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Abstract: Experimental research of cutting force components during dry face milling operations
are presented in the paper. The study was provided when milling of ductile cast iron alloyed with
copper and its austempered ductile iron after the proper austempering process. In the study, virtual
instrumentation designed for cutting forces components monitoring was used. During the research,
orthogonal cutting forces components versus time were monitored and relationship of cutting forces
components versus speed, feed and depth of cut were determined by artificial neural network and
response surface methodology. An analysis was made regarding the consistency of the measured
cutting forces and the values obtained from the model supported by an artificial neural network for
the investigated interval of the cutting regime. Based on the results, an analysis of the feasibility of
the application of austempered ductile iron in the industrial sector with the aspect of machinability as
well as the application of the models based on artificial intelligence, was given. At the end of the
presentation, the influence of the aforementioned cutting regimes on cutting force components is
presented as well.

Keywords: ductile iron; austempered ductile iron; cutting force components; artificial neural
network; milling

1. Introduction

The development of modern machining certainly cannot be viewed without affecting the economic
and ecological indicators of production. Reducing the use of cutting fluid is very important because the
cost of cutting funds is 7–17% of total production costs. In accordance with that, implementation and
development of sustainable production processes like dry machining or minimum quantity lubrication
machining, is certainly interesting for research [1–4].

Application of dry or partially dry machining, requires measures to control the cutting fluid,
switch the chip and regulate the adhesion between the tool and workpiece material [5].

In addition to the investigation of dry processing, further development directions have been taken
to investigate difficult to cut materials and to measure their output characteristics during the chip
removal process. Therefore, this paper is discussed on cutting forces and surface roughness [6], as well
as tool wear [7,8]. Also, a wear test of the diamond-coated tool is in this study [9].

The direction of further research in the field of advanced production was based on the development
of models of production process models. The development of these models was created in two directions:
finite element modeling and artificial intelligence.
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The application of finite element methods is presented in a study by Davoudinejad et al. [10]
where the authors present a 3D simulation in micro-milling to find out the stresses in the tool and
the shape of the chip. In addition, simulations of tool behavior are also presented in a study by
Huo et al. [11] where the tool bending under the action of cutting forces is described analytically.

The direction of developing models based on artificial intelligence is more represented in
production processes. A study by Sheikh-Ahmad et al. [12] used the mechanistic modeling process to
foresee cutting force components and simulating the processing of polymers with fibers. Comparison
of certain models of neural networks with experimental data showed good agreement. Application in
modeling with use of artificial intelligence was presented in [13]. In order to maximize the economy
of the face milling process, tool life tests are commonly tested when machining with a single tooth
tool. It is possible to take advantage of these research results, if the radial or axial throw is within
the permissible deviation interval (±0.002 mm). This prediction can be used for cutting forces [14].
The paper [15] presents a multi-criteria optimization approach, created by using a neural network, to
determine optimal parameters during complex parts machining. A mathematical model is presented
with spindle speed, feed rate, depth of cut and path spacing as the process output parameters are
energy consumption and workpiece surface roughness parameters. Another study by D’Addona et al.
successfully uses artificial neural network for prediction of the degree of tool-wear as a function of
machining time [16]. The paper [17] compares characteristics of three methods for machine tools
learning: polynomial regression, vector regression, and artificial neural network. Independent output
cutting process parameters of cutting force, surface roughness, and tool life time were used during
high-speed turning process. Alternative artificial neural network (ANN) models are certainly models
based on genetic algorithms (GA). Thus, the paper by Mia et al. described the application of GA for
modeling in the process of hard turning [18].

Austempered ductile iron (ADI) material is applicable in engineering construction. In addition,
ADI material is also suitable for car construction, because of its strength and weight ratio as well as its
wear resistance.

Good mechanical properties, such as wear resistance, tensile strength, and good ductility, make
such material desirable in the automotive industry. Consequently, a better product is obtained, and on
the other hand economic principles bring a positive balance in the production organization. A paper
by Priarone et al. [19] discusses the results of milling experimental tests carried out on ADI 1050.

In other studies [20,21], a large number of experiments were performed, where the influence
of austemperisation temperature as well as the length of the thermal process was investigated.
ADI materials with different microstructures were used to investigate tool life.

As it is known, ADI material has good mechanical properties, but poor machinability compared
to ductile iron and certain steels. The poor workability of ADI material is researched by simulating the
tool wearing process [22].

