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Abstract: Susceptibility and progression of lung disease, as well as response to treatment, often differ
by sex, yet the metabolic mechanisms driving these sex-specific differences are still poorly understood.
Women with chronic obstructive pulmonary disease (COPD) have less emphysema and more small
airway disease on average than men, though these differences become less pronounced with more
severe airflow limitation. While small studies of targeted metabolites have identified compounds
differing by sex and COPD status, the sex-specific effect of COPD on systemic metabolism has yet
to be interrogated. Significant sex differences were observed in 9 of the 11 modules identified in
COPDGene. Sex-specific associations by COPD status and emphysema were observed in 3 modules
for each phenotype. Sex stratified individual metabolite associations with COPD demonstrated
male-specific associations in sphingomyelins and female-specific associations in acyl carnitines and
phosphatidylethanolamines. There was high preservation of module assignments in SPIROMICS
(SubPopulations and InteRmediate Outcome Measures In COPD Study) and similar female-specific
shift in acyl carnitines. Several COPD associated metabolites differed by sex. Acyl carnitines
and sphingomyelins demonstrate sex-specific abundances and may represent important metabolic
signatures of sex differences in COPD. Accurately characterizing the sex-specific molecular differences
in COPD is vital for personalized diagnostics and therapeutics.

Keywords: COPD; emphysema; sex differences; network analysis; weighted gene co-expression
network analysis (WGCNA); lung

1. Introduction

Susceptibility to and progression of lung disease, as well as response to treatment,
often differ by sex, but molecular pathways underlying these differences are poorly under-
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stood [1,2]. Chronic obstructive pulmonary disease (COPD) is a progressive lung disease
characterized by persistent airflow limitation associated with chronic inflammation [3]. As
of 2017, chronic lower respiratory diseases, including COPD, ranked as the 3rd leading
cause of death in females and the 4th leading cause of death in males in the US, accounting
for 6.2% and 5.2% of deaths, respectively [4]. There are several reasons to consider ana-
lyzing the metabolome of COPD separately in men and women, including sex differences
in age of onset of severe COPD [5–7], prevalence of airway disease and emphysema [8,9],
and COPD-related comorbidities [10]. There have been reports of metabolome differences
by sex [11–13]. Several classes of metabolites, including sphingomyelins and branched
chain amino acids, have been associated with COPD phenotypes [14–17]. However, these
studies were often small, used targeted metabolomics, and did not elucidate the sex-specific
differences for COPD and emphysema.

Untargeted metabolomics identifies many molecules present with relatively low molec-
ular weights (<1500 Da) that can represent functional endpoints of cellular regulation,
exogenous exposures (e.g., food, drugs, tobacco smoke), and pathophysiological condi-
tions [18]. Metabolomic profiles can be obtained from any biologic tissue or biofluid, with
the metabolomic profile of COPD having previously been investigated in blood, urine,
breath condensate, and bronchial lavage fluid [19–21]. Blood (plasma and serum) is often
preferred for biomarker discovery because it is a minimally-invasive biosample and blood
sampling is widely available in many settings. Furthermore, although the primary target
organ of COPD is the lung, COPD is a systemic disease with blood signatures [22–24].

Sex-specific differences are not randomly distributed over the metabolome, but likely are
manifest in co-regulated metabolic pathways [11,13]. Weighted gene co-expression network
analysis (WGCNA) is an approach developed for hierarchical clustering of gene expression
data into modules of correlated genes which can be extended to metabolomics [21–23,25,26].
In identifying modules of correlated metabolite abundances, one can explore subnetworks
that are differentially dysregulated within COPD subjects by sex and identify sex-specific
biomarkers of those subnetworks [27]. Until recently, there have not been large COPD co-
horts with metabolomics data that could be used to assess sex-specific metabolomic variabil-
ity in COPD. In this study, we hypothesized that there are sex differences in metabolomic
modules that associate with COPD status and emphysema. To test this hypothesis, we
utilized an untargeted metabolomics discovery platform in a well-characterized COPD
cohort (COPDGene), as well as a separate well-characterized independent COPD cohort,
SubPopulations and InteRmediate Outcome Measures In COPD Study (SPIROMICS).

