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Upon infection, both DNA and RNA viruses can be sensed by

pattern recognition receptors (PRRs) in the cytoplasm or the

nucleus to activate antiviral innate immunity. Sensing of viral

products leads to the activation of a signaling cascade that

ultimately results in transcriptional activation of type I and III

interferons, as well as other antiviral genes that together

mediate viral clearance and inhibit viral spread. Therefore, in

order for viruses to replicate and spread efficiently, they must

inhibit the host signaling pathways that induce the innate

antiviral immune response. In this review, we will highlight

recent advances in the understanding of the mechanisms by

which viruses evade PRR detection, intermediate signaling

molecule activation, transcription factor activation, and the

actions of antiviral proteins.
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Introduction
Upon virus infection, viral pathogen-associated molecular

patterns (PAMPs) are sensed by host pattern recognition

receptors (PRRs). PAMPs are unique features present in

viruses that are not present in the host cell and therefore

allow cells to distinguish self versus non-self to activate an

immune response to infection. There are several types of

PRRs that sense viral infection, including Toll-like recep-

tors (TLRs), RIG-I-like receptors (RLRs), and DNA

sensors, which recognize both viral nucleic acids and

proteins. Activation of these PRRs leads to signaling

through adaptor proteins, such as MAVS and STING.

These adaptor proteins then activate kinases and tran-

scription factors that induce the expression of type I and

III interferons (IFNs), as well as antiviral proteins (PRRs
www.sciencedirect.com 
are reviewed in [1]). The antiviral innate immune signal-

ing pathways highlighted in this review are shown in

Figures 1–4.

As full induction of antiviral innate immunity potently

limits viral replication, viruses have evolved several gen-

eral strategies to evade this innate immunity. A broad

overview of many of the strategies to evade PRR signaling

have been previously reviewed in detail [2,3,4�,5�]. In this

review, we describe the recent advances in viral evasion of

the host antiviral innate immune response, including

mechanisms for viral evasion of PRR detection, interme-

diate signaling molecule activation, transcription factor

activation, and the actions of antiviral proteins.

Evasion or targeting of PRRs
Viruses have developed several ways to evade detection

by PRRs. Many RNA viruses replicate in the cytoplasm

where they are sensed by the cytoplasmic PRRs, MDA5

and RIG-I (Figure 1). In contrast, most DNA viruses

replicate within the nucleus and can be sensed in the

nucleus or in the cytoplasm by IFI16 or cGAS, respec-

tively (Figure 2). Thus to avoid detection by the host

innate immune system at their sites of replication, viruses

have evolved several evasion strategies. For example, the

positive-sense single-stranded (ss) RNA virus, dengue

virus (DenV), replicates in the cytoplasm where its

dsRNA would be expected to be detected by the cyto-

plasmic RNA sensor proteins RIG-I and MDA5 to induce

type I IFN. However, new work has revealed that DenV

induces membrane modifications that sequester the

DenV RNA away from RIG-I and MDA5, resulting in

poor induction of type I IFN [6]. It has been known for

some time that hepatitis C virus (HCV), which like DenV

is in the Flaviviridae family of viruses, similarly induces

membrane rearrangements to house its replication ma-

chinery [7,8]. Interestingly, it has now been suggested

that similar to DenV, HCV-induced membrane rearrange-

ment prevents recognition of HCV RNA by RIG-I [9��].
Indeed, a study by Neufeldt et al., showed that HCV co-

opts host nuclear pore complex proteins (NPC) to the

membranous web to regulate protein transport into the

replication complex. As viral proteins have cryptic nuclear

localization signals they can relocalize to these sites of

replication; however, as RIG-I does not, it is excluded

from the sites of replication. Intriguingly, addition of a

nuclear localization signal to RIG-I, allows it to sense

HCV RNA and activate IFN induction, suggesting that

the NPC at the membranous web acts as a regulator to

determine the proteins that can access the membranous
Current Opinion in Microbiology 2016, 32:113–119
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Evasion of RIG-I-like receptor signaling by viruses. The RIG-I-like receptors RIG-I and MDA5 are activated by viral dsRNA in the cell cytoplasm.

