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THE BIGGER PICTURE In the in vitro fertilization (IVF) process, embryos are usually selected based on
morphological characteristics or genetic test results, which are highly variable, experience dependent,
and time consuming. To tackle data heterogeneity and labeling limitations, we propose an artificial intelli-
gence (AI) framework system that evaluates embryo images and videos during the assessment of the IVF
cycle. This research highlights the potential of AI models to serve as non-invasive, efficient, and cost-effec-
tive tools for the advancement of reproductive medicine in general, but specifically for embryo-selection
tasks during IVF.
SUMMARY
In vitro fertilization (IVF) has revolutionized infertility treatment, benefiting millions of couples worldwide.
However, current clinical practices for embryo selection rely heavily on visual inspection of morphology,
which is highly variable and experience dependent. Here, we propose a comprehensive artificial intelligence
(AI) system that can interpret embryo-developmental knowledge encoded in vast unlabeled multi-modal da-
tasets and provide personalized embryo selection. This AI platform consists of a transformer-based network
backbone named IVFormer and a self-supervised learning framework, VTCLR (visual-temporal contrastive
learning of representations), for training multi-modal embryo representations pre-trained on large and unla-
beled data.When evaluated on clinical scenarios covering the entire IVF cycle, our pre-trained AI model dem-
onstrates accurate and reliable performance on euploidy ranking and live-birth occurrence prediction. For AI
vs. physician for euploidy ranking, our model achieved superior performance across all score categories. The
results demonstrate the potential of the AI system as a non-invasive, efficient, and cost-effective tool to
improve embryo selection and IVF outcomes.
INTRODUCTION

The prevalence of infertility has become a global concern, with

over 80million couples suffering from infertility.1 In the field of as-
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sisted reproductive technology, in vitro fertilization (IVF) has

revolutionized treatment for infertility, with over 10 million babies

having been born from IVF since its invention.2,3 During IVF cy-

cles, the newly generated embryos are fertilized in the lab and
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can be transferred into the uterus on either day 3 or day 5 of in-

cubation, cryopreserved for subsequent transfers, or discarded

based on the evaluation of embryo viability by an embryologist.4

The majority of embryos are selected to transfer based on a

morphological score system on day 3 or day 5; others are trans-

ferred according to pre-implantation genetic testing for aneu-

ploidy (PGT-A) diagnosis reports.

Traditional methods of embryo selection are required for

improving live-birth rates, relying on visual inspection of em-

bryo morphology, and are experience dependent and highly

variable.5–7 For the non-invasive embryo assessment toolkit,

microscopic visualization has been used for scoring embryos

from the very beginning of IVF treatment. Skilled embryologists

must perform and incorporate complex assessments such as

zona pellucida thickness variation, number of blastomeres, de-

gree of cell symmetry and cytoplasmic fragmentation, ploidy,

and maternal conditions. Furthermore, suboptimal outcome

predictions based on traditional human performance severely

limit the impact of the IVF technology.8,9 Because of these fac-

tors, achieving a favorable live-birth outcome is still very chal-

lenging, with an average success rate of 20%–40%. Another

non-invasive tool for implantation evaluation is based on

time-lapse videos to assess the embryos’ morphological and

morphokinetic information. By enabling embryo-safe recording

inside the incubator, time-lapse videos can provide us with

plentiful spatial and temporal information to be stored about

embryo-development dynamics. To improve the success rate

of embryo transfer and pregnancy outcomes, pre-implantation

genetic testing (PGT) is currently used for the detection of aneu-

ploidy in fertility clinics. However, trophectoderm (TE) biopsy

for PGT has several limitations including invasiveness, cost of

DNA sequencing, and inaccuracy in detecting mosaicism. In

addition, only a limited number of blastocysts can be selected

for PGT. Thus, the demand for a comprehensive automated

system that utilizes non-invasive methods to evaluate these

factors for the selection/ranking of embryos remains of para-

mount importance.

