared residual vector. The t-statistics (which are close to z-statistics with sufficient observations) can be

then calculated by simple element-wise division of b by seðbÞ. Let this vector be denoted z. Then, we back-project the z statistic

like the coefficients, and then normalize them so that they all have unit variance:

Z;k =

	
P;1:k

�
b1:k

se

�
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rowsum

�
P+2

;1:k

�r
(Equation 3)

where Z;k is the variable importance of each voxel calculated from a k component T-PLSmodel, and rowsum denotes the vector that

is the row sum of a matrix. This summarizes the fitting procedure of T-PLS. It is important to note that the back-projected z-statistics

are no longer z-statistics as originally intended to test the significance of a single component given all other components. During

back-projection, multiple z-statistics are weighted and combined which makes them unrelated to any null hypothesis. They do, how-

ever, provide a measure of signal to noise ratio (SNR) since z-statistics are calculated by dividing the coefficients by the standard

error. It is this SNR aspect that we use here as a variable importance measure.

After both the fitting and tuning is complete (i.e., when number of PLS components and thresholding level has been decided), there

is one more step that may be useful in some scenarios: post-fitting of bias (intercept). Since some variables are removed during the

thresholding stage, the intercept should be re-fitted after thresholding. Let’s say that we chose to evaluate a model with j compo-

nents, thresholded at 70% (removing 70% of variables). Then, the coefficients are B,;j multiplied by index vector d where di = 1

if the voxel’s rank is in the top 30% and 0 otherwise. Then the new intercept is simply the difference between the weighted means

of X and y:

b0 = wTy � wTXðBj+dÞ: (Equation 4)

However, given the inherent unitless property of fMRI data, it may be best to test predictions at the run-level using correlation or

AUCmeasures, neither of which depend on the intercept and the relative scaling of prediction scores and voxel activity level scaling.

Neuroimaging dataset
We used a large neuroimaging dataset from Kable et al. (2017) to empirically compare T-PLS against two other whole-brain methods

(PCR-LASSO and LASSO) as well as region-based (partial-brain) predictions. We chose this dataset as it was the most readily avail-

able large-scale dataset with whole-brain coverage that can be used to decode behavior from brain activity levels. Participants

completed two experimental decision-making tasks, intertemporal choice and risky choice, which are both very common in the

domain of social science (psychology, economics research, e.g., Green andMyerson, 2004; Kahneman and Tversky, 1979; Samuel-

son, 1937) and its interaction with neuroscience (e.g., Jung et al., 2018; Kable and Glimcher, 2007). In intertemporal choice, partic-

ipants made choices between a smaller immediate monetary amount of $20 and a larger but delayed monetary amount (e.g., $40 in

30 days). In risky choice, subjects made choices between a smaller certain monetary amount of $20 and a larger but probabilistic

monetary amount (e.g., $40 with 60% probability of winning). In both tasks the larger amount varied from trial to trial, as well as

the associated delay or the risk, while the smaller monetary option was always fixed at $20. Only the larger monetary option was

on the screen while the smaller $20 was not; participants made accept/reject choices based on whether they would prefer the larger

monetary option on the screen or the smaller monetary option. Because the value of one of the options was always constant, Kable

et al. (2017) were able to find signals in the brain that correlated with the subjective value of the varying option that was shown on the

screen. Based on this result, we seek here to create a whole-brain predictor of choice that can use these signals to predict whether

the participant will accept the option on the screen or reject it.