In a study by Sadik et al. [23] it was determined that dry ADI material processing is better by
70–80% compared to machining with application of cutting fluid, with the application of a diamond
coated tool.

The benefits of using ADI material are reflected in its good mechanical properties, such as good
vibration properties, lighter weight compared to other structural materials, and uniform castability.
The mechanical properties of ADI materials are closely related to the microstructural base, where the
shape of graphite particles is the most prominent [24]. Two times more powerful than structural steel
the ADI ductile iron classical quality, with other similar mechanical properties, which is primarily
related to ductility and toughness. By adding titanium and boron material in the machining process
with hard coated tools, it is possible to increase the hardness and abrasion resistance of the tools [25].

The study of the influence of alloying elements (Mo, Ni, and Cu) is given in a paper by
Konca et al. [26]. It was found that Ni–Cu as an alloying element in the alloy GGG-60 with
austemperation at 290 ◦C, contributed to increased hardness of the test sample by 44%.
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These literary sources show that the influence of Ni and Cu as alloying elements is very large.
This is first and foremost reflected in the temperature and time length of the austemperisation. [27].

The effect of influence of austempering temperature pearlitic ductile iron, with an emphasis on
tribological characteristics was examined in [28]. Samples of ADI material were tested for adhesion
and abrasion properties, using steel and ductile iron plates as the tribology couples during testing.

Additionally, monitoring cutting force can be used to extract machining information such as
machine power requirements and moving parts loads. Measurement of cutting forces provides
information about the machinability of materials and tool life. In general, chip cross section (feed and
depth of cut) has been found to have the largest effect on cutting force or machining power. In the case
of ADI, researchers have reported that the chip load is proportional to the cutting force.

Equation (1) calculates the cutting force based on the Kienzle–Victor relationship, which considers
the chip cross section and unit cutting force ki11 depending on workpiece material and cutting force
component; it is used very often:

Fi = ki11bh1−z (1)

where b and h are chip cross section parameters and i = x, y, z are cutting force components.
Equation (2), suggested by Taylor takes takes into consideration the influence of cutting speed:

Fi = Cvxsy
1az (2)

where the constant C depends on the workpiece material. This is in agreement with Equation (1).
Accordingly, this paper seeks to contribute to the study of cutting forces under different cutting

conditions, by which both types of material can be successfully machined. In this range of research,
which has not been shown in the literature presented, it is necessary to perform ANN-based modeling
and adapt these models to the appropriate machine tools. The development of new materials certainly
opens the space for creating databases with the most favorable cutting conditions in order to reduce
tool consumption. This is controlled by appropriate values of the cutting forces and their monitoring
in the material removal process.

2. Experimental Research

The first objective of the experiment was to perform the measurement of cutting forces for different
modes of ductile iron processing during face milling. In that order, output relationships for cutting
forces and cutting conditions were determined according to the experimental plan of variation of the
input parameters.

Material: In the study the following materials were used EN-GJS-700-2:

• Nodular cast iron alloyed with 0.45% Cu (designated ductile iron (DI))
• ADI material, where DI austenized at 900 ◦C/2 h and austempered at 350 ◦C/2 h indicated (ADI)

The microstructure of nodular ductile cast iron (DI) EN-GJS-700-2 and austempered ductile iron
(ADI) in a polished and etched state is given in Figure 1a,b. The same image shows the process of
thermal processing of obtaining ADI material from DI, where the difference in the microstructure
of the materials tested can be seen. The microstructure of ductile cast iron metal base consists of
ferrite and mostly pearlite (with more than 90% pearlite) (Figure 1a). The microstructure of ADI
material obtained after austempering of nodular ductile iron is ausferrite with a metal base, composed
of acicular ferrite and austenite (Figure 1b). The amount of residual austenite in the ADI material
microstructure is 16.56%.

Ductile cast iron and ADI mechanical properties are shown in Table 1. The austempering process
improves all the mechanical properties of ductile cast iron, so it enhances the strength and hardness
by 1.5 to 2 times. This increase in mechanical properties is caused by changing the microstructure of
predominantly pearlite in the DI in ausferrite in ADI material.
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Figure 1. The microstructure of ductile iron (DI) castings EN-GJS-700-2 and austempered ductile
iron (ADI) material (a) graphite nodules and microstructure of DI pearlite; (b) microstructure of
ADI ausferrite.

