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Objective. To assess the effects of dietary white meat (grass carp and chicken) and red meat (pork and beef) on metabolic
parameters, including the intestinal microbiota and its metabolites (SCFAs and bile acids) in NAFLD rats induced by high-fat
diet. Methods. NAFLD rats were randomly assigned to five groups: NAFLD group, grass carp group, chicken group, pork
group, and beef group (10 rats in each group), and these rats were fed for 8 weeks using the high-fat diet, grass carp-based
diet, chicken-based diet, pork-based diet, and beef-based diet, respectively. At the end of the intervention, NAFLD-related
metabolic indexes, intestinal flora, and its metabolites were measured. Results. The grass carp-based diet significantly improved
hepatic pathological changes and glycolipid metabolism, and the chicken-based diet only partially improved the metabolic
parameters. However, NAFLD progression was observed in the pork group and the beef group. What is more, the white meat-
based diet-mediated changes in the enrichment of beneficial bacteria (such as Lactobacillus or Akkermansia), SCFAs, and
unconjugated BAs (such as UDCA) and the depletion of pathogenic bacteria (such as Bilophila and Prevotella_9) and
conjugated BAs were observed, while the red meat-based diet-induced changes in the enrichment of pathogenic bacteria
(Prevotella_9 or Lachnospiraceae_UCG-010) and conjugated BAs and the depletion of SCFAs and unconjugated BAs were
found. Conclusion. The dietary white meat and red meat modulating gut microbiota and its metabolites may favor and
aggravate NAFLD in rats, respectively.

1. Introduction

Nonalcoholic fatty liver disease (NAFLD) is the most com-
mon form of chronic liver disease worldwide, paralleling a
worldwide increase in diabetes and metabolic syndrome
[1]. NAFLD is a continuum of liver abnormalities from non-
alcoholic fatty liver (NAFL), characterized by fat accumula-
tion in the liver, to nonalcoholic steatohepatitis (NASH),
associated with ballooning of hepatocytes, inflammation,
and/or fibrosis. The presence of NASH increases the risks
of liver and possibly non-liver-related adverse outcomes.

The hepatic adverse outcomes may include cirrhosis, liver
failure, and hepatocellular carcinoma, whereas non-liver-
associated adverse outcomes are primarily related to
increased cardiovascular disease and malignancy [2].
Although there has been steady progress in clarifying the
pathogenesis of NAFLD, no agent is approved yet for this
condition by the US Food and Drug Administration or the
European Medicines Agency [3].

NAFLD treatment is currently warranted and driven by
comprehensive lifestyle intervention including weight loss,
reduction of calorie intake, changing dietary composition,
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and increment of exercise [4]. However, these treatment
strategies for NAFLD face varying problems, such as poor
compliance of patients, and a small percentage actually
sticks with it for the long term. On the other hand, it may
be a feasible and sustainable intervention for NAFLD
patients to adjust their dietary structure and implement a
healthy dietary pattern. It has been discovered that adher-
ence to Mediterranean diets other than Western diets could
significantly improve the fat content of the liver in NAFLD
patients [5]. In addition, the change in some dietary compo-
nents, such as increased fiber and omega-3 polyunsaturated
fatty acid (ω-3 PUFA) intakes, effectively improves NAFLD
and this effect is independent of caloric restriction and
weight reduction [6, 7].

Meat including white meat (fish and chicken) and red
meat (pork, beef, and mutton), which contains high-quality
protein, is an important source of animal protein nutrient
for Chinese people in the usual diet. Also, fish is rich in
unsaturated fatty acids, especially n-3eicosapentaenoic acid
and docosahexaenoic acid, and chicken meat has a lower
amount of saturated fatty acids and a higher proportion of
polyunsaturated fatty acids than red meat [8]. But red meat
embodies significant amounts of saturated fatty acids and
heme iron. Epidemiological studies have shown that fish
intake can reduce the risk of NAFLD [9–11], whereas
increased consumption of red meat and processed red meat
is positively associated with the occurrence of NAFLD [12].
Moreover, chicken consumption showed an inconsistent
effect on the occurrence of metabolic syndrome. The study
by Noureddin et al. [13] showed that chicken meat seemed
to increase the risk of NAFLD; on the contrary, the study
by Gross et al. indicated that chicken consumption
decreased the level of apolipoprotein B and total cholesterol
and may be an alternative strategy for treating type 2 diabe-
tes [8]. However, the effect of dietary white meat and red
meat on NAFLD progression has not been studied.