PP1a/g dephosphorylates MDA5 to allow subsequent signaling. TRIM25 and RIPLET are E3 ubiquitin ligases that ubiquitinate RIG-I for its full

activation. The 14-3-3e protein mediates RIG-I translocation to the membrane to interact with MAVS. MAVS is the adaptor protein for both RIG-I

and MDA5 and recruits downstream signaling molecules to mediate signaling to the transcription factors IRF3/7 and NFkB. Several aspects of this

signaling pathway are inhibited by viruses, as shown here. Abbreviations: coxsackievirus B3 (CVB3), dengue virus (DenV), enterovirus 68 (EV-D68),

enterovirus 71 (EV-D71), hepatitis C virus (HCV), human immunodeficiency virus (HIV), molluscum contagiosum virus (MCV), poliovirus (PV),

porcine reproductive and respiratory syndrome virus (PRRSV), and West Nile virus (WNV).
web [9��]. This is the first demonstration that sequestered

viral replication within rearranged cytoplasmic mem-

branes actively prevents PRR sensing of viral RNA and

the subsequent induction of IFN.

The PRRs RIG-I and MDA5 are frequently inhibited by

viruses to prevent activation of IFN. These proteins are

activated by specific PAMPs, with RIG-I recognizing

ssRNA that contains a 50 triphosphate as well as short

double-stranded (ds) RNA molecules, and MDA5 sensing

longer dsRNA molecules (reviewed in [3]). Entero-

viruses, including poliovirus (PV), coxsackievirus B3

(CVB3), and enterovirus 71 (EV-D71), are positive-sense

ssRNA viruses sensed in the cytoplasm by MDA5 and

RIG-I. These enteroviruses encode two proteases, 2Apro

and 3Cpro, required for viral polyprotein processing. How-

ever, 2Apro and 3Cpro have also been shown to cleave

MDA5 and RIG-I, respectively [10]. This demonstrates

that enteroviruses have converged on common strategies
Current Opinion in Microbiology 2016, 32:113–119 
to evade multiple PRRs during infection further support-

ing the fact that PRR sensing is critical for limiting viral

replication and spread.

Both RIG-I and MDA5 require a coordinated set of

events to go from their inactive to active state (reviewed

in [11]). One of the steps to activate RIG-I and MDA5

includes removal of inhibitory phosphorylation marks by

the protein phosphatases PP1a and PP1g [12]. The

negative-sense ssRNA viruses, measles virus (MV) and

Nipah virus, both inhibit MDA5 activation through the

actions of their V protein [13,14]. The V protein, which

acts as an IFN antagonist, binds PP1a and PP1g to

prevent the dephosphorylation of MDA5 specifically

during infection [13]. MV also utilizes a second strategy

to prevent PP1a/g dephosphorylation of MDA5. This

strategy involves activation of a DC-SIGN signaling

pathway that activates Raf1 kinase for activation of the

PP1 inhibitor 1, which blocks PP1a/g action [14].
www.sciencedirect.com
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Figure 2
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Evasion of DNA sensors by viruses. Viral DNA is sensed by cGAS in

the cytoplasm and IFI16 in the nucleus. cGAS and IFI16 signal to a

common adaptor protein, STING, which recruits TBK1 to activate

IRF3, which induces expression of type I IFN and other antiviral genes.

IFI16, cGAS, and STING have all been inhibited by viruses, as shown

here. Abbreviations: adenovirus (AdV), herpes simplex virus-1 (HSV-1),

human immunodeficiency virus (HIV), human papillomavirus 18

(HPV18), and Kaposi’s sarcoma associated herpes virus (KSHV).

Figure 3
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Viral evasion of the IFN response pathway. Once induced, IFNs are

secreted from the infected cell and signal in an autocrine and

paracrine manner through the IFN receptor complex to activate the

JAK/STAT pathway. This signaling leads to the activation of the ISGF3

complex, which consists of STAT1, STAT2, and IRF9, that translocates

to the nucleus to induce ISGs with broad antiviral functions. Both

STAT1 and STAT2 are inhibited by viruses, as shown here.

Abbreviations: dengue virus (DenV), hepatitis C virus (HCV), and

interferon a receptor complex (IFNAR).