Artificial intelligence (AI) has shown potential for revolution-

izing healthcare and improving outcomes10–13 in various do-

mains, such as disease detection and prognosis evaluation.14

Recently, the use of deep neural networks (DNNs) has facilitated

the development of efficient and intelligent tools for embryo

morphological rating15 and/or implantation probability outcome

evaluation using static images in IVF.16 Moreover, researchers

have trained DNN-based tools to provide predictions of the em-

bryo ploidy,17,18 blastulation, and implantation outcomes15 using

embryo images extracted from time-lapse videos. Despite these

recent advances, previous methodologies often rely on exten-

sive and labeled medical data for training, posing challenges in

domains such as ploidy prediction (euploids vs. non-euploids)

and the subsequent determination of live-birth rates, as

acquiring relevant labels can be both costly and time consuming.

How to make full use of the large and unlabeled datasets to build

a comprehensive automated system to predict embryo ploidy

and the outcome of a live birth remains challenging.

Moreover, asmentioned above, embryo data have been accu-

mulated using a variety of methods (e.g., static images or tempo-

ral videos) across diverse clinical practices and are therefore

rather heterogeneous. Previous methods have so far been
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limited in representing embryo-development information thor-

oughly to incorporate the heterogeneous data sources and

extract the spatial and temporal information embedded in static

images and videos. For example, previous automated deep-

learning models have limitations in using embryos screened at

specific time points (e.g., 110 h after intracytoplasmic sperm in-

jection19) during their culture, which can ignore vital information

regarding embryo-development dynamics and hence hinder

their clinical application.20 Therefore, the integration of heteroge-

neous data sources by AI models to extract embryonic develop-

mental knowledge for viable embryo selection, as well as leading

to better reproductive outcomes (such as implantation and preg-

nancy rates) than a selection based on the traditional assess-

ment alone,21 is another challenge.

To address the above issues, we propose a novel self-super-

vised learning framework, named visual-temporal contrastive

learning of representations (VTCLR), to learn multi-modal em-

bryo representations from temporal videos and static images

with pre-training on large unlabeled data, with a transformer-

based network backbone, image video transformer (IVFormer)

(Figure 1). Recent research suggests that self-supervised

learning (SSL) offers a promising approach that eliminates the

need for laborious manual label collections and produces deep

feature representation to adapt to downstream tasks.22 Among

SSL methods, contrastive learning is a simple yet effective tech-

nique without sophisticated pretext tasks, which works by

extensively treating one sample as positive and the remaining

ones as negative to improve feature discrimination. While

contrastive learning has been successfully applied for represen-

tation learning from static images,23 it has been challenging to

adapt it to video frames, which differ substantially from static

images.

Here, we extend contrastive learning to multi-modal data with

VTCLR, an SSL framework tailored for image and video synthetic

augmentation. Notably, as embryo development is not a uniform

process, we proposed a dynamic-aware sampling strategy that

is adaptive for embryo development with contrastive learning on

temporal views. To incorporate the heterogeneous data from

both static images and temporal videos, we developed IV-

Former, a spatial-temporal transformer-based network back-

bone. The transformer has currently been used to learn the

long-term relations in images or videos,24 such as temporally

distant segments/consecutive frames in a video.25 Our IVFormer

is developed with a shared visual encoder for images and a tem-

poral encoder for videos to capture the temporal information,

thus to transfer the knowledge of embryo development between

the two modalities (Figure 1).

The use of multi-modal SSL and IVFormer allows the pre-

trained model to better capture the embryo-development infor-

mation. We further applied the pre-trained AI model to address

typical clinical scenarios that occur during the IVF process,

including embryo morphology assessments, euploidy detection,

and live-birth occurrence prediction (Figures 1 and S1). For em-

bryo morphological assessment, we developed the AI models

using a large dataset of 2D static embryo images via multi-task

learning to extract embryo morphological information, including

pronucleus type on day 1, asymmetry and severe fragmentation

of blastomeres on day 3, and scoring system for blastocyst stage

on day 5. Further, non-euploidies affect more than half of IVF
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Figure 1. Schematic illustration of the general AI system for embryo assessment and clinical outcome prediction during the whole IVF cycle
(Left) The proposed self-supervised learning VTCLR (visual-temporal contrastive learning of representations) framework and downstream fine-tuning. The whole