There are more than 1000 species of bacteria in the
human intestinal tract, and gut microbiota dysbiosis has
vital influences on the occurrence of human diseases such
as obesity, diabetes, and NAFLD [14, 15]. The changes in
gut microbiota may disrupt the gut tight junctions, leading
to increased gut permeability and LPS translocation.
Increased LPS translocation induces “metabolic endotoxe-
mia,” which triggers inflammatory reactions and insulin
resistance and promotes the development of NAFLD [16].
A direct involvement of gut microbiota in the development
of NAFLD is suggested by the finding that NAFLD can be
delivered to germ-free mice by fecal microbiota transplanta-
tion (FMT) [17]. Gut microbiota-derived metabolites, such
as short-chain fatty acids (SCFAs), and bile acids could reg-
ulate related receptors to reduce or exacerbate liver steatosis
and inflammation [16]. Moreover, several studies have
shown that dietary intake of saturated fatty acids and sugar
is associated with the development of NAFLD, whereas die-
tary fiber and vitamin D might play a role in the improve-
ment of NAFLD [10, 18] and the mechanism may involve
the change of intestinal flora [19, 20]. However, it remains
unclear whether white meat and red meat affect NAFLD
progression by modulating gut microbiota and metabolites.

The present study was performed to observe the effect of die-
tary white meat (grass carp and chicken) and red meat (pork
and beef) on metabolic parameters, including the intestinal
microbiota and their metabolites (SCFAs and bile acids) in
NAFLD rats induced by high-fat diet.

2. Materials and Methods

See supplementary methods.

3. Results

3.1. Effects of Dietary White Meat and Red Meat on
Metabolic Phenotypes in NAFLD Rats. To examine the
effects of dietary white meat and red meat on metabolic
parameters of NAFLD, the rats with NAFLD were fed with
white meat-based diets (grass carp-based and chicken-
based diets), red meat-based diets (pork-based and beef-
based diets), or a high-fat diet (Table 1). As showed in
Figures 1(a) and 1(b), histological examination of liver sec-
tions showed that hepatic steatosis in rats fed with both
the grass carp-based diet and the chicken-based diet as well
as hepatic inflammation and fibrosis degree (Figures 1(c)
and 1(d)) in rats fed with the grass carp-based diet was sig-
nificantly improved, whereas hepatic steatosis, inflamma-
tion, and fibrosis degree in rats fed with both the pork-
based diet and the beef-based diet were significantly exacer-
bated compared with those in rats fed with the HFD diet.
Consistent with histological examination, reduced levels of
hepatic triglycerides (TG) and total cholesterol (TC) in the
grass carp group, a reduced hepatic TC level in the chicken
group, and an elevated hepatic TG level in both the pork
and the beef groups were observed compared with those in
the NAFLD group (Figures 2(a) and 2(b)).

Along with the hepatic histopathologic changes, rats fed
with the grass carp-based diet showed significantly
decreased liver mass and liver index (liver-to-body mass
ratio), while rats fed with both the pork-based diet and the
beef-based diet showed significantly increased liver index
compared with the NAFLD group (Figures 2(c) and 2(d)).
There was no significant difference in body mass between
the high-fat diet group and the four experimental diet
groups (Figure 2(e)). In addition, serum metabolic parame-
ters, including liver enzyme (alanine aminotransferase
(ALT), aspartate transaminase (AST), glutamyl-
transpeptidase (GGT), alkaline phosphatase (ALP)), blood
lipids (high-density lipoprotein-cholesterol (HDL-c), low-
density lipoprotein-cholesterol (LDL-c), TG, and TC),
inflammatory factors (tumor necrosis factor α (TNF-α), C
reactive protein (CRP), and interleukin-6 (IL-6)), and glyco-
metabolic indicators (fasting blood glucose (FBG), fasting
insulins (FINS), and insulin resistance (HOMA-IR)) were
monitored at the end of this study. As shown in
Figures 2(f)–2(l) and Figure S1A-G, the grass carp-based
diet induced a remarkable improvement in AST, ALP, TC,
HDL-C, TNF-α, FINS, and HOMA-IR and there were no
significant differences in the levels of ALT, GGT, TG, LDL-
c, IL-6, CRP, and FBG, compared with those in the
NAFLD group; the rats fed with the chicken-based diet
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also showed a significant improvement in AST and HDL-C,
and there were no significant differences in other
phenotypes, compared with those in the NAFLD group.
The levels of ALP, FBG, IL-6 and TNF-α in the pork-based
diets group, and levels of ALP and FBG in the beef-based
diets group were significantly increased compared with the
NAFLD group, and there were no significant differences in
other phenotypes. Collectively, these findings indicate that
dietary white meat, especially grass carp, may drive the
improvement of NAFLD phenotypes, whereas dietary red
meat may exacerbate NAFLD.