2. Results
2.1. Demographics

In the COPDGene cohort, males were significantly older, had more smoking pack-
years (though fewer current smokers), had a higher percentage of COPD cases, and a
higher mean of percent emphysema than females (Table 1). Similar sex-specific differences
were observed for smoking pack-years and COPD cases in SPIROMICS. Overall, the
COPDGene subjects were older, contained a smaller percentage of African American
subjects, had a lower percentage of current smokers, had less smoke exposure measured
by cigarette pack-years, and less percent emphysema compared to SPIROMICS subjects
(Supplementary Table S1).

2.2. WGCNA Modules

For COPDGene, a soft-thresholding power (β) of 8 was chosen, based on criteria for
scale-free topology within a signed network (see Supplemental Figures S1 and S2) [28].
Following the WGCNA procedure outlined in the methods, 11 modules of co-varying
metabolites were identified (not including the “grey” module of uncorrelated metabolites)
(Figure 1A). Modules largely segregated based on metabolite sub class (Table 2, full module
assignment in Supplemental Table S2). Of the clinical variables tested for univariate
associations, sex was significantly correlated with the most modules, followed by age
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(Supplemental Figure S3). Significant associations were observed between individual
models and each clinical variable tested, with several modules significantly correlated
to more than one variable. Thus, covariate adjusted models were necessary to identify
independent associations.

For SPIROMICS, a soft-thresholding power (β) of 9 was chosen and 11 modules of
co-varying metabolites were identified (Figure 1B). As in COPDGene, modules largely
segregated based on metabolite sub class and were most significantly associated with sex
and age (Table 2, Supplemental Table S3 and Figure S4).

Module preservation was observed between COPDGene and SPIROMICS, with all but
the pink and purple modules in COPDGene having a corresponding module in SPIROMICS
(Figure 1C, Supplementary Table S4). The preservation of the 9 modules is further sup-
ported by the overlap of significant hub metabolites between cohorts (Table 3). While
we explored consensus clusters between COPDGene and SPIROMICS, we decided to use
clusters found from the individual clusters based on the high preservations and difficulty
in harmonization between platforms (Figure 1C).

Table 1. Demographics of Cohorts by Sex.

COPDGene SPIROMICS

Variable a Males Females p-Value b Males Females p-Value b

Participants 434 405 232 214
Age 68.5 (8.4) 66.1 (8.8) <0.0001 64 (8.0) 63 (8.8) 0.2244

NHW (%) 399 (91.9) 370 (91.4) 0.8593 191 (82.3) 163 (76.2) 0.1365
BMI 29.1 (5.6) 28.6 (6.6) 0.1815 28.6 (4.9) 28.4 (5.6) 0.6088

Current Smokers (%) 88 (20.3) 111 (27.4) 0.0190 90 (39.1) 70 (32.9) 0.2030
Smoking Pack-years 50.1 (27.1) 39.4 (20.5) <0.0001 55.6 (38.1) 45.5 (21.3) 0.0006

COPD Cases 224 (51.6) 167 (41.2) 0.0033 140 (61.1) 102 (47.7) 0.0193
Percent Emphysema c 9 (11.3) 6.3 (10.2) 0.0005 5.4 (9.1) 5 (8.8) 0.6870

a mean and (standard deviation) reported unless otherwise specified. NHW: non-Hispanic White; BMI: body mass index. b Chi-square
tests were performed for binary variables, t-tests were performed for continuous variables. c In COPDGene, 92.6% of Males and 94.3% of
Females had CT data. In SPIROMICS, 87.1% of Males and 84.6% of Females had CT data.

Table 2. Metabolite Classes by module.

COPDGene Module Most Preserved SPIROMICS Module Metabolite Classes *

blue turquoise Acyl Carnitines, Fatty Acids (Dicarboxylate, Monohydroxy, Long chain,
Medium chain), Endocannabinoids, Nucleotides

red yellow Ceramides, Sphingomyelins

turquoise blue

Xenobiotics, Amino Acids (Tryptophan metabolism, Glutamate metabolism,
Histidine metabolism, Branched Chain Amino Acids, Glycine, Serine and

Threonine Metabolism, Methionine, Cysteine, SAM and Taurine
Metabolism, Polyamine Metabolism, Urea cycle; Arginine and Proline

Metabolism), TCA cycle metabolites

brown brown

Amino Acids (Gamma-glutamyl Amino Acid, Glutamate Metabolism,
Branched Chain Amino Acids, Urea cycle; Arginine and Proline Metabolism,
Lysine Metabolism, Methionine, Cysteine, SAM and Taurine Metabolism,