VTCLR framework comprises a visual encoder and a temporal encoder via a novel transformer network backbone, IVFormer (image video transformer). Our pre-

trained models are then fine-tuned on three downstream tasks by sharing the pre-trained parameters of the encoders and randomly initialized downstream

prediction heads. (Right) An illustration of the AI system for embryo assessment to integrate multi-modal data covering the entire IVF cycle, including embryo

morphological grading, ploidy prediction (euploids vs. non-euploids) using embryo time-lapse videos, and live-birth occurrence prediction using sequential

images and clinical metadata. The models were further validated on independent external cohorts to ensure the AI’s generalizability. We also studied the AI vs.

embryologists’ performance in euploidy ranking.
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embryos and increase with advancing maternal age and is a

leading cause of implantation failure.26 Therefore, the accurate

identification of euploids using non-invasive time-lapse video

and clinical metadata would bring tremendous value and facili-

tate better outcomes in the real world. We also performed AI

vs. physician validation for euploidy ranking, demonstrating a

correlation between the ranking score and the observed

euploidy rate. The AI demonstrated superior performance

compared with the embryologists across all score categories.

Finally, the prediction of birth outcome depends on many

factors including maternal age, menstrual, uterine, and cervical

status, previous pregnancy, and fertility history. We utilized the

embryo images and clinical metadata to fine-tune IVFormer to

identify high-quality embryos with consequent live-birth out-

comes using the morphological grading knowledge extracted

from the embryo images and videos in pre-training. Interpret-

able methods were also used in order to understand what

drives a prediction important for determining targeted interven-

tions in the clinical setting. By combining embryo and maternal

metrics in an ensemble AI model, we evaluated live-birth out-

comes in two independent external cohorts (Figure 1). Our AI

system demonstrated better performance for embryo morpho-

logical grading and blastocyst development in the euploidy

ranking and live-birth occurrence prediction, being effective

and interpretable for individualized embryo selection for

transfer.
RESULTS

Patient characteristics and system overview
In this study a large multi-modal embryo dataset was con-

structed, which consisted of embryo images, videos, maternal

metadata, and clinical outcomes. The demographics and clinical

information of the cohort participants are summarized in

Tables S1 andS2. In the developmental dataset (EMB-Dev), a to-

tal of 41,279 embryo images and 2,136 embryo time-lapse

videos were included (Table S1). These were cultured from IVF

cycles between 2010 and 2021. All the two-pronuclei embryos

were cultured individually and were observed to day 6 before im-

plantation. Each embryo video covers 0 h to 140 h post insemi-

nation (HPI). We split the developmental dataset into training and

tuning sets with a ratio of 90%:10% for pre-training. Pre-trained

models were then fine-tuned on three downstream tasks

including embryo morphological assessment, embryo ploidy

prediction, and live-birth occurrence prediction.

To ensure a reliable and trustworthy AI system, the three tasks

were first validated on their corresponding internal validation da-

tasets (EMB-ME, EMB-PGT, and EMB-LBO) and further vali-

dated on three external independent datasets (Table S2). For

embryo ploidy prediction, a total of 256 embryos with time-lapse

videos (PGT-HE) were included in this study and were compared

against human evaluation. For live-birth occurrence prediction, a

total of 1,831 embryo transfers with known results were included
Patterns 5, 100985, July 12, 2024 3



Table 1. Performance comparison in the evaluation of embryos’ morphokinetic features and blastocyst development

Models/tasks Stages

Pronuclear

(day 1)

Cleavage

(day 3)

Cleavage

(day 3)

Cleavage

(day 3)

Blastocyst

(days 5–6)

Blastocyst

(days 5–6)

Nucleoli

symmetry

Asymmetry No. of abnormal

cells

Severe

fragmentation

Grade of ICM Grade of TE

ImageNet-based

pre-training

0.783 0.821 0.896 0.953 0.764 0.733

BYOL 0.808 0.845 0.919 0.972 0.799 0.771

MOCO V2 0.818 0.851 0.928 0.979 0.805 0.780

VTCLR (image only) 0.820 0.855 0.935 0.981 0.811 0.789

VTCLR (video only) 0.825 0.859 0.937 0.983 0.813 0.797

VTCLR (image

and video)

0.833 0.872 0.941 0.989 0.827 0.818

AUC showing performance of detecting abnormal pronucleus type of the day-1 embryo; morphological assessment of the day-3 embryos, including

detecting blastomere asymmetry, severe fragmentation, and abnormal blastomere cell number; and grades of ICM and TE assessment of the day-5

embryos.
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for external validation. This included 1,343 embryo transfers us-

ing double embryo transfer in the first external validation set

(LBO-DET) and 488 embryo transfers using single embryo trans-

fer in the second external validation set (LBO-SET).