3.2. Dietary White Meat and Red Meat Induce the Changes
in Gut Microbiota in NAFLD Rats. In order to explore the
potential role of the gut microbiota in mediating dietary
white meat and red meat-induced improvement or aggrava-
tion in NAFLD phenotypes, we performed 16S rRNA gene
sequencing in feces of NAFLD rats in five groups. At the
phylum level (Figure 3(a)), the 10 most abundant microbiota
in all groups were Firmicutes, Bacteroidetes, Proteobacteria,
Verrucomicrobia, Actinobacteria, Epsilonbacteraeota, Cyano-
bacteria, Fusobacteria, Patescibacteria, and Deferribacteres.
Increased Verrucomicrobia and Fusobacteria abundances
were observed in the grass carp group compared with the
NAFLD group (Figures 3(b) and 3(c)); but there were no sig-
nificant differences in the abovementioned bacterial phyla

between the chicken, pork, or beef groups and the NAFLD
group (Figure S2).

At the genus level, top 30 dominant genera were pre-
sented in Figure 3(d) and the top 15 genera were analyzed.
Compared with the NAFLD group, dietary grass carp inter-
vention significantly increased the abundances of Lactobacil-
lus, Akkermansia, Phascolarctobacterium, and
Ruminococcaceae_UCG-014 (Figures 3(e)–3(g) and
Figure S3A) and decreased the abundances of Bilophila,
Prevotella_9, Blautia, and Alloprevotella (Figures 3(h)–3(j)
and Figure S3B) and dietary chicken intervention also
significantly increased the abundances of Lactobacillus and
Ruminococcaceae_UCG-014 (Figures 3(f) and 3(g)) and
decreased the abundances of Bilophila and Prevotella_9
(Figures 3(h) and 3(j)) and there were no significant
differences in other gut microbiotas, whereas dietary pork
intervention increased the abundance of Prevotella_9,
Ruminiclostridium_9, and Lachnospiraceae_UCG-010
(Figures 3(j)–3(l)) and dietary beef intervention
significantly increased the abundance of Lachnospiraceae_
UCG-010, compared with that of the NAFLD group
(P < 0:05) (Figure 3(l)), and there were no significant
differences in other gut microbiotas.

Then, a correlation analysis was performed to determine
the potential associations of bacterial abundance with
NAFLD rat phenotypes (Figure 3(m)). We observed that

Table 1: Compositions of the experimental diets.

Group Normal-fat diet High-fat diet Grass carp-based diet Chicken-based diet Pork-based diet Beef-based diet

Composition (g/kg)