Phenylalanine Metabolism), Bile Acids, Acyl Cholines, Lysophospholipids

yellow black Xenobiotics (Benzoates, Xanthines, Nutritional)

green green Lysophospholipids, Phosphatidylcholines (PC), Phosphatidylinositols
(PI), Plasmalogens

magenta pink Sterioids (Androgenic, Pregnenolone, Corticosteroids, Progestin)

black purple Diacylglycerols, Phosphatidylethanolamines (PE), Acyl Carnitines

greenyellow magenta Cofactors and Vitamins

purple NA Acetylated peptides, Xenobiotics (Benzoates), Secondary Bile Acids

pink NA Xenobiotics (Chemicals), Dipeptides, Hemoglobin and
Porphyrin Metabolites

* Based on Metabolon’s “Super Pathway” and within class “Sub Pathway” annotation.
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Figure 1. WGCNA results. (A,B). Hierarchical clustering tree (dendrogram) of genes based on human brain co-expression
network for COPDGene (A) and SPIROMICS (B). Each “leaf” (short vertical line) corresponds to one gene. The color rows
below the dendrogram indicate module membership. (C) Module Preservation between cohorts. Each row of the table
corresponds to one SPIROMICS module (labeled by color as well as text), and each column corresponds to one COPDGene
module. Numbers in the table indicate metabolite counts in the intersection of the corresponding modules. Coloring of
the table encodes−log(p), with p being the Fisher’s exact test p-value for the overlap of the two modules. The darker
the red color, the more significant the overlap is. D-E. Heat maps showing association between module eigenvalue and
clinical variables in the COPDGene (D) and SPIROMICS (E) cohorts for all subjects, males, and females. Module metabolite
assignments are based on the full cohort of profiles. Modules with a negative association were assigned shades of purple
and those with a positive association were assigned shades of green based on the 10 log10 FDR or nominal p value for
COPDGene and SPIROMICS, respectively.

In the sex-stratified analysis of COPDGene, 13 and 15 modules were found for the
metabolomic data from females and males, respectively. In comparing modules between
sexes, a corresponding module in the opposite sex was observed for almost all modules,
though for female modules blue, black, brown, turquoise, and red there were there were
groups of metabolites split over the male modules (Figure 2). We then compared module
preservation between each sex and the full cohort. Here we found the female modules
almost exactly corresponding with the modules of the full cohort, while some of the full
cohort modules were split over individual male modules (Supplemental Figures S5 and S6).
Overall, high module correspondence was found between module assignments in each
sex and the module assignments from the full cohort, thus full cohort module assignments
were used in association testing in the stratified models. In comparing sex-specific modules
in SPIROMICS, preservation of modules structure is observed between sexes, though, like
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COPDGene, there are some cases where a module in one sex is split over two modules in
the other (Supplemental Figure S7).

Table 3. COPDGene and SPIROMICS module hub metabolites.

COPDGene Module HubMets Kme * SPIROMICS Module HubMets Kme *

Black 1-stearoyl-2-arachidonoyl-GPE (18:0/20:4) 0.81 Purple 1-stearoyl-2-arachidonoyl-GPE (18:0/20:4) 0.87
Blue 10-nonadecenoate (19:1n9) 0.90 Turquoise 10-nonadecenoate (19:1n9) 0.86
Blue 10-heptadecenoate (17:1n7) 0.87 Turquoise 10-heptadecenoate (17:1n7) 0.87
Blue oleate/vaccenate (18:1) 0.88 Turquoise oleate/vaccenate (18:1) 0.89

Brown gamma-glutamylleucine 0.85 Brown gamma-glutamylleucine 0.85
Green 1-stearoyl-GPE (18:0) 0.82 Green 1-stearoyl-GPE (18:0) 0.81

Greenyellow oxalate (ethanedioate) 0.88 Magenta oxalate (ethanedioate) 0.87
Magenta androstenediol (3beta,17beta) disulfate (2) 0.92 Pink androstenediol (3beta,17beta) disulfate (2) 0.888

Pink X-11442 0.92 None
Pink biliverdin 0.76 Turquoise biliverdin 0.4

Purple p-cresol sulfate 0.89 Blue p-cresol sulfate 0.4
Red sphingomyelin (d17:2/16:0, d18:2/15:0) * 0.80 Yellow sphingomyelin (d17:2/16:0, d18:2/15:0) * 0.78