Figure 4
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Evasion of ISGs by viruses. Both PKR and IFIT1 are ISGs that limit

mRNA translation in virally infected cells. PKR phosphorylates the

eukaryotic initiation factor eIF2a to inhibit translation. Several viruses,

including human cytomegalovirus (HCMV) shown here, inhibit this

function of PKR. As IFIT1 binds to uncapped RNAs to prevent their

translation, several viruses encode 20-O methyltransferases that cap

viral RNAs to prevent inhibition of their translation during infection.

Abbreviations: murine hepatitis virus (MHV), severe acute respiratory

syndrome coronavirus (SARS-CoV), vaccinia virus (VACV), and West

Nile virus (WNV).
Full activation of RIG-I requires the actions of a set of

proteins, including TRIM25, RIPLET, and 14-3-3e
(reviewed in [11]). All of these proteins are targeted by

viruses to prevent their activation. Both TRIM25 and

RIPLET are E3 ubiquitin ligases that ubiquitinate RIG-I

with K63-linked ubiquitin chains for its full activation.

However, the negative-sense ssRNA virus, influenza

virus, which is sensed by RIG-I [15,16], evades the

actions of both TRIM25 and Riplet [17,18]. The viral

NS1 protein binds to both TRIM25 and Riplet in a

species-specific manner [18]. This prevents the activation

of RIG-I during infection leading to a decreased induc-

tion of IFN [17,18]. Recently, it was shown that the HCV

NS3-4A protease complex, which has long been known to

cleave MAVS and TRIF (see below) [19–23], also cleaves

RIPLET to inhibit induction of IFN [24]. The 14-3-3e
protein, which binds to RIG-I to mediate translocation of
www.sciencedirect.com 
RIG-I from the cytoplasm to interact with MAVS at

intracellular membranes [25], is also inhibited by viruses.

The 14-3-3e protein binds proteins like RIG-I that con-

tain phosphorylated serine or threonine at an Rxx(pS/

pT)xP motif. Interestingly, the NS3 proteases of both

DenV and West Nile virus (WNV) bind to 14-3-3e via a

phosphomimetic RxEP motif, suggesting that NS3 com-

petitively inhibits RIG-I binding to 14-3-3e, thus block-

ing translocation to MAVS to prevent induction of

antiviral innate immunity [26��].
Current Opinion in Microbiology 2016, 32:113–119
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Viruses also evade sensing by PRRs by encoding proteins

that protect the viral nucleic acids from sensors. The

cytoplasmic PRR cGAS senses viral DNA in the cyto-

plasm (reviewed in [27]). During HIV-1 and HIV-2

infection, the viral complementary DNA (cDNA) within

the virion is sensed by cGAS after infection [28]. How-

ever, the HIV-1 but not HIV-2 cDNA is protected within

the viral capsid until it is transported into the nucleus for

replication. The mechanism behind this protection is due

to affinity of the HIV-1, but not HIV-2, capsid with the

host protein cycophilin A (CypA) which stabilizes the

viral capsid to prevent exposure of the viral cDNA to

cGAS in the cytoplasm [28]. In addition to cGAS, viruses

target IFI16, which senses DNA viruses that replicate in

the nucleus. In particular, the herpes simplex virus-1

(HSV-1) immediate early protein ICP0 has E3 ubiquitin

ligase activity that ubiquitinates IFI16, resulting in its

degradation by the ubiquitin proteasome and loss of IFN

induction [27,29].

Targeting of adaptor proteins and their
kinases
In addition to using viral proteases to cleave PRRs, as

described above, viruses also utilize their proteases to

target the downstream signaling molecules in antiviral

innate immune pathways. In particular, the NS3-4A

protease of HCV blocks antiviral signaling by cleaving

at least three innate immune signaling molecules. The

HCV NS3-4A protease prevents activation of the tran-

scription factor IRF3 and induction of IFN by cleaving

the signaling adaptor protein MAVS [19–21,23]. The

NS3-4A protease can also cleave TRIF, an adaptor

protein for TLR3, a protein that senses viral dsRNA

in the endosome [22]. Finally, as described above,

NS3-4A also cleaves RIPLET [24]. As the HCV

NS3-4A protease cleaves two molecules in the RIG-I

signaling pathway (both RIPLET and MAVS), this

suggests that either the virus is ensuring that the

RIG-I pathway is inhibited or that RIPLET may have

additional functions within innate immunity besides

activating RIG-I.