Fisha 355.5

Chickena 375.2

Porka 382.2

Beefa 313.8

Casein 180 257

L-Cystein 3 3 3 3 3

Sucrose 265 100.0 87.2 84.8 83.5 93.1

Dyetrose 40 145.4 158.9 128.4 154.4 124.9

Cornstarch 240 0 0 0 0 0

Lard 14 310.3 228.4 243.7 210.6 296.6

Soybean oil 26 29.7 27.6 26.4 26.5 29.4

Cellulose 50 63 61.8 62.3 62.4 62.4

Mineral mix 62 57 55.6 55.2 56.1 55.3

Vitamin mix 10 13 13.3 12.9 12.7 13

Choline bitartrate 1.2 3 2.2 1.9 2.1 2.4

Analyzed (g/kg)b

Crude protein 168 247.8 247.6 247.4 247.6 248.1

Fat 38 337.1 331.5 329.5 336.5 333.5

Ash content 41 22 71 75 76 75

Heme iron (mg) 0 0 3.2 3.8 10.4 19.1

Cholesterol 0 20 18.9 18.5 19.2 19.1

Total calories (kcal/kg) 3260 4606 4597 4621 4688 4685
aThe amount of freeze-dried meat powder added into the experimental diets is based on the measurements of nitrogen in protein powder. Crude protein
concentration was calculated using the formula N ∗ 6:15 for casein and N ∗ 5:6 for grass carp, chicken, pork, and beef. bAnalyzed values represent the
mean of triplicate measurements.

3Oxidative Medicine and Cellular Longevity



Lactobacillus, Akkermansia, Phascolarctobacterium, and
Ruminococcaceae_UCG-014, which were enriched in fecal
samples of the rats fed with the grass carp-based diet or
the chicken-based diet, were negatively correlated with sev-
eral metabolic parameters (hepatic TC and TG, liver index,
liver weight, AST, ALP, TNF-α, and the score of steatosis,
inflammation, and fiber collagen area), while Bilophila and
Blautia, which were depleted in the rats fed with the grass
carp-based diet or the chicken-based diet, were positively
correlated with the level of hepatic TC and TG, liver index,
liver weight, body weight, ALT, AST, ALP, GGT, IL-6,
TNF-α, FBG, HOMA-IR, and the score of steatosis, inflam-
mation, and fiber collagen area. Moreover, Prevotella_9
and Lachnospiraceae_UCG-010, which were enriched in
fecal samples of the rats fed with the pork-based diet or
the beef-based diet, were positively correlated with liver

TG, HOMA-IR, and the score of steatosis, inflammation,
and fiber collagen area.

Together, these results suggest that gut microbiota
changes induced by dietary white meat and red meat may
contribute to the alterations of metabolic phenotypes in
NAFLD rats.

3.3. Dietary White Meat and Red Meat Affect Metabolic
Phenotypes by Inducing Metabolite Alteration in NAFLD
Rats. To reveal metabolite alteration, related to the gut
microbiome, which is potentially involved in metabolic phe-
notype alteration induced by dietary white meat and red
meat, we performed metabolic profiling of feces from
NAFLD rats. In this study, a total of 7 SCFA species were
detected, including acetic acid (AA), propionic acid (PA),
butyric acid (BA), isobutyric acid (IBA), valeric acid (VA),
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Figure 1: Hepatic pathological changes in laboratory rats. (a) Representative liver morphology and H&E-stained and MASSON-stained
hepatic tissue sections (200x). (b) Histological scoring of steatosis. (c) Histological scoring of inflammation. (d) The quantitation of liver
collagen fibers. The results are shown as mean ± SD. ∗P < 0:05 and ∗∗P < 0:01 vs the NFD group; #P < 0:05 and ##P < 0:01 vs the
NAFLD group. SD: standard deviation; NFD group: normal-fat diet group; NAFLD group: NAFLD control group; G group: grass carp
group; C group: chicken group; P group: pork group; B group: beef group.
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Figure 2: Continued.
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Figure 2: Dietary meat induced NAFLD phenotype changes in laboratory rats. The levels of (a) liver TG, (b) liver TC, (c) liver-to-body
weight ratio (liver index), (d) liver mass, (e) body mass, (f) TG, (g) TC, (h) HDL-c, (i) TNF-α, (j) IL-6, (k) AST, and (l) ALP in rats fed
with NFD, HFD, grass carp, chicken, pork, and beef were showed. The results are shown as mean ± SD. ∗P < 0:05 and ∗∗P < 0:01 vs the
NFD group; #P < 0:05 and ##P < 0:01 vs the NAFLD group. SD: standard deviation; NFD group: normal-fat diet group; NAFLD group:
NAFLD control group; G group: grass carp group; C group: chicken group; P group: pork group; B group: beef group; AST: serum
aspartate aminotransferase; ALP: serum alkaline phosphatase; TC: serum total cholesterol; TG: serum triglyceride; HDL-c: serum high-
density lipoprotein cholesterol; TNF-α: serum tumor necrosis factor-α; IL-6: serum interleukin-6.
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Figure 3: Continued.
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Figure 3: The structural changes of gut microbiota regulated by dietary intervention in laboratory rats. (a) Heatmap plot of the top 10 gut
microbiota at the phylum level. The changes in the relative abundances of (b) Verrucomicrobia and (c) Fusobacteria. (d) Heatmap plot of the
top 30 gut microbiota at the genus level in laboratory rats. Differences in the relative abundances of (e) Akkermansia, (f) Lactobacillus, (g)
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experimental diet groups. (m) Correlation heat map of bacterial microbiota with NAFLD phenotypes. The results are shown as median
(interquartile range (IQR)) and compared by the Mann–Whitney U test. ∗P < 0:05 and ∗∗P < 0:01 vs the NFD group; #P < 0:05 and ##P
< 0:01 vs the NAFLD group. NFD group: normal-fat diet group; NAFLD group: NAFLD control group; G group: grass carp group; C
group: chicken group; P group: pork group; B group: beef group.
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isovaleric acid (IVA), and hexanoic acid (HA). As shown in
Figure 4 and Figure S4, compared with those in the NAFLD
group, total SCFAs, AA, BA, PA, IBA, and IVA, except VA
and HA in the grass carp group, and total SCFAs, AA, BA,
PA, IBA, VA, and IVA, except HA in the chicken group,
were increased significantly, while HA in the pork group
and VA, IVA, and HA in the beef group were significantly
decreased, and there were no significant differences in
other SCFAs.