Red sphingomyelin (d18:2/23:0, d18:1/23:1,
d17:1/24:1) * 0.75 Yellow sphingomyelin (d18:2/23:0, d18:1/23:1,

d17:1/24:1) * 0.87

Turquoise 2,3-dihydroxy-5-methylthio-4-pentenoate
(DMTPA) * 0.84 Blue 2,3-dihydroxy-5-methylthio-4-pentenoate

(DMTPA) * 0.85

Turquoise pseudouridine 0.84 Blue pseudouridine 0.8
Yellow 3-hydroxypyridine sulfate 0.88 Black 3-hydroxypyridine sulfate 0.76
Yellow catechol sulfate 0.87 Black catechol sulfate 0.8
Yellow trigonelline (N′-methylnicotinate) 0.79 Black trigonelline (N′-methylnicotinate) 0.81

* Kme-correlation coefficient between module 1st principal component and metabolite.

Figure 2. Preservation of female set-specific modules and male set-specific modules in Figure 2. Preservation of female
set-specific modules and male set-specific modules in COPDGene. Each row of the table corresponds to one male set-specific
module (labeled by color as well as text), and each column corresponds to one female set-specific module. Numbers in the
table indicate metabolite counts in the intersection of the corresponding modules. Coloring of the table encodes−log(p), with
p being the Fisher’s exact test p-value for the overlap of the two modules. The stronger the red color, the more significant
the overlap is.
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2.3. Covariate Adjusted Module-Phenotype Associations in COPDGene

Modules were summarized for phenotype association analysis using the eigenvalue.
This summarizes the profiles the metabolites within the module into a single orthogonal
vector summarizing the majority of the variance within the module. Thus, the noise of
individual metabolite variances is reduced to better summarize metabolic function over
highly correlated metabolite classes.

2.3.1. Sex

In COPDGene, significant differences by sex were observed in 9 of the 11 modules
(Figure 1D, Supplementary Table S5). The most significant differences were observed in
the red module, for which metabolite abundances were higher in females, and the magenta
module, for which metabolite abundances were higher in males. In all, the red, green, blue,
black, and greenyellow modules had higher abundances in females, while the turquoise,
magenta, pink, and brown modules had higher abundances in males. Similarly, 8 of the
11 SPIROMICS modules significantly differed by sex (Figure 1E, Supplementary Table S6).

2.3.2. COPD

For COPD case status in COPDGene, significant associations were observed in 5 of
the 11 modules for the full cohort (Figure 1D). The most significantly associated modules
were the black and brown modules, with lower metabolite abundances observed in COPD
cases. The black and brown modules were also associated with increased BMI over the full
cohort and within each sex. While the yellow module did not significantly differ by sex,
the metabolite abundances were significantly lower in COPD cases in the full cohort and
lower in African Americans. In SPIROMICS, at a nominal p value of 0.5, the the magenta
module was negatively associated with COPD (Figure 1E).

In the sex-stratified analyses, the red, pink, and brown modules were significantly
associated in the male strata in COPDGene. Of note, higher values in the red module were
associated with COPD status in the male stratum, though not in females or the full cohort
(Figure 1D). In SPIROMICS, a nominal relationship was observed between the magenta
module and COPD within the male stratum (Figure 1E).

2.3.3. Percent Emphysema

For COPDGene, the brown, magenta, and turquoise modules were all associated with
percent emphysema (Figure 1D). In the sex stratified analyses, the brown and magenta
modules were also associated with percent emphysema in males, while the turquoise
module was significant in females. In SPIROMICS, only one female specific nominal
association was observed between the green module and emphysema (Figure 1D).