Since MAVS activation coordinates IFN-induction by

both RIG-I and MDA5, it is not surprising that viruses

often target MAVS or proteins that regulate its func-

tion. In addition to HCV, the positive-sense RNA

viruses, porcine reproductive and respiratory syndrome

virus (PRRSV) and EV-D71, use the nsp4 cysteine

protease [30] and 2Apro, respectively, to cleave MAVS

during infection [31]. The DenV protease NS2B3

cleaves the mitofusins, MFN1 and MFN2, known to

be positive (MFN1) or negative (MFN2) regulators of

MAVS function [32–36]. Therefore, as their cleavage in

DenV-infected cells results in increased virus replica-

tion, it suggests that cleavage of MFN1 (vs MFN2) is

required to prevent the antiviral response in DenV-

infected cells.
Current Opinion in Microbiology 2016, 32:113–119 
While MAVS is the adaptor for RNA virus sensing,

STING is the adaptor for DNA virus sensing via the

PRRs cGAS and IFI16 (reviewed in [5�]). Interestingly,

Lau et al. determined that both the adenovirus E1A and

human papilloma virus 18 (HPV18) E7 proteins bind to

STING to prevent induction of type I IFN upon DNA

transfection [37��]. Additionally, the Kaposi’s sarcoma-

associated herpes virus (KSHV) protein vIRF1 binds to

STING and prevents its interactions with TBK1 and

IRF3 to block IFN induction [38]. Importantly, this

inhibition of IFN induction by KSHV was found to

important for reactivation of KSHV from viral latency

[38].

Intriguingly, several RNA viruses have mechanisms to

block the function of STING, even though it is a known

adaptor for DNA virus sensing (reviewed in [2]). The

HCV NS4B protein, the DenV NS2B3 protease, and the

yellow fever virus NS4B protein all block STING down-

stream signaling to IFN ([39] and reviewed in [40]). While

the mechanism of how STING senses RNA viruses

remains unclear, the fact that multiple RNA viruses have

strategies to antagonize its function suggests that it must

play a role in IFN induction during RNA virus infection

(reviewed in [40]). Flaviviridae virus infection may dam-

age mitochondria, leading to the releases of mitochondrial

DNA that primes the innate immune response [41��].
Indeed, HCV infection induces mitophagy, and this

results in decreased IFN induction suggesting that this

induction of mitophagy is a viral mechanism to protect

from mitochondrial DNA induction of type I IFN [42].

Viruses also target the kinases IKKe and TBK1, which

transduce signals from MAVS or STING to activate

antiviral transcription factors. IKKe is inhibited by the

nucleoprotein of arenaviruses, including lymphocyte

choriomeningitis virus and Lassa fever virus [43].

TBK1 is inhibited by both Vpr and Vif during HIV-1

infection of dendritic cells and macrophages to prevent its

autophosphorylation and activation [44]. Further, both

TBK1 and IKKe are inhibited by the ebola virus Vp35

protein to prevent their interactions with the transcription

factors IRF3 and IRF7 [45]. Since these kinases can be

activated by multiple PRR pathways, inhibition of the

kinases broadly inhibits the antiviral innate immune

response.

Targeting transcription factors
Viruses also directly inhibit transcription factors that act

in the IFN induction and response pathways to prevent

transcriptional activation of IFNs and interferon-stimu-

lated genes (ISGs) during virus infection. To evade IFN

induction, enterovirus 68 (EV-D68) 3Cpro cleaves IRF7

during infection [46]. The human poxvirus, molluscum

contagiosum virus (MCV), a DNA virus, also evades IFN

induction by using its MC132 protein to recruit the

Elongin B/Elongin C/Cullin-5 ubiquitin ligase complex
www.sciencedirect.com
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to ubiquitinate and degrade the p65 subunit of NFkB to

prevent its activation [47]. To antagonize the transcrip-

tional induction of the IFN response pathway, several

viruses directly act on the STAT proteins. Both STAT1

and STAT2 are phosphorylated following IFN signaling

thereby promoting their interaction with IRF9 to form the

ISGF3 complex that transcriptionally activates ISGs

(Figure 3). In particular, the DenV NS5 protein targets

STAT2 for degradation, resulting in the ubiquitination

and degradation of STAT2 [48]. Additionally, the HCV

core protein dysregulates STAT1 signaling by increasing

the levels of non-phosphorylated STAT1 in the cell [49].