There were 23 BA species to be detected in the present
study, including 5 primary unconjugated BAs (cholic acid
(CA), chenodeoxycholic acid (CDCA), β-muricholic acid
(β-MCA), hyocholic acid (HCA), and α-muricholic acid
(α-MCA)), 6 primary conjugated BAs (glycochenodeoxy-
cholic acid (GCDCA), tauro-β-muricholic acid (Tβ-MCA),
taurocholic acid (TCA), taurochenodeoxycholic acid
(TCDCA), glycocholic acid (GCA), and glycohyocholic acid

(GHCA)), 6 secondary unconjugated BAs (12-ketolitho-
cholic acid (12-KLCA), 7-ketolithocholic acid (7-KLCA),
lithocholic acid (LCA), deoxycholic acid (DCA), ursodeoxy-
cholic acid (UDCA), and ω-muricholic acid (ω-MCA)), and
6 secondary conjugated BAs (glycodeoxycholic acid
(GDCA), glycolithocholic acid (GLCA), glycoursodeoxy-
cholic acid (GUDCA), taurodeoxycholic acid (TDCA), taur-
oursodeoxycholic acid (TUDCA), and taurolithocholic acid
(TLCA)). As shown in Figure 5 and Figure S5, compared
with those in the NAFLD group, total unconjugated bile
acids (UnConBAs), UDCA, HCA, 7-KLCA, and 12-KLCA
(Figures 5(a)–5(d) and Figure S5A) in the grass carp group
and UDCA and 7-KLCA (Figures 5(b) and 5(c)) in the
chicken group were upregulated significantly, whereas total
conjugated bile acids (ConBAs), GDCA, GCA, TUDCA,
TDCA, and TLCA (Figures 5(e)–5(h) and Figure S5B-C) in
the grass carp group and GCDCA and TDCA (Figures 5(g)