2.3.4. Covariates

We also tested the other clinical variables, serving as covariates in the COPD pheno-
type models, as primary predictors in multiple regression models. In COPDGene, age
and BMI were significantly associated with the most modules (7 and 6, respectively) over
the full cohort, as well as within the sex stratified analyses (Figure 1D). Of note for age
associations are the brown and black modules, which were not associated over the full
cohort but only associated in females and males, respectively. For BMI, the pink and
magenta modules were only significant in the female stratum. Race was most strongly
associated with the yellow module, though significant associations were also seen with
the red and greenyellow modules. The greenyellow module was also significantly asso-
ciated with current smoking status and smoking pack-years. The magenta module was
further associated with current smoking status in the full cohort and in males, while the
brown and black modules were significantly associated with smoking in males and females,
respectively.
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In SPIROMICS, similar relationships were observed among many of the preserved
modules and the covariates tested, though not all (Figure 1D,E). For example, associations
were not observed between the SPIROMICS green module (preserving the COPDGene
green module) and age. Also, the SPIROMICS black module (preserving COPDGene
yellow) was associated with smoking status and intensity, while the magenta module
(preserving the COPDGene greenyellow) was associated with smoking intensity.

2.4. Individual Associations
2.4.1. COPD Modules

Within modules significantly associated with sex and COPD in COPDGene (black,
blue, brown, pink, and red), 88 of the 501 module metabolites were significantly associated
with COPD in the full cohort, 24 of which were significant in females and 27 of which
were significant in males (Supplementary Table S3) (multiple comparison corrections were
made over the entire metabolome). Three metabolites (ceramide (d18:1/17:0, d17:1/18:0)*,
octadecenedioate (C18:1-DC)*, and N-stearoyl-sphingosine (d18:1/18:0)*) were significant
only in the male stratum (not also in the full cohort). In the sex-specific associations,
8 metabolites were significant in both sexes including inverse associations with retinol
(Vitamin A), phosphocholine, and xenobiotics ergothionene and 3-formylindole, and posi-
tive associations with 4 acyl carnitines (Figure 3). The most represented sub pathway male-
specific COPD associations were sphingomyelins (7/20), while phosphatidylethanolamines
and acyl carnitines were most represented in females with COPD (4/20 for both sub path-
ways). There were several metabolites in which opposite directions of associations were
observed between sexes, though only ceramide (d18:1/17:0, d17:1/18:0)* was significant in
either sex (males) (Figure 4).

Using the SPIROMICS modules preserving the COPDGene sex and COPD-associated
modules, we performed a bi-directional lookup between cohorts. The only significant
sex specific associations were between hypotaurine and beta-cryptoxanthin in males,
though many metabolites were nominally significant (p < 0.05, before multiple comparison
correction) (Supplemental Figure S8, Supplemental Table S3). Among the metabolites
nominally associated in SPIROMICS, the male specific association with succinate was
replicated between cohorts, as well as female-specific associations with acyl carnitines.
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Figure 3. Scatter plot of sex specific betas for COPD models in COPDGene. The x-axis represents the beta estimates in the
female stratum while the y-axis represents the beta estimates in the male stratum. Point shape corresponds with module
assignment. Points are colored by significance in specific strata.



Metabolites 2021, 11, 161 9 of 17

Figure 4. Barplot of beta estimates most divergent by sex. Metabolites along x-axis represent the 10 metabolites with the
most sex-divergent beta estimates for COPD models. The red bars represent females, while the blue bars are for males. Only
ceramide (d18:1/17:0, d17:1/18:0)* reached significance in males.

2.4.2. Percent Emphysema

Within modules significantly associated with sex and percent emphysema (brown,
magenta, and turquoise), 3 metabolites were significantly associated with percent emphy-
sema in the full cohort (5-hydroxylysine, isovalerate (C5), X-17357), none of which were
significant in females and 2 of which were significant in males (5-hydroxylysine, X-17357)
(Supplemental Table S2). Three metabolites that were not statistically significant in the full
cohort were significant in the female sex-specific analysis (2,3-dihydroxy-2-methylbutyrate,
alpha-ketoglutaramate*, and homocitrulline) (Figure 5).
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Figure 5. Scatter plot of sex specific betas in percent emphysema. The x-axis represents the beta estimates in the female
stratum while the y-axis represents the beta estimates in the male stratum. Point shape corresponds with module assignment.
Points are colored by significance in specific strata.

3. Discussion

This is the largest metabolomic analysis of COPD cases to date and the first to examine
associations for sex-specific modules associated with COPD and emphysema. While many
of the metabolite modules were similar for men and women, we identified several modules
of correlated metabolites in COPDGene that significantly differed by sex, COPD status, and
percent emphysema. In sex-stratified analyses, we further identified associations specific to,
or largely driven, by one sex. In particular, acylcarnitines and phosphatidylethanolamines
(PEs) were significantly greater in females with COPD, while sphingomyelins were greater
in males with COPD. While the general direction of these associations was similar between
cohorts, not all COPD sex-specific metabolite associations found in COPDGene were
statistically significant in SPIROMICS. However, multiple acylcarnitines had significant sex-
specific associations in both cohorts. These findings are further evidence of sex differences
in molecular dysregulation during COPD pathogenesis that need to be considered in study
design and personalized treatment development.

