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Quasi-freestanding graphene on 
Ni(111) by Cs intercalation
M. Alattas & U. Schwingenschlögl

A possible approach to achieve quasi-freestanding graphene on a substrate for technological purpose 
is the intercalation of alkali metal atoms. Cs intercalation between graphene and Ni(111) therefore is 
investigated using density functional theory, incorporating van der Waals corrections. It is known that 
direct contact between graphene and Ni(111) perturbs the Dirac states. We find that Cs intercalation 
restores the linear dispersion characteristic of Dirac fermions, which agrees with experiments, but the 
Dirac cone is shifted to lower energy, i.e., the graphene sheet is n-doped. Cs intercalation therefore 
decouples the graphene sheet from the substrate except for a charge transfer. On the other hand, the 
spin polarization of Ni(111) does not extend through the intercalated atoms to the graphene sheet, for 
which we find virtually spin-degeneracy.

Graphene is gaining attention for its unique two-dimensional structure and special electronic properties, which 
are interesting for many applications1. A popular method to prepare graphene in high quality and large scale is 
chemical vapor deposition2, which has been successfully used for metallic substrates, such as Cu3, Au4, Co5, Ni6, 
Pd7, and Ir8. Ni(111) and Co(0001), in particular, are considered to be good substrates due to their small lattice 
mismatch of only 1.3%9 and 1.9%10, respectively. However, some metallic substrates, such as Ni(111)11 interact 
strongly with graphene and distort the Dirac cone12, whereas for Pt(111)13, for example, the interaction is weaker. 
The small distance (2.1 Å) realized between graphene and Ni(111) results in significant hybridization of the Ni 3d 
and C 2p orbitals, which explains the strong modification of the band structure14,15. It has been shown experimen-
tally16 and theoretically17 that C magnetic moments are induced.

Intercalation of noble metal atoms can restore the original band structure to give rise to quasi-freestanding 
graphene18. Ag intercalation into the graphene/Ni(111) system has been studied by density functional theory 
and it has been found that the Ag atoms decouple graphene from the substrate electronically19. The band gap 
decreases when the Ag concentration grows, as the interaction with the substrate is reduced. Ni then has no other 
role than to support the noble metal atoms. For Au intercalation the concentration also has a noticeable impact on 
the shape of the graphene π bands20. A low Au concentration of ~0.33 monolayers largely recovers the Dirac cone 
but leaves a band gap of 0.2 eV and a sizable shift of the Dirac point by 0.48 eV below the Fermi level. Increasing 
the Au coverage, on the other hand, almost removes the band gap and shifts the Dirac cone back to the Fermi 
level. Metal intercalation is not restricted to noble metals. In particular, alkali metals have been studied experi-
mentally11 and theoretically21. They also weaken the interaction between graphene and Ni(111) by enlarging the 
interlayer distance22,23.

In the following, we consider the structural, electronic, and magnetic properties of graphene on Ni(111), using 
density functional theory, and analyze the changes when intercalating the system with different concentrations 
of Cs atoms. By the large atomic radius of Cs a very efficient decoupling of graphene from the substrate can be 
expected. Cs is an alkali metal with one electron in its outer shell and thus strongly favors a Cs+1 state, so that it 
does not participate in chemical bonding but acts purely as spacer.

Results
The 1 ×​ 1 unit cell of the graphene on Ni(111) consists of 4 Ni layers and 1 C layer on top. To determine the 
favorable lateral shift between the two materials, we study four structural configurations: (i) Hollow, where each 
atom of the topmost Ni layer is in the center of a C honeycomb. (ii) Face centered cubic (fcc), where three of the 
C honeycomb atoms are located on top of atoms of the topmost Ni layer and the center of the C honeycomb is 
located on top of an atom of the second Ni layer. (iii) Hexagonal close packed (hcp), which is similar to the fcc 
case but with the center of the C honeycomb located on top of an atom of the third Ni layer. (iv) Bridge, where 
the center of the C honeycomb is located between two atoms of the topmost Ni layer. Figure 1 illustrates the four 
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Figure 1.  Top view of the structural configurations considered for graphene on Ni(111), where the C atoms 
(yellow) occupy (a) hollow, (b) fcc, (c) hcp, and (d) bridge sites on the Ni(111) surface.