Correlation heatmap of gut microbia and bile acids
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Figure 5: The changes of bile acids regulated by dietary intervention in laboratory rats. The changes of (a) total UnConBAs, (b) UDCA, (c)
7-KLCA, (d) 12-KLCA, (e) total ConBAs, (f) GCDCA, (g) TDCA, (h) TLCA, (i) TCA, and (j) GDCA in the experimental diet groups. (k)
Correlation heat map of bacterial abundance and bile acids. The results are shown as median (interquartile range (IQR)) and compared by
the Mann–Whitney U test. ∗P < 0:05 and ∗∗P < 0:01 vs the NFD group; #P < 0:05 and ##P < 0:01 vs the NAFLD group; NFD group:
normal-fat diet group; NAFLD group: NAFLD control group; G group: grass carp group; C group: chicken group; P group: pork group;
B group: beef group; ConBAs: conjugated bile acids; UnConBAs: unconjugated bile acids; 12-KLCA: 12-ketolithocholic acid; GCDCA:
glycochenodeoxycholic acid; GDCA: glycodeoxycholic acid; TCA: taurocholic acid; TDCA: taurodeoxycholic acid; UDCA:
ursodeoxycholic acid; TLCA: taurolithocholic acid; 7-KLCA: 7-ketolithocholic acid.
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and 5(j)) in the chicken group were downregulated
significantly, and there were no significant differences in
other BAs. The conjugated bile acids TCA and Tβ-MCA
(Figure 5(i) and Figure S5D) in the pork and beef groups
were upregulated significantly, whereas unconjugated bile
acid LCA (Figure S5E) was downregulated significantly in
pork and beef groups, and there were no significant
differences in other BAs.

Correlation analyses were performed to determine
potential associations between microbe and metabolite
changes (Figures 4(g) and 5(k)). Consistently, the results
indicated that the grass carp group-enriched and the chicken
group-enriched Lactobacillus was positively associated with
total SCFAs, PA, BA, AA, IBA, VA, IVA, and HA, as well
as total UnConBAs, UDCA, and 12-KLCA, and negatively
correlated with total ConBAs, GDCA, GCA, TDCA,
TUDCA, and TLCA. The grass carp group-enriched Akker-
mansia was positively associated with total SCFAs, AA, PA,
IBA, IVA, and HA, as well as total UnConBAs and UDCA,
and negatively correlated with GCA. The grass carp and
chicken group-depleted Bilophila was negatively correlated
with total SCFAs, PA, BA, AA, IBA, VA, IVA, and HA, as
well as total UnConBAs, CA, UDCA, and 12-KLCA,
whereas it was positively associated with total ConBAs,
GCA, TDCA, GDCA, and GCDCA. The grass carp and
chicken group-depleted and the pork group-enriched Prevo-
tella_9 was negatively correlated with VA, IBA, HA, CDCA,
and 7-KLCA.

4. Discussion

Although dietary white meat and red meat have the different
effects on the risk of NAFLD, information about the role and
the underlined mechanisms of them in NAFLD progression
is limited. In this study, we demonstrated for the first time
that white meat-based diets, especially the grass carp-based
diet, resulted in the significant improvements in hepatic ste-
atosis and hepatic lipid profiles accompanied by the reduc-
tion in hepatic inflammation and/or fibrosis and the
ameliorations of other metabolic parameters (liver index,
liver enzyme, glycolipid metabolism indicators, or inflam-
matory factors), while red meat-based diets induced the
aggravation of hepatic steatosis and hepatic lipid accumula-
tion concomitant with the exacerbation of inflammation
and/or fibrosis and several other metabolic phenotypes,
independent of calorie intake and body weight. Taken
together, these data suggest that dietary grass carp and
chicken have the favorable effects on NAFLD rats; on the
contrary, dietary pork and beef showed the unfavorable
effects on NAFLD progression.

The different effects of dietary white meat and red meat
on NAFLD rats in the study may be explained in part by the
different nutrient contents in these diets. The report by Argo
et al. showed that n-3 PUFA treatment led to the significant
reduction in liver fat in NASH patients [21]; Capanni et al.
revealed that supplementation with n-3 PUFAs improved
biochemical, ultrasonographic, and hemodynamic features
of liver steatosis of in patients with NAFLD [22]; Zibaeenez-
had et al. found that n-3 PUFA supplements significantly