The metabolomic profiles strongly differed by sex, with the most significant differ-
ences found in separate modules of sphingolipids and steroids. Over all subjects with and
without COPD, sphingolipid metabolite abundances were higher in females, confirming
previous observations [11,29]. We further replicated the observed sex-specific discordance
in sphingolipids by age (increasing in females and decreasing in males) from a recent
longitudinal analysis of 1212 participants in the Wisconsin Registry of Alzheimer’s Preven-
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tion [12]. The higher levels of androgenic, pregnenolone, and progestin steroids in men
confirmed previous findings [29,30], as were the decreases in both men and women by
age [12].

The lipid steroid module was also higher in current smokers overall and within
the male stratum. This replicates findings of higher androgens abundances in males
though does not reveal elevated levels of androgenes observed in both pre- and post-
menopausal women [31–34]. The module including cofactors and vitamins involved in
ascorbate/aldarate (i.e., oxalate) metabolism among other sub pathways, was significantly
higher in females and lower among current smokers. This confirms previous observations
of lower metabolite abundances in those pathways among cigarette smokers, but also adds
a novel sex specific association for future research [34,35].

The sex-specific associations for acylcarnitines and COPD may be related to mitochon-
drial dysfunction. Higher circulating acylcarnitne abundances with increased inflammation
and risk of cardiovascular disease [34–36]. Physiologically, acyl carnitines function in mi-
tochondrial metabolism of fatty acids, the removal of excess acyl groups from the body,
and the modulation of intracellular coenzyme A homeostasis [37]. While acyl carnitines
dysregulation affects both sexes, in COPD the effect is more pronounced in females [38–43].
Recently, another analysis within SPIROMICS identified positive correlations between
urine mitochodrial DNA (mtDNA), an indicator of mitochondrial dysfunction, and respi-
ratory symptoms specifically within females [44]. Since mtDNA is maternally inherited,
our findings combined with the previous literature support the hypothesis of heritable
sex differences in mitochondrial regulation leading female-specific subphenotype within
COPD [45].

Sphingomyelins and other plasma membrane-complex lipid molecules, including
phosphatidylethanolamines and phosphatidylcholines, have been observed at higher abun-
dance in females [12]. Sphingomyelins have been previously associated with COPD in
the plasma of subjects enrolled in COPDGene, assessed using targeted metabolomics [14].
Higher sphingomyelin abundances among COPD subjects were observed in both sexes in
COPDGene, though the difference was only significant among males and this sex-specific
shift was not observed in SPIROMICS. Phosphatidylethanolamines have also been associ-
ated with COPD phenotypes, though the direction of effect is not always consistent [27,42].
In this study, we observed lower values in COPD subjects for both sexes, though statistical
significance was only observed among females. Phosphatidylethanolamines have been
functionally associated with protein biogenesis, oxidative phosphorylation, autophagy,
membrane fusion, mitochondrial stability, and act as precursors of other lipids [46].

This study has several limitations. Firstly, samples were obtained from plasma, a
biofluid, which while representative of systemic metabolic regulation, may not fully cap-
ture the impact of the first line of exposure to tobacco smoke in the lung. A recent study of
bronchoalveolar lavage fluid (BALF) by our group found much more robust metabolomic
associations with COPD phenotypes in BALF compared with blood [21]. However, BALF
collection is not without risk in individuals with advanced COPD, and is generally lim-
ited to collection is smaller numbers of subjects thus limiting application to the larger
cohort sized needed to investigate sex-specific effects. Second, while the COPDGene and
SPIROMICS cohorts are two large, well-characterized COPD cohorts, pharmaceutical data
and diet differences were not considered. Third, 24% of the COPDGene metabolites were
unannotated. These were kept in the analysis since Metabolon is consistently elucidating
unannotated metabolites and may be helpful for future interpretation despite limiting
current interpretation. Finally, the threshold of ≤20% missingness of metabolites removes
many xenobiotics (such as cotinine) and other metabolites which may have significant
associations among subjects in which they are present (e.g., sex-specific steroids).
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4. Methods
4.1. Study Populations