hollow fcc hcp bridge

dC/Ni (Å) 3.3 2.1 3.0 2.2

Eformation (eV) −​4.01 −​4.19 −​4.11 −​4.18

Table 1.   Comparison of different configurations of graphene on Ni(111).
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Figure 2.  Graphene on Ni(111): Band structure of the (a) spin up and (b) spin down channels.
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cases and Table 1 summarizes key findings. In agreement with previous studies24, the fcc configuration turns out 
to have the lowest formation energy

= − −E E E E , (1)formation system Ni C
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Figure 3.  Band structure of the (a) spin up and (b) spin down channels for dC/Ni =​ 6 Å. (c) Atomic structure 
with real and artificially exaggerated distance between the graphene sheet and Ni substrate. (d) Projected 
densities of states.
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where ENi is the total energy per atom in bulk Ni and EC is the total energy per C atom in graphene. The fact that 
the bridge configuration is only 10 meV higher in energy than the fcc configuration implies that it is accessible as 
well. Even the hcp configuration might be accessible with low probability. Indeed, these configurations experi-
mentally can coexist25,26. The hollow configuration, on the other hand, is rather unlikely to be formed.

The C-C bond length in the fcc configuration is 1.44 Å, whereas it is 1.42 Å in pristine graphene. This small 
tensile strain corresponds to the mentioned small lattice mismatch. The obtained perpendicular distance between 
graphene and the Ni(111) surface, dC/Ni, see Table 1, is in very close agreement with previous experimental27 and 
theoretical28 findings. For the fcc configuration, Fig. 2 shows the band structure for the spin up and down chan-
nels. The Dirac cone is strongly perturbed with a 0.3 eV splitting at the K point, reflecting a strong hybridization 
between the C 2p and Ni 3d states as a consequence of the small dC/Ni. We obtain finite though small magnetic 
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Figure 4.  Band structure of the (a) spin up and (b) spin down channels for the graphene/Cs/Ni(111) system 
(2 ×​ 2 supercell). (c) Atomic structure with intercalated Cs (gray). (d) Projected densities of states.
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moments of −​0.02 and 0.03 μB on the two C atoms due to Ni-C hybridization, in agreement with the results 
reported in ref. 29, and charge transfers of 0.03 and −​0.01 electrons from the Ni 3d to the C 2p states.

We next consider a 2 ×​ 2 supercell with graphene artificially placed in a distance of 6 Å from the Ni(111) sub-
strate, see Fig. 3(c). As expected, this distance yields a weak interaction between the Ni 3d and C 2p states, com-
pare the almost vanishing Ni-C hybridization, leading to a restoration of the Dirac cone with a minor splitting. 
In fact, hybridization effects start vanishing in distances larger than 3 Å. Figure 3(a,b) shows the band structures 
of the spin up and down channels. We obtain a shift of the Dirac point by 0.2 eV above the Fermi level, reflecting 
p-doped graphene. The Dirac cone appears in the two spin channels at the same energy, implying that there is no 
C magnetic moment. The Ni bands, on the other hand, show a rigid shift due to spin polarization. Projected den-
sities of states in Fig. 3(c) confirm that the magnetic moments on the C atoms are zero and that the total magnetic 
moment of 10.8 μB comes from the Ni atoms, where atoms in the first layer show magnetic moments of 0.67 μB 
and atoms in the other layers show 0.68 μB.

We find that intercalation of Cs enlarges the distance between the graphene sheet and the Ni(111) substrate to 
6.0 Å post relaxation (3.1 Å from graphene to Cs and 2.9 Å from Cs to Ni). The in-plane Cs-Cs distance is 5.0 Å. 
We note that the graphene sheet shows no significant structural modification, see Fig. 4(c), in particular hardly 
any buckling. According to Fig. 4(a,b), the electronic structure, on the other hand, is altered substantially by the 
Cs intercalation. In particular, a multitude of bands appears from −​1.5 to 0.5 eV. To understand the origin of 
these bands we use a weighted band analysis. Figure 5(a) shows that the cone-like bands originate from the C 2p 
states, while the other bands are due to the Ni 3d states. The Dirac cone is restored with a negligible splitting. It 
appears about 1.1 eV below the Fermi level, representing prominently n-doped graphene. The C atoms carry no 
magnetic moment, see also Fig. 4(d), implying that Cs does not transfer spin polarization from Ni to graphene. 
In the Ni(111) substrate the magnetic moments decrease towards Cs from a value of 0.68 μB, which is close to the 
bulk Ni value of 0.67 μB, to values of 0.49 μB for the atom directly below Cs and 0.59 μB for the other atoms in the 
same layer.