Table 1. Mechanical properties of materials in trial at room temperature.

Material Tensile Strength Rm
(MPa)

Yield Strength Rp0.2%
(MPa) Hardness HV10

DI 771 510 270
ADI 1110 995 480

2.1. Machine

The study was conducted on a vertical milling machine with 14 kW power. This machine was
chosen because it was rigid enough and had sufficient strength. Tool: the milling head, Ø 125 mm, rake
angle 0◦, entrance angle 75◦, was used in the study with the cutting insert of the HM P25 (hard metal
of quality 25). The experiment was carried out with a single tooth and without cooling and lubrication
agent. In this study the developed system for monitoring, acquisition, and measurement of cutting
forces system with “Kistler” dynamometer type 9257 was used. This virtual instrumentation (VI) was
developed by The Chair for Chip Removal Technologies, Department of Production Engineering, for
cutting forces measurements.

2.2. Acquisition System for the Cutting Force Components during Face Milling Operation Monitoring

Figure 2 shows the scheme of the acquisition system for the cutting force components
monitoring during face milling operation. Figure 2 shows that the acquisition system consists
of the following components:

• Machine tool (vertical milling machine)
• Tool (milling head with HM cutting inserts)
• Sensor of the monitoring system (three-component piezoelectric dynamometer, “Kistler”-9257A)
• Amplifier of monitoring system (capacitate amplifier “Kistler”-CA 500)
• Dial-up panel for connecting the module with the actual acquisition process (ED429-UP)
• Acquisition module A/D (analog-to-digital) converter-ED428
• Computer system
• Program (software) support system
• Virtual instrument for acquisition, display in real-time, storing and processing data.
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primarily refers to input functions, which can be represented as continuous, binary or normalized 

Figure 2. Model of acquisition system for monitoring of the three cutting force components.

The virtual instrument used for measuring the three-component cutting force in face milling
operation was developed by using the graphical software Lab VIEW 8.0. The virtual instrument (VI) is
designed to allow for easy monitoring of voltage with dynamometer, which corresponds to the cutting
force components Fx, Fy and Fz values during the milling operation. VI displays time flow of cutting
force components values in the form of diagrams and tables, and displays the maximal values of single
tooth monitoring for one revolution of a milling cutter [14]. The front panel of the virtual instrument
used in this study is shown in Figure 3; it is a maximal user-oriented concept designed using LabView
software. The user can interrupt the measurement at any time if any of the three observed components
falls outside the range of permissible values. At the time of exceeding the limits of cutting forces, tool
wear usually occurs. The record with measured voltages and images is presented in the form of graphs
and tables in the machining process (Figure 3).

Materials 2019, 12, x FOR PEER REVIEW 5 of 16 

 

 

Figure 2. Model of acquisition system for monitoring of the three cutting force components. 

The virtual instrument used for measuring the three-component cutting force in face milling 
operation was developed by using the graphical software Lab VIEW 8.0. The virtual instrument (VI) 
is designed to allow for easy monitoring of voltage with dynamometer, which corresponds to the 
cutting force components Fx, Fy and Fz values during the milling operation. VI displays time flow of 
cutting force components values in the form of diagrams and tables, and displays the maximal 
values of single tooth monitoring for one revolution of a milling cutter [14]. The front panel of the 
virtual instrument used in this study is shown in Figure 3; it is a maximal user-oriented concept 
designed using LabView software. The user can interrupt the measurement at any time if any of the 
three observed components falls outside the range of permissible values. At the time of exceeding 
the limits of cutting forces, tool wear usually occurs. The record with measured voltages and images 
is presented in the form of graphs and tables in the machining process (Figure 3).  

 

Figure 3. Front panel of virtual instrument. 

3. Neural Network Creation Architecture and Methodology  

When creating an artificial neural network architecture, several segments are considered. This 
primarily refers to input functions, which can be represented as continuous, binary or normalized 

Figure 3. Front panel of virtual instrument.