AI system overview

Our proposed AI system is a comprehensive embryo assess-

ment platform designed to integrate multi-modal data

throughout the entire IVF cycle. The system incorporates an

SSL framework called VTCLR, with a novel transformer network

backbone, IVFormer. Specifically, the model was trained with

various lengths and frequencies of augmented temporal frames

to support the model’s ‘‘understanding’’ of temporality. We

jointly trained the video frames and static images in a unified

scheme by sharing spatial augmentations such as the random

resized crop, random horizontal flip, and random color jitter. Af-

ter pre-training, the AI models are fine-tuned for three down-

stream tasks. First, it demonstrated accurate performances on

embryo morphological assessment tasks, including pronucleus

symmetry for pronuclear-stage embryos, number of blasto-

meres, asymmetry and fragmentation rate of blastomeres for

cleavage-stage embryos, and grade of inner-cell mass (ICM)

and grade of trophectoderm (TE) for blastocyst-stage embryos

(Table S5). In addition, the pre-trained model was utilized to pre-

dict embryo ploidy (euploid vs. non-euploid) based on a combi-

nation of time-lapse image videos and clinical metadata. Finally,

for the live-birth occurrence prediction task, we assessed the

ability to evaluate embryo viability by using the output of the pre-

vious embryo morphology scoring results and clinical metadata.

AI system for embryomorphology assessment via multi-
modal pre-training
To demonstrate the effectiveness of our SSL framework, VTCLR,

for learning multi-modal representations, we benchmarked its

performance on multiple challenging classification tasks for the

assessment of embryo morphology grading and blastocyst

development. Generally, the following parameters were used

as a consensus in the selection of the good-quality embryos in

IVF practice27: pronuclei morphology at the pronuclear stage,

blastomere characteristics including size, symmetry, and frag-
4 Patterns 5, 100985, July 12, 2024
mentation at cleavage stage, and grade of ICM and TE at blasto-

cyst stage. The ground truth for embryo morphological assess-

ment is established based on a consensus of three

experienced embryologists (for more details, see experimental

procedures). We compared our method with other pre-training

methods (ImageNet-based pre-training, BYOL, MOCO V2) on

our benchmark datasets.

At the pronuclear stage, the zygote (pronuclear) morphology is

related to the growth ability for advancing to the blastocyst stage

and outcomes of implantation and pregnancy. We used the Z-

score system28 to grade the pronucleus symmetry of each em-

bryo. As shown in Table 1, our AI model was able to detect

abnormal pronuclear morphology with an area under the curve

(AUC) of 0.833. Our AI model, pre-trained with the multi-modal

VTCLR approach, outperforms other self-supervised/pre-

training baseline models (such as BYOL and MOCO V2) as well

as transfer learning on natural source images. For example, the

superiority of VTCLR demonstrated superior performance by

its 6.4% better performance compared to widely adopted

ImageNet-based pre-training and 1.8% better performance

compared to state-of-the-art MOCO V2. Additionally, VTCLR

outperforms both VTCLR (image only) and VTCLR (video only),

which were pre-trained using single-modality embryo images

and time-lapse videos, respectively, by 1.6% and 1.0% AUC

(Table 1). These results highlight the effectiveness ofmulti-modal

pre-training and its ability to outperform self-supervised

methods that pre-train on single-modality static images or

time-lapse videos.

At the cleavage stage, we evaluated the AI model’s ability to

determine the asymmetry, number of blastomeres, and fragmen-

tation. Blastomere symmetry was defined as previously reported

by Prados et al.,29 which was calculated by dividing the diameter

of the smallest blastomere by that of the largest blastomere (for

details see experimental procedures). We jointly trained models

using different transfer and SSLmethods and evaluated them on

the above three evaluation metrics. The predicted scores were

compared with the gold-standard scoring system.30 Our AI sys-

tem demonstrated good performance with an AUC of 0.872 for

the detection of asymmetry of cells, 0.989 for the binary
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classification tasks of severe fragmentation of blastomere detec-

tion, and 0.941 for the binary detection task of number of

abnormal blastomeres (Table 1). As shown in Table 1, our

VTCLR also showed substantially better evaluation abilities for

embryos at the cleavage stage compared to ImageNet-based

pre-training and self-supervised baselines.