ameliorated the blood lipid profile (TC, TG, and HDL-c)
in patients with hyperlipidemia [23]. In addition, the diets
enriched in monounsaturated fatty acids (MUFAs)
enhanced lipid oxidation and reduced the liver fat content
in patients with type 2 diabetes [24]; similarly, Errazuriz
et al. reported that MUFA-rich diet decreased hepatic fat
and improved both hepatic and total insulin sensitivity in
people with prediabetes [25]. On the other hand, saturated
fatty acids (SFA) have been shown to play an important role
in the development and progression of NAFLD [26, 27].
Also, excess iron is potentially toxic to lead to oxidative
stress and the increased serum ferritin level is closely related
with insulin resistance, impaired glucose tolerance, and
NAFLD pathogenesis [28]. Mayneris-Perxachs et al. [29]
showed that serum ferritin levels were positively associated
with liver fat accumulation. In an animal experiment, it
was proved that iron deposits tended to increase with the
degree of severity of liver fat changes [30]. The study by
Atarashi et al. [31] also showed that dietary iron supplemen-
tation enhanced liver steatohepatitis induced by high-fat diet
in rats. In the present study, the white meat-based diets had
a higher amount of n-3 polyunsaturated fatty acids (n-3
PUFAs) and monounsaturated fatty acids (MUFA) than
the HFD, and especially, the grass carp-based diet had the
most amount of n-3 PUFAs (Table S5). The pork-based
diet and the beef-based diet had significantly more amount
of heme iron than that of the control group (Table 1). In
addition, compared with the control diet, the pork-based
diet had more amount of SFA and MUFA as well as a less
amount of n-3 PUFA; the beef-based diet had more
amount of MUFA and n-3 PUFA as well as less amount of
SFA (Table S5). So, the improvement of the liver fat
content and other phenotypes in the grass carp group and
in the chicken-based group might be associated with
significantly more n-3 PUFAs and MUFA in the
experimental diets, whereas the progress of NAFLD
phenotypes in the pork group might be associated with the
higher levels of heme iron and SFA as well as the less level
of n-3 PUFA, and that in the beef group might be
associated with the significantly higher level of heme iron.

There is a growing body of evidence that gut microbiota
plays an important role in the occurrence and development
of diabetes, obesity, and NAFLD [32, 33]. Therefore, we
explored the potential involvement of gut microbiota in
mediating the different effects of dietary white meat and
red meat on NAFLD rats. In this study, at the phylum level,
the relative abundances of Verrucomicrobia and Fusobac-
teria significantly increased in the grass carp group com-
pared with the NAFLD group. Consistent with our result,
Pérez-Monter et al. indicated that Akkermansia that was
the only member of Verrucomicrobia [34] significantly
increased in the gut microbiota after inulin supplementation
that improved diet-induced hepatic steatosis in mice [35].
However, Cortez-Pinto et al. showed that Fusobacteria
markedly increased in a high-fat choline-deficient diet mice
model of NASH, but less so with the addition of synbiotic
that decreased liver fibrosis [36], which was contrary to
our result, and further study is needed. In the level of genus,
we observed that the relative abundances of Lactobacillus
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and Akkermansia were enriched, which are well known as
probiotic bacterium to protect against obesity and obesity-
linked metabolic syndrome [37], and the relative abun-
dances of Bilophila, Blautia, and Prevotella_9 were depleted,
which were favored to grow by lipid dietary as the poten-
tially pathogenic bacteria [36–39], in NAFLD rats fed with
the grass carp-based diet or the chicken-based diet com-
pared with the NAFLD group, along with the improvement
in liver steatosis and other NAFLD-related metabolic pheno-
types; conversely, we found that potentially pathogenic bac-
teria (such as Prevotella_9 and Lachnospiraceae_UCG-010)
were enriched in NAFLD rats fed with the pork-based diet
or the beef-based diet compared with the NAFLD group,
with the aggravation of hepatic steatosis and other metabolic
parameters. Consistent with our results, Zhu et al. [38] indi-
cated that the white meat (fish and chicken) group showed
the higher relative abundance of Lactobacillus than the red
meat group and nonmeat protein groups.

In addition to gut microbiota, different metabolites pro-
duced by commensal bacteria could be involved in the devel-
opment of NAFLD [39, 40]. Gut microbiota-related
metabolites, including SCFAs and BAs, reduce or exacerbate
hepatic steatosis and inflammation by signaling from their
homologous receptors. We therefore attempted to clarify
the metabolites (SCFAs and BAs) that potentially mediate
the different effects of dietary white meat and red meat on
NAFLD progression.