3. Neural Network Creation Architecture and Methodology

When creating an artificial neural network architecture, several segments are considered. This
primarily refers to input functions, which can be represented as continuous, binary or normalized
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data. This is followed by the transfer function and data collection as well as the learning methods.
In addition, a method for identifying data as well as a mechanism for eliminating errors should be
defined [29]. The relationship of the data used in the formation of the neural network is shown in
Figure 4. The total amount of data used in the creation of networks was as follows: 80% represented
the training (17 measurements), 10% was used for validation (2 measurements), and 10% was used for
testing data (2 measurements). The figure below shows the obtained mean square error (MSE) as well
as the regression coefficient (R).
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In a two-layer neural network, the one of the two layers which has sigmoid data transmission is
hidden, and the other is output (linear) and can arbitrarily select multidimensional data, that is, the
experimental records on which network was created. Levenberg–Marquardt backpropagation is a
network-based training algorithm (trainlm). In the event that memory expansion is required, a scaled
conjugate gradient backpropagation (trainscg) is used. The selected network is Levenberg–Marquardt.
This type of network requires more memory but less time for processing. The training process stops
when the generalization stops improving, which is manifested by an increase in the mean error for
data validation. The designed neural network consists of three input parameters, one hidden layer
with 10 neurons and three output parameters. Since the output layer is created with a linear function,
it must have the same number of neurons as there are three outputs. In the process of training the
network, according Figure 5, the weight coefficient (w) and the correction factor (b) are changing.
Three input parameters (cutting regime) and three output parameters (cutting force components) are
considered. An architectural representation of the neural network flow chart with input and output
parameters, as well as the functions within it, is shown in Figure 5.
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4. Results of the Experiment and Discussions

For monitoring and data processing of the resulting cutting force components, response surface
methodology of the three factorial designs of the experiment was adapted. This methodology in
addition to making savings in the tool, workpiece material and time for trials, provides a sufficient
reliable model between input and output parameters of the cutting process. That this methodology
is good enough can also be seen in literary studies that dealt with the creation of appropriate
regression models in the processes of material removal [13,14]. In addition to these simpler models,
it is also possible to use extended models where the mutual influence of the parameters tested is
highlighted [17,30].

The experimental results are presented using graphs. Figures 6–9 show the cutting force
components Fx, Fy and Fz for the chosen cutting regimes for both materials. Due to different cutting
conditions, the cutting force components change in the test interval, Equation (1). The graphs show
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that the components of the cutting force change according to the chip cross section and the rotation
angle-cutting time. Figures 6 and 8 show graphical records of the components of the cutting forces.
Due to the narrow workpiece width, there is a large gap in the record of cutting forces. Therefore, for
one revolution (e.g., 0.82 s to 1.1 s, Figure 6) the force record is only in the short cutting time range (0.82
to 0.84 s). The length of this record force increases with the width of the workpiece, which maximally
moves up to the diameter of the tool, that is, in an angular record up to π radians (180◦).
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Figure 9. (a) Cutting force components time flow for one revolution during machining of ADI material
for three different speeds; (b) theoretical scheme of change of forces Fx and Fy [30].

Figures 7a and 9a show a combined record for three different cutting speeds in order to present the
change in the components of cutting forces with increasing speed. It can be seen from the component
Fx for both materials that it has the largest jump with increasing cutting speed, that is, it has the greatest
influence on the resulting force FA. In the Figure 7b, a theoretical record of the components Fx and Fy

is shown by half a revolution or 180◦, as a representative with the maximum cutting width that can be
achieved during this machining. It can be seen that the components for all different speeds in both
materials largely follow the theoretic line of change of forces Fx and Fy, respectively.

In Table 2 experimental cutting force component values for different cutting regimes and two
investigated materials are shown.

Table 2. Experimental cutting force components for different cutting regimes and researched materials.

No.
v

(m/min)
s1

(mm/t) a (mm)
DI ADI

Fx Fy Fz Fx Fy Fz

1 44 0.178 1 402 150 137 461 242 216
2 71 0.178 1 467 188 160 526 260 224
3 44 0.28 1 582 229 193 710 273 237
4 71 0.28 1 687 286 238 736 310 280
5 44 0.178 1.8 787 324 211 875 351 322
6 71 0.178 1.8 868 398 238 888 431 319
7 44 0.28 1.8 1246 466 345 1271 619 350
8 71 0.28 1.8 1349 565 416 1369 706 400
9 55 0.223 1.51 820 358 284 845 394 296