Antagonism of transcription factors by viruses efficiently

blocks IFN signaling and ISG induction.

Evasion of ISGs
Not surprisingly, viruses have evolved ways to inhibit the

antiviral actions of ISGs that are induced by the IFN

response pathway. These ISGs have broad mechanisms to

confer antiviral activity [50]. In this section, we will focus

on how viruses evade the antiviral actions of the ISGs

IFIT1 and PKR (Figure 4). The IFIT proteins bind to

uncapped RNA to prevent their translation. While many

viruses have uncapped RNA and use internal ribosome

entry sites for their translation (e.g. HCV), some viruses

have evolved ways to cap their RNA to evade IFIT1

recognition. For example, Lassa fever virus and influenza

virus snatch caps from host mRNAs. Additionally, many

viruses encode proteins that can perform these capping

functions (reviewed in [51]). In particular, the WNV NS5

protein contains 20-Omethyltransferase (20O-MT) activity

to generate a cap 1 structure. This particular cap structure

is not sensed by IFIT1 during infection therefore this

allows the virus to evade restriction by IFIT1 [52].

Coronaviruses, positive-sense ssRNA viruses, also encode

a 20O-MT protein, nsp16 [53]. Similar to the MT activity

of WNV NS5A, the MT activity of nsp16 is required for

evasion of IFIT sensing during both murine hepatitis

virus and severe acute respiratory syndrome coronavirus

infection [52,54]. Vaccinia virus, a DNA virus that repli-

cates exclusively in the cytoplasm, also has a 20O-MT and

disruption of its activity results in increased susceptibility

of vaccinia virus to IFIT protein restriction [52]. Taken

together, many viruses evade the actions of IFIT1, dem-

onstrating that IFIT1 has the capacity for potent restric-

tion of viral replication.

The antiviral effector ISG PKR is one of the most

common proteins targeted and inactivated by viruses

(reviewed in [55]). Activation of this ISG by dsRNA

results in PKR autophosphorylation, dimerization, and

phosphorylation of eIF2a leading to decreased protein

synthesis due to translational inhibition. This inhibition

of translation affects both host and viral mRNAs, which

ultimately decreases viral replication. A recent example of

inhibition of PKR function was described during infec-

tion with human cytomegalovirus virus (HCMV), a DNA
www.sciencedirect.com 
virus of the herpesvirus family [56]. This virus encodes

two proteins, pTRS1 and pIRS1, that antagonize PKR to

prevent its autophosphorylation and subsequent phos-

phorylation of eIF2a. Importantly, deletion of the viral

pTRS1 and pIRS1 proteins leads to decreased expression

of viral early and late proteins, resulting in decreased viral

replication [56]. This suggests that these proteins are

critical for HCMV to prevent the antiviral activity of

PKR for its replication.

Conclusions
Evasion of the host antiviral innate immune response is

critical for virus replication and spread. Viruses have

several strategies to evade IFN induction and signaling

to avoid the antiviral mechanisms of the host innate

immune system. In fact, some viruses utilize multiple

strategies to evade antiviral innate immune signaling, as is

seen with HCV. This virus evades RIG-I detection of its

replicating RNA in the membranous web by co-opting

the NPC to regulate protein trafficking to the these sites

of replication [9��]. It also cleaves MAVS, TRIF, and

RIPLET to prevent downstream signaling to IRF3 and

NFkB [19–24]. Further, it induces mitophagy to limit

IFN induction and it also inhibits the transcription factor

STAT1 to prevent ISG induction [42,49]. Taken togeth-

er, there is a strong need for viruses to evade IFN

induction and signaling to prevent activation of host

innate immune system to allow for viral replication.
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