COPDGene. The NIH sponsored multicenter Genetic Epidemiology of COPD (COPDGene)
(ClinicalTrials.gov (accessed on 30 December 2020) Identifier: NCT00608764) study was
approved and reviewed by the institutional review board at all participating centers [47].
All study participants provided written informed consent. This study enrolled 10,198 non-
Hispanic white (NHW) and African American (AA) individuals from January 2008 until
April 2011 (Phase 1) who were aged 45–80 with a ≥10 pack-year smoking history and no
respiratory exacerbations for >30 days. From July 2013 to July 2017, 5697 subjects returned
for an in-person 5-year follow up visit. Each in-person visit included spirometry before and
after albuterol, quantitative CT imaging of the chest, and blood sampling. From two clinical
centers (National Jewish Health and University of Iowa) 1136 subjects (1040 NHW, 96 AA)
participated in an ancillary study in which they provided fresh frozen plasma collected
using an 8.5 mL p100 tube (Becton Dickinson) at Phase 2. Never smokers, subjects classified
as having mild COPD (forced expiratory volume at 1 s (FEV1) ≥ 80% predicted and
FEV1/Forced Vital capacity (FVC) < 0.7) [48], and subjects with preserved ratio impaired
spirometry, defined as a reduced FEV1 < 80% predicted with FEV1/FVC ≥ 0.7 [49] were
excluded to define a final cohort of 839 subjects for analysis.

SPIROMICS. The Subpopulations and Intermediate Outcome Measures in COPD
Study (SPIROMICS) (ClinicalTrials.gov Identifier: NCT01969344) includes 2771 subjects,
aged 40–80 years with at least 20 pack-years of smoking. An additional 202 subjects were
never smokers. Subjects had clinical phenotyping similar to COPDGene and fasting blood
drawn at the enrollment visit using a p100 tube [50]. The first 649 subjects who returned
for a 5–7 year visit (Visit 5) were selected for this study to match the 5-year follow up
subjects from COPDGene; however, the blood profiled and phenotypes used were from
the year 1 visit. After restricting to only include NHW and AA subjects, the same exclusion
criteria were applied to SPIROMICS as COPDGene, leaving a sample size of 446 subjects
for analysis.

4.2. Clinical Data and Definitions

COPD case status was defined using spirometric evidence of at least moderate airflow
obstruction (the ratio of post-bronchodilator Forced Expiratory Volume at one second over
Forced Vital Capacity FEV1/FVC < 0.50 and FEV1 percent predicted (FEV1pp) < 80% [51].
Control subjects were defined by an observed FEV1/FVC > 0.7 and a FEV1pp > 80%.
Percent emphysema was quantified by percent of lung voxels less than 950 Hounsfield
Units (% low attenuation area: %LAA) on the inspiratory CT scans. Visual emphysema was
assessed as previously described for COPDGene [52,53] and SPIROMICS [54,55]. Subjects
missing CT data (55 subjects in COPDGene and 63 in SPIROMICS) were excluded from
emphysema analyses.

Plasma was profiled using the Metabolon Global Metabolomics Platform (Durham,
NC, USA) [56–58]. The data were further normalized to remove batch effects, filtered by
metabolites with high missingness, and imputed to remove missing values [59]. Metabolite
“Super Class” and “Sub Class” annotations were determined by Metabolon (Durham,
NC, USA).

4.3. Statistical Analysis
4.3.1. Data Sets and Availability

Clinical data with definitions can be found on dbGaP for COPDGene (phs000179.v6.p2)
and SPIROMICS (phs001119.v1.p1). For COPDGene and SPIROMICS, the following clini-
cal data were used: COPDGene_P1P2_All_Visit_29Sep2018 and V5_DERV_INV1_200127,
respectively. COPDGene and SPIROMICS metabolomic data are available at the NIH Com-
mon Fund’s National Metabolomics Data Repository (NMDR) website, the Metabolomics
Workbench, https://www.metabolomicsworkbench.org (accessed on 30 December 2020)
(Study IDs ST001443 and ST001639, respectively).