Some of the data fromKable et al. (2017) was removed from the analysis due to trivial reasons. To keep the number of observations

per subject roughly similar, we excluded four pilot participants who hadmore trials than others. Counting both session 1 and session

2 data, we had 286 sessions worth of data, each with 120 binary choices. From here, we removed 4 intertemporal choice sessions

and 6 risky choice sessions that had premature termination of scan due to technical issues. Additionally, 13 intertemporal choice

sessions were removed for having extremely unbalanced choices (either accept or reject more than 95% of the time), and 6 sessions

were removed for having too many missed responses (more than a quarter worth of session). For risky choice, 10 sessions were

removed for unbalanced choices and 6 sessions were removed for too many missed responses. In total, we had 264 sessions worth

of data for ITC and 267 sessions worth of data for RC.While most participants had both ITC and RC tasks, since several subjects only

had one task, we decided to treat these two tasks’ sessions as separate participants for our analyses. In total, the dataset gave us a

total of 61,038 trials (observations) and 184,319 voxels (variables) across 531 task sessions (264 intertemporal choice sessions, 267

risky choice sessions), which we treat as 531 participants in this paper, as our goal is not in making substantive, or comparative, con-

clusions about the tasks.
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The Kable et al. (2017) dataset was acquired with a Siemens 3T Trio scanner with a 32-channel head coil. High-resolution T1-

weighted anatomical images were acquired using an MPRAGE sequence (T1 = 1100ms; 160 axial slices, 0.9375 x 0.9375 x

1.000 mm; 192 x 256 matrix). T2*-weighted functional images were acquired using an EPI sequence with 3mm isotropic voxels,

64 x 64 matrix, TR = 3,000ms, TE = 25ms, 53 axial slices, 104 volumes. B0 fieldmap images were collected for distortion correction

(TR = 1270ms, TE = 5 and 7.46ms). The images were preprocessed via fMRIPrep 20.0.5. The preprocessing pipeline, in short, per-

formed motion-correction, slice-time correction, and b0-map unwarping on all runs and registered and resampled to a MNI 2mm

template. The authors of fMRIPrep has requested the automatically generated preprocessing info to be provided in its unaltered

form. Given its length, we provide them with the rest of the analysis codes online at open science framework (https://doi.org/10.

17605/OSF.IO/JRTYU).

For estimating the activity of each trial, we used beta-series regression (Rissman et al., 2004). The regressors were time-locked to

the trial onset period with event duration of 0.1 seconds and convolved with a gamma HRF function. The last trial of each run was

excluded from analysis because the BOLD activity of the last trial was often not observed due to the termination of the scan. This

gave us 29 regressor of interest per 1 run of scan. Additionally, we included the following nuisance regressors which were generated

from fmriprep: cosine components for high-pass filtering, CSF signal, white matter signal, global signal, standard 6 motion regres-

sors, and 6PCA components from an anatomical mask of whitematter andCSF (‘a_comp_cor’). After the single trial coefficients were

estimated, all images were smoothed with a FWHM 5mm gaussian filter. To make analysis easy, we only used the voxels that were

active for all subjects; this gave us a fairly conservative mask of the brain with 184,319 voxels.

QUANTIFICATION AND STATISTICAL ANALYSIS

Computation comparisons
We assessed the scalability of each whole-brain prediction method – LASSO, PCR-LASSO, PLS and T-PLS – by comparing their

model fitting time and RAM usage at varying training dataset sizes (8, 16, 32, 64, 128, 256, and 512 participants). In each dataset

size (e.g., 8 subjects), half of the data is drawn randomly from the risky choice dataset (i.e., 4 subjects) and the other is drawn

randomly from intertemporal choice dataset. Each model is fitted using 10-fold cross-validation (CV). The training data is divided

into 10 equal sized blocks and the model is fitted on 9 of the blocks and tested on the left-out block. This is repeated 10 times to

assess cross-validation performance. Then, the tuning parameter that yields the highest CV performance is chosen and used to train

the final predictor using all training data.