In recent years, many studies have demonstrated the role
of SCFAs produced by gut microbiota in the improvement
of NAFLD, such as reducing proinflammatory cytokines,
improving intestinal barrier function, and regulating
immune function, insulin resistance, and glucose and lipid
metabolism [41–43]. Metabolomic profiling in our study
showed that total SCFAs, AA, BA, and PA were enriched
in the grass carp group and in the chicken group. The report
by Liang et al. [44] showed that compound probiotics signif-
icantly increased the levels of intestinal SCFAs in NAFLD
rats and NAFLD phenotypes including liver TC and TG
were significantly improved. An animal study suggested that
SCFA administration in mice could suppress food intake
and protect against a high-fat diet-induced weight gain and
glucose intolerance [42]. The aforementioned findings sup-
port our study, in which the Lactobacillus, Akkermansia,
Phascolarctobacterium, and Ruminococcaceae_UCG-014,
which were enriched in fecal samples of rats fed with the
grass carp-based diet or the chicken-based diet, have been
reported to be positively associated with the content of
SCFAs [33].

Bile acids are another important class of metabolites rep-
resenting gut microbiota-host cometabolism. Bile acids
could regulate the growth of gut bacteria, and gut bacteria
metabolize bile acids to regulate host metabolism [39]. The
gut-to-liver axis plays a critical role in the regulation. The
results of BA profiling in our study indicated that the regu-
lation of the BA signal might be involved in the effect of die-
tary white meat consumption on NAFLD. The levels of
UnConBAs (such as UDCA and 7-KLCA) were enriched
and ConBAs (such as GDCA and TDCA) were depleted in
the grass carp group and in the chicken group, while

UnConBAs (such as LCA) were depleted and ConBAs (such
as TCA and Tβ-MCA) were enriched in the pork group and
in the beef group compared with the NAFLD group. Consis-
tent with our finding, the TCA, TCDCA, GCA, and GCDCA
of ConBAs have been considered to cause hepatic lipid accu-
mulation, hepatic apoptosis, and liver injury [39] and TCA,
which enriched in the pork- and beef-based diets, has been
considered to aggravate cholesterol-induced triglyceride
accumulation [45]. The study by Puri et al. [46] suggested
that the presence and severity of nonalcoholic steatohepatitis
in patients are positively associated with the higher level of
ConBAs, such as GCA, TCA, and TCDCA. A clinical trial
revealed that type 2 diabetes patients treated with acarbose
had an increased level of UnConBAs [47]. As consistent
results as previously described, Zhang et al. [45] found that
TCA, GCA, TUDCA, and TCDCA of ConBAs were
enriched in high-fat high-cholesterol mice; the study by
Lin et al. [48] indicated that HFD caused an increase in
the levels of TDCA. The abovementioned findings were con-
sistent with our results.

Collectively, our findings suggest that dietary grass carp
and chicken intervention upregulates SCFAs and UnCon-
BAs and downregulates ConBAs, thereby leading to the
improvements in hepatic steatosis and other metabolic indi-
cators; in contrast, dietary pork and beef intervention down-
regulates SCFAs and UnConBAs and upregulates ConBAs,
in turn promoting NAFLD progression.

5. Conclusions

In conclusion, to the best of our knowledge, this study
showed for the first time that demonstrated administration
with the dietary grass carp, chicken, pork, and beef meat
instead of casein and partial fat in high fat had the different
effects on liver pathological changes and metabolic abnor-
malities in NAFLD rats. The dietary grass carp intervention
could significantly improve hepatic NAFLD-related patho-
logical changes and glycolipid metabolism, and the
chicken-based diet may partially improve the metabolic
parameters. However, NAFLD progression was observed in
the pork group and the beef group. The mechanism respon-
sible for the different effects may be at least partially corre-
lated with the changes in gut microbiota composition and
its metabolites, as indicated by discrepantly expanding the
abundances of beneficial bacteria Lactobacillus or Akker-
mansia and inhibiting the growth of pathogenic bacteria
Bilophila or Blautia. Then, the changes in gut microbiota
caused the changes in gut metabolites, which were mani-
fested as the increased levels of SCFAs and UnConBA and
decreased ConBAs such as GCA, TDCA, GCDCA, and
TLCA. Together, these findings suggest that dietary white
meat modulating gut microbiota and its related metabolites
may represent effective strategies in the improvement of
phenotype in NAFLD rats.
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