ClinicalTrials.gov
https://www.metabolomicsworkbench.org
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4.3.2. Software

All analyses were run in R version 3.6.3 [60]. WGCNA.
The WGCNA R package was used to cluster groups of strongly related metabolites

into networks [61,62]. The workflow of WGCNA included creating a signed matrix of
Pearson correlations between metabolites, and transforming these into an adjacency matrix
through soft thresholding by raising it to a power β based on the criteria for meeting scale-
free topology (we chose to use Pearson correlation as opposed to Spearman or biweight
midcorrelation based on previous inverse normal quantile transformation of the data).To
identify this soft thresholding power, we tested a range of beta values between 1 and 30.
The adjacency matrix was transformed into a topological overlap matrix (TOM). We used
average linkage hierarchical clustering to group metabolites based on the topological over-
lap of their connectivity, followed by a dynamic tree-cut algorithm to cluster dendrogram
branches into modules of highly correlated metabolites with a minimum module size of
15 metabolites [63]. For each metabolite, we calculated a Module Membership (kME) by
correlating the metabolite values with the first principal component of the metabolite val-
ues in that module. “Hub” metabolites, which are considered to be central to the module,
were defined as having a kME greater than 0.75 with their assigned module.

Pearson correlation between the first eigenvalue from each module and the clinical
variables was used to determine the univariate significance of association between clinical
variables and modules. To assess clinical associations independently, regressions were
performed between the first eigenvalue of each model (dependent variable) and sex, COPD
case status, percent emphysema, and other covariates including age, race, body mass
index (BMI), current smoking status, smoking pack-years, and clinical center (each model
was adjusted for all other covariates, with percent emphysema models being adjusted for
FEV1pp as well) [64].

Module preservation between cohorts and sex-stratified populations was determined
using one-sided Fisher tests of the observed overlap between modules [28,64].

4.3.3. Individual Associations

Every metabolite was tested for associations with COPD case status and percent
emphysema. Linear regression models were performed with the metabolite as the outcome
and phenotype as predictor, adjusting for sex, age, race, body mass index (BMI), current
smoking status, smoking pack-years, and clinical center, with percent emphysema models
also being adjusted for FEV1pp. Sex-stratified models were also evaluated adjusting for all
aforementioned covariates except sex.

Both the WGCNA and individual metabolite association analyses were performed
on the data from the SPIROMICS cohort to carry out a bi-directional lookup between
cohorts for sex-specific associations. WGCNA module membership was compared be-
tween COPDGene and SPIROMICS to compare module metabolite assignments. The
SPIROMICS modules were assessed for associations with COPD status and percent em-
physema as above.

5. Conclusions

Network analyses reveal important metabolic pathways associated with sex-specific
features of COPD. While many modules had similar associations for both men and women,
we identified sex-specific differences in acylcarnitines and several metabolites including
succinate and ceramide (d18:1/17:0, d17:1/18:0)*. This suggests that metabolite profiles
should be studied separately between men and women to understand sex-specific features
of complex diseases. Moreover, as men and women may respond differently to treatments
that target metabolism, there is a clear need for sex-specific metabo-therapeutics in the
treatment of COPD.

Supplementary Materials: The following are available online at https://www.mdpi.com/2218-198
9/11/3/161/s1, Figure S1: Scale Free Independence Plots for COPDGene, Figure S2: Connectivity
diributions to show scale-free topology of COPDGene; Figure S3: Strength of correlation between

https://www.mdpi.com/2218-1989/11/3/161/s1
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COPDGene weighted gene co-expression network analysis (WGCNA) modules and clinical variables
and outcomes, Figure S4: Strength of correlation between SPIROMICS weighted gene co-expression
network analysis (WGCNA) modules and clinical variables and outcomes, Figure S5: Correspondence
of female set-specific modules and full cohort modules in COPDGene, Figure S6: Correspondence
of male set-specific modules and full cohort modules in COPDGene, Figure S7: Correspondence
of female set-specific modules and male set-specific modules in SPIROMICS, Figure S8: Scatter
plot of sex specific betas for COPD models in SPRIOMICS, Table S1: Demographics of COPDGene
and SPIROMICS, Table S2: COPDGene WGCNA and Association results, Table S3: SPIROMICS
WGCNA and Association results, Table S4: COPDGene-SPIROMICS preservation statistics, Table
S5: COPDGene module associations with phenotypes and covariates, Table S6: SPRIOMICS module
associations with phenotypes and covariates.
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