For LASSO, we used GLMNET for MATLAB (Friedman et al., 2010; Qian et al., 2013), which is arguably the fastest non-GPU pack-

age for fitting LASSO thanks to its use of regularized path and FORTRAN coding (The original GLMNET package for MATLAB could

not import a dataset size of as large a magnitude as in this study because the FORTRAN API with MATLAB was written in 32-bit ar-

chitecture; we have updated the FORTRAN code ourselves to 64-bit architecture to circumvent this issue; the updated package is

provided here: https://github.com/sangillee/GLMNET64MATLAB). We used the default tuning parameter search, which uses 100

lambda values. For PCR-LASSO, we used the approach in the Wager et al. (2013) paper by extracting 200 components from all

data, using 10-fold LASSO logistic regression to find the useful components, and subsequently running an unpenalized logistic

regression using only the selected components. For PLS, we used the default PLS function in MATLAB (‘plsregress’) using

10-fold cross-validation to choose the best number of components. For T-PLS, in each of the 10 folds, we extract 25 PLS compo-

nents and built the T-PLS model. Then, during cross-validation we choose the best-performing number of PLS components and

threshold level. Each whole-brain method is fitted 400 times at each dataset size, each time randomly selecting the training data.

All computations were performed on a large-scale computation cluster at the University of Pennsylvania (https://www.med.

upenn.edu/cbica/cubic).

Predictive power comparisons
We compared the out-of-sample predictive performances of the predictors built above. After the prediction model is fitted using

10-fold cross validation in the training data (e.g., 32 subjects), the remaining data (e.g., 531-32=499 subjects) is used as an out-

of-sample testing dataset. Per-subject correlation and area under the ROC curve (AUC) are averaged across the out-of-sample par-

ticipants to get an estimate of out-of-sample prediction performance. We also add two commonly used region-based prediction

methods to the comparison of predictive power: region-average, and region-multivariate. Region-average is simply taking the

average of all voxel activities within a designated region to make predictions; concordantly, region-average does not require fitting

a model. Region-multivariate, on the other hand, uses the voxels in the region to build a predictor. While several methods can be

used, herewe use LASSO tomake comparisonswith our whole-brainmethods easier.We use regions identified from ameta-analysis

by Bartra et al. (2013), which examined around 150 neuroimaging studies and identified two regions that consistently showed corre-

lated activity with valuation: ventral striatum and ventromedial prefrontal cortex (regions from Figure 9 of Bartra et al. 2013).

Interpretability comparisons
We also compared the interpretability of the whole-brain methods (LASSO, PCR-LASSO, PLS, T-PLS). Using the same fitting pro-

cedures as before (10-fold cross-validation), T-PLS, PLS, and PCR-LASSO are fit using the entirety of the data (531 participants).

LASSO, however, is only fit with a subsampled 256 participant dataset, as it is computationally too slow to fit using the entire dataset.
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We visually compare the resulting whole-brain predictors and the associated areas of the brain to assess the scientific face validity of

the identified brain regions.

Additionally, we used simulated data to provide further insight into differences in interpretability. We simulate a brain activity signal

of a 17x17 voxel grid (total of 289 voxels), of which only a 5x5 grid in the center (25 voxels) carries signal that is predictive of Y, while all

other voxels are completely orthogonal to Y (i.e., noise). We achieve this by first randomly generating 290 variables (289 voxels + 1 Y)

each with 300 observations from a standard normal distribution. Then, we apply symmetric orthogonalization such that all 290 col-

umns are orthogonal to each other. The first column of the newmatrix is chosen as the predicted variable Y, while the other 289 vari-

ables became simulations of fMRI noise. To create 25 voxels of predictive voxel signal, we mix Y with 25 of the simulated fMRI noise

variables to create 25 signals that are all exactly correlated with Y at r = 0.1. Each column is then z-scored to have unit variance.

Finally, we place the 5x5 signal grid in the center of a 17x17 grid and apply 2D Gaussian smoothing (sd = 1 voxel) to simulate the

inherent smoothness of fMRI signals. In sum, the resulting dataset is 300 observations of 17x17 voxel grid predictors with only

the center 5x5 grid being predictive of Y. This simulated dataset is fit by OLS, LASSO, PCR-LASSO (10 components), PLS (10 com-

ponents), and T-PLS models (10 components) to compare the resulting pattern of coefficients.
e4 Cell Reports Methods 2, 100227, June 20, 2022
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