At the blastocyst stage, the AI system evaluated the blastocyst

morphology including ICM and TE. We evaluated the ability of

our AI models and other approaches on the two assessment

tasks, which are essential for the prognosis of implantation and

fetal development. For ICM and TE scoring tasks, the AI system

was able to recognize blastocysts with a high grade of ICM and

TE and an AUC of 0.827 and 0.818, respectively (Table 1). More-

over, our VTCLR pre-training once again greatly improved the

performance of the blastocyst morphology evaluation in com-

parison with other methods. By integrating Swin-S as the back-

bone in IVFormer, better performance in blastocyst grading was

attained on our dataset compared to the prior state-of-the-art

method employing an ImageNet pre-trained ResNet-50.31 Our

model achieved an AUC of 0.827 for the ICM grade, outperform-

ing the previous AUC of 0.751, and an AUC of 0.818 for the TE

grade, surpassing the prior AUC of 0.726. This highlights the

effectiveness of the representation learning approach in enabling

themodel to incorporate knowledge of the embryo-development

dynamics for the specific task (Table S3).

Taken together, the above results demonstrated that our AI

system can achieve decent performance across various em-

bryo-selection tasks and outperforms other pre-training

methods. By leveraging a multi-modal representation method

that captures both morphological and temporal information

about embryo-development dynamics, we extend the self-su-

pervised model to downstream tasks, including the detection

of euploids using embryo time-lapse videos and live-birth pre-

diction using images.

Detection of non-euploids using embryo time-lapse
videos and clinical metadata
Ploidy is an essential index for the assessment of embryo quality.

Embryos of non-euploids, including genome aneuploidy or

mosaicism, usually cannot be used for embryo transfer and will

lead to extra costs in the PGT-A cycle. Thus, developing a

non-invasive method to detect non-euploids is essential for

achieving successful embryo transfer while reducing medical

costs associated with PGT-A cycles. The decision regarding

the transplantation of mosaic embryos currently lacks unified

consensus, with many institutions favoring the use of fully

euploid embryos over mosaic ones. Consequently, we group

mosaic and aneuploid embryos as a non-euploid category,

distinct from the euploid embryos, to better align with clinical re-

quirements. We hypothesized that ploidy status can affect cell

morphology and migration patterns during embryo development

and is therefore amenable to detection by an AI algorithm. Here,

we fine-tuned our AI model (IVFormer) to predict the ploidy sta-

tus of embryos using time-lapse image videos (Table S2). Our

approach leverages a transferred embryo visual and temporal

encoder from a pre-trained model, with an additional multi-layer

perceptron (MLP) initialized and appended to the transferred

backbone. Three models for ploidy status detection were devel-

oped: a deep-learning model using time-lapse video; a random
forest model using clinical metadata; and a combined AI model

using both input modalities.

For all tasks, the combined model and the embryo video-only

model performed better than the metadata-only model (Fig-

ure 2A). The AUC for detecting embryo non-euploidies was

0.663 (95% confidence interval [CI]: 0.609–0.714) for the meta-

data-only model, 0.783 (95% CI: 0.735–0.821) for the embryo

video-only model, and 0.811 (95%CI: 0.770–0.847) for the com-

bined model. Moreover, SSL outperformed the ImageNet-based

pre-trainingmethod on predicting non-euploids vs. euploidswith

an AUC of 0.783 compared to 0.691, demonstrating that the rep-

resentation learning approach enables the model to incorporate

knowledge of the embryo-development dynamics for the rele-

vant task (Table S3). For interpreting the effects and relative con-

tributions of the embryo features and clinical parameters on em-

bryo non-euploid detection, we implemented an explainer SHAP

(Shapley additive explanation).32 The results showed that the

embryo image features and clinical parameters such as AI

video-based predicted score, maternal age, and maternal pro-

gestin contribute strongly to the detection of non-euploids (Fig-

ure 2B). These models could be used to improve the identifica-

tion of non-euploid status, ultimately enhancing the IVF

procedure’s success rate and clinical outcomes.