We next consider larger supercells, see Fig. 5 on top, to study the effect of the Cs concentration. The weighted 
band structures obtained for 2 ×​ 2 (without and with intercalation), 3 ×​ 3, and 4 ×​ 4 supercells in Fig. 5 demon-
strate a shift of the Dirac point upwards to the Fermi level when the Cs concentration is reduced. The higher the 
Cs concentration the stronger is the n-doping of graphene. The Dirac point is located 1.12 eV, 0.61 eV, and 0.59 eV 
below the Fermi level, respectively, for the 2 ×​ 2, 3 ×​ 3, and 4 ×​ 4 supercell, which corresponds to a charge transfer 
of 0.045, 0.012, and 0.011 electrons in the case of pristine graphene.

As another ferromagnetic substrate we have also considered Co(0001) to check whether our results for Ni(111) 
are of general validity. The band structure of the 2 ×​ 2 supercell, see Fig. 6(a,b), is found to show close similarity 
to the case of the Ni(111) substrate, only the Dirac point is shifted slightly more (1.17 eV) below the Fermi level. 

Figure 5.  Atomic structures and weighted bands for the (a,b) 2 ×​ 2 supercell without/with intercalation,  
(c) 3 ×​ 3 supercell, and (d) 4 ×​ 4 supercell. The size of the dots represents the sum of all C pz contributions.
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The projected densities of states in Fig. 6(c), on the other hand, indicate that Co is subject to a stronger exchange 
splitting as compared to Ni.

Discussion
We have investigated the effect of Cs intercalation on the structural, electronic, and magnetic properties of 
graphene on Ni(111) and Co(0001). An fcc configuration is found to be energetically favorable in agreement with 
previous experimental and theoretical results, and therefore is chosen for studying the intercalation. Different 
supercell sizes have been considered to examine the effect of the Cs concentration. In agreement with experimen-
tal results, the Cs intercalation restores the Dirac cone, since it decouples graphene from the substrate, resulting in 
n-doped quasi-freestanding graphene. Both for the Ni(111) and Co(0001) substrates the graphene sheet exhibits 
no trace of spin polarization.

Methods
Density functional theory is employed using the Vienna Ab-initio Simulation Package30 and the generalized gra-
dient approximation (Perdew-Burke-Ernzerhof parametrization31) along with ultrasoft pseudopotentials. London 
forces are considered in all calculations32 and the plane wave cutoff energy is set to 500 eV. Supercells are created 
using in the xy-plane the lattice parameter of Ni (2.49 Å) and adding a vacuum slab of about 15 Å thickness in 
the z-direction. For a 1 ×​ 1 unit cell of graphene on Ni(111) a 32 ×​ 32 ×​ 1 k-mesh (Monkhorst-Pack scheme33) 
is used for the Brillouin zone integration (16 ×​ 16 ×​ 1 for the structure relaxation). We built a 2 ×​ 2 supercell 
containing 24 atoms (8 C and 16 Ni) and introduce one Cs atom, giving a total number of 25 atoms. Also 3 ×​ 3 
and 4 ×​ 4 supercells are constructed to examine the effect of the Cs concentration. These supercells are relaxed 
using 4 ×​ 4 ×​ 1 and 2 ×​ 2 ×​ 1 k-meshes, respectively, and 8 ×​ 8 ×​ 1 and 4 ×​ 4 ×​ 1 k-meshes are employed for the 
self-consistency calculation.
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Figure 6.  Band structure of the (a) spin up and (b) spin down channels for the graphene/Cs/Co(0001) system 
(2 ×​ 2 supercell). (c) Projected densities of states.
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