10 55 0.22 1.5 817 398 282 842 356 328
11 55 0.221 1.5 869 356 260 876 351 287
12 55 0.223 1.5 870 390 261 877 360 290
13 44 0.178 1.07 404 152 139 470 245 219
14 55 0.178 1 443 166 155 486 258 225
15 71 0.179 1 487 192 165 536 270 235
16 44 0.179 1 412 163 127 465 250 221
17 44 0.223 1 527 209 148 599 229 145
18 44 0.281 1 590 243 202 720 284 241
19 44 0.178 1.04 408 155 133 464 247 225
20 44 0.178 1.5 582 229 193 754 327 227
21 44 0.178 1.83 898 331 215 885 358 410

Monitoring for 21 trials and for two types of workpiece material DI and ADI is presented in
Table 2. Constants in models determined by response surface methodology for both materials and all
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three orthogonal cutting force components are shown in Tables 3 and 4. The determined models by
response surface methodology are adequate and all input factors are significant.

Table 3. Constants in power cutting force models for DI.

Fi = C vx s1
y az

Component C x y z

Fx 793.030 0.2528 0.9282 1.1651
Fy 137.600 0.4422 0.8590 1.2383
Fz 202.117 0.3513 0.9878 0.8371

Table 4. Constants in power cutting force models for ADI.

Fi = C vx s1
y az

Component C x y z

Fx 1165.6536 0.1552 0.8465 0.9898
Fy 268.067 0.2799 0.7490 1.0714
Fz 152.711 0.2925 0.4736 0.5515

Cutting force component values for different cutting regimes and two researched materials (DI
and ADI) determined by artificial neural network are shown in Table 5.

Table 5. Values of cutting force components determined by artificial neural network.

No.
DI ADI

Fx Fy Fz Fx Fy Fz

1 412.03 149.12 133.20 465.95 244.63 223.93
2 481.10 193.48 158.70 529.17 264.04 228.92
3 583.41 233.06 199.85 711.51 256.90 241.35
4 683.78 286.74 244.66 737.02 307.87 279.59
5 781.75 289.57 195.73 909.27 343.57 389.72
6 874.55 393.49 252.79 906.28 418.70 317.68
7 1243.10 470.69 347.03 1252.11 625.26 352.27
8 1337.90 567.16 404.46 1365.08 709.22 401.82
9 844.53 406.61 285.57 882.46 366.29 300.97

10 822.60 390.20 271.98 865.90 342.86 300.01
11 823.63 395.29 276.80 864.16 346.67 300.06
12 826.70 404.80 286.58 861.19 355.05 299.99
13 438.90 168.86 151.02 468.53 241.50 218.52
14 400.35 153.10 144.46 469.81 250.55 233.58
15 484.19 196.84 158.31 535.92 264.04 230.19
16 411.93 148.70 133.50 468.11 244.71 225.55
17 566.30 96.38 135.66 656.17 191.56 252.12
18 581.48 235.21 203.14 714.39 262.07 240.92
19 426.47 159.69 142.66 467.20 242.81 220.79
20 721.42 303.71 209.77 772.60 309.67 230.46
21 791.16 286.80 193.24 895.44 342.87 405.76

Figure 10 shows the regression coefficients of the training, validation, and testing of ANNs, as well
as the cumulative regression. From this plot, the values of the regression coefficients are found to be
more than 99.9%, which can be considered as very good results in model prediction. The regression
coefficient of the described model examined is very well supported by studies [12,13] where the
authors also calculated regression coefficients for the forces at milling process. In addition, we found
similar regression coefficients in the measurements (i.e., modeling of other output characteristics of the
material removal process), such as tool wear [8,16,17] and surface roughness [15,17].
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Consequently, the regression coefficient has a high value, it can be concluded that the model
is adequate.

Based on the analysis, it can be noted that, the values of the mean squared error and regression
coefficient are very close to zero and one, respectively. Therefore, this concludes that the data match
was very good. Figure 11 shows the histogram of error of the trained neural network in the process of
training, validation, and testing. This figure also shows the errors in customizing the data, which are
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Figure 12 compares the results of the following models: regression analysis, design of experiments,
and neural network. Based on Figure 12, the lines for the creation of models and the criteria for the
selection of models are based on Equations (3) and (4), which define the percentage deviation, as shown
by histograms in Figure 13. The ANN created is applicable within the cutting force survey interval, that
is, within the limits of the investigated cutting regimes (v = 44 ÷ 71 m/min; s1 = 0.178 ÷ 0.281 mm/t and
a = 1 ÷ 1.83 mm). This threshold increases with the development of machine tools and cutting tools.
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Figure 13 shows that the model based on the ANN has a better consistency of measured and
model values, and therefore the error of deviation is smaller. It can also be seen that the deviation errors
for ADI materials are smaller compared to DI, which is supported by the fact that the ADI material has
more uniform microstructure compared to DI (Figure 1). In other words, when encountering nodes in
DI machining, there are falls when measuring the cutting forces and, consequently, the unevenness
of them, which is unfavorable for the tool life. This is another impetus for the application of ADI
materials in manufacturing processes and in the industrial sector.

E =

∣∣∣Model by regression analysis′′ (Fx, Fy, Fz) − The measured value (Fx, Fy, Fz)
∣∣∣

The measured value (Fx, Fy, Fz)
· 100% (3)
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E =

∣∣∣Model neural network (Fx, Fy, Fz) − The measured value (Fx, Fy, Fz)
∣∣∣

The measured value (Fx, Fy, Fz)
· 100% (4)

Application of ANN finds the optimum value of the cutting regime in the interval of the tested
cutting regimes, where three components are varied, and where it is possible to obtain the assumed
cutting force for some regime that has not been experimentally investigated. It is also possible
to supplement the neural network with some other input parameters if the need arises for this
in the production process. An example is the introduction of a variable amount of cutting fluid.
In experiments where there are multiple input factors, the application of artificial intelligence-based
models certainly contributes. Finding the optimum is much more difficult as soon as the experimental
design reaches beyond two factors. For illustration, dependence diagrams for the measured cutting
forces are shown below.

Cutting forces component versus cutting speed, feed, and depth of cut for ductile iron are shown
in Figures 14–16. Cutting forces component versus cutting speed, feed, and depth of cut for ADI
material are shown in Figures 17–19.

In general, chip load or depth of cut and feed has been found to have the largest influence
on cutting force components. In the case of ADI, researchers have reported that the chip load is
proportional to cutting forces.

The effect of cutting speed on cutting force components can be seen in Figures 14 and 17. The effect
of the feed per tooth can be noticed in Figures 15 and 18. It can be observed that when feed increases
cutting force components increase as well. The effect of the depth of cut can be noticed in Figures 16
and 19. As the depth of cut increases, all components of the cutting force increase significantly. Higher
values of cutting force components are noticeable for ADI material.
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Growth of the market for the application of ADI materials is on the rise, but the limiting factor is a
heavy machinability. Based on the analysis of workability in the literature, three different strategies
for processing parts from the ADI material are distinguished [28]. The first option is to perform
rough treatment before austempering. Then the heat treatment is done after finishing the operation.
This option is feasible when there is a wide tolerance of the final measures and the quality of the surface
of the workpiece. Another option is to complete the machining before heat treatment. This option is
feasible if it is possible to accurately assume the expansion of the material after an austemperization.
The final, most profitable option is to machining parts after heat treatment. Choosing some of these
strategies certainly affects the economy of the machining process.

5. Conclusions

Analysis of cutting force during milling operation is very complex due to the influence of a
number of different phenomena. The study indicates the complexity of the processes that take place
during cutting. The highest values of cutting force components have Fx, medium Fy and at least Fz

component. As the cutting speed increases, the influence of the force component of the cut Fx remains
dominant over the other two components. Contributing to this knowledge is a monitoring system
where irregularities in the cutting process can be detected at any time.

Strong correlations relating to cutting force components in relation to time are determined during
the dry milling operation.

Higher values of cutting force components are more noticeable for ADI than DI material.
Artificial neural network models for both tested materials are determined in the tested interval.

Based on the planar and spatial view, it is possible to determine the optimum machining regime for
the set cutting conditions (v = 44 ÷ 71 m/min; s1 = 0.178 ÷ 0.281 mm/t and a = 1 ÷ 1.83 mm).

When feed and depth of cut are increasing, cutting force components significantly increase. Higher
values of cutting force components are noticed for ADI material. Cutting speed is less affective on
cutting force components values.

The model based on the ANN has a better consistency of measured and model values, and
therefore the error of deviation is smaller for both materials in study. This is supported by the fact that
the ADI material has more uniform microstructure than the DI where the nodules are separated and
larger jumps occur when crossing the tool edge when measuring cutting forces.

In order to minimize the consumption of power energy related to the cutting forces achieved, it is
recommended that the best combination of feed rate and depth of cut can be implemented.
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