The AI system vs. embryologists’ ranking performance

We further conducted a trial to assess the performance of our AI

algorithms compared to current standard practices for non-eu-

ploids vs. euploids ranking on the external validation set (PGT-

HE). As in a euploidy screening setting, the embryologists ranked

all the embryos for the probability of being euploids. The top

candidate embryos would be further selected to undergo

PGT-A testing. We prospectively collected 256 time-lapse

videos during real-world clinical use by two IVF clinics, from

which 46.1% were euploid embryos. The embryologists were

asked to score the embryos from 1 to 10 by reviewing the

time-lapse video, with the maternal information also provided.

The AI-generated probabilities were also grouped into ten ‘‘likeli-

hood categories’’ (bins) by score thresholds. In the trial, we

compared the ranking performance between our AI system

and eight embryologists from two fertility clinics on the euploidy

rate of each ranking score. First, the consistency between the

predicted euploidy probability and the observed euploidy out-

comes was analyzed. As shown in Figure 2C, both the ranking

score method by the AI and embryologists demonstrated a cor-

relation between the ranking score and the observed euploidy

rate. Moreover, the AI demonstrated superior performance

compared with the embryologists in all score categories. For

example, embryos with a score of 10 generated by our AI system

demonstrated a 20.7% higher euploidy rate compared to the

embryologists. Furthermore, our AI system achieved a superior

AUC of 0.734 for the binary metrics evaluation compared to

that of the embryologists, including both junior and senior em-

bryologists (Figure 2D). These results demonstrate the potential

of our AI system for improving the accuracy and reliability of

ranking embryos for non-euploidy vs. euploidy.

Predicting live birth using embryo images and clinical
metadata
To further extend the scope of our AI system for the prediction of

live-birth occurrence, we fine-tuned our pre-trainedmodel on the
Patterns 5, 100985, July 12, 2024 5
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Figure 2. Performance of our AI system in

identifying ploidy (euploids/non-euploids)

(A) Receiver-operating characteristic (ROC) curves

for a binary classification using the clinical meta-

data-only model, the embryo video-only model, and

the combined model in the internal test set. The

videos of embryo development are captured using

time-lapse system. AUC, area under the curve.

(B) Illustration of features contributing to the pro-

gression to euploids by SHAP values. Features on

the right of the risk explanation bar pushed the risk

higher, and features on the left pushed the risk

lower.

(C and D) Performance comparison between our AI

model and eight practicing embryologists in em-

bryos’ euploidy scoring and ranking. (C) Correlation

analysis between the euploidy rate and the score

groups for PGT-A ranking based on AI or embryol-

ogist score. The dashed line is the overall euploidy

rate of 46.1%. AI score groups were defined by

binning AI-predicted probability. (D) Performance

comparison between our AI model and eight prac-

ticing embryologists in embryos’ euploidy ranking.
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training and tuning sets (Tables S1 and S2). During the fine-tun-

ing stage, we performed fully supervised learning on the target

domain and developed three models: a baseline random forest

model using clinical metadata; a deep-learning model using em-

bryo images; and a combined AI model using both input modal-

ities. Here, the embryos were transferred on day 3 or day 5/6,

and the number of embryos transferred was limited to two or

fewer embryos according to the guidelines published in

September 2004 by the American Society for Reproductive

Medicine.33

On the internal validation set, the clinical metadata alone gave

an AUC of 0.734 (95%CI: 0.702–0.762), and the AI model trained

using embryo images alone produced an AUC of 0.815 (95% CI:

0.785–0.842). When trained using combined clinical metadata

and embryo images, the AI model achieved superior perfor-

mance, with an AUC of 0.854 (95% CI: 0.821–0.879) (Figure 3A).

Our SSL method demonstrates superior performance over the

ImageNet-based pre-training method in predicting live birth

only using embryo images, achieving an AUC of 0.815 compared

to 0.744 (Table S3). Since the AI system measures many key

embryological and clinical features used in IVF, we further

demonstrated that it has the potential to reduce the time to grade

embryos without sacrificing interpretability. Here, we used the

SHAP method to demonstrate the value of the explained predic-

tions made by the AI system and gain insight into factors that

affect live-birth occurrence. Our findings indicate that the im-

age-based score was identified as the most significant contrib-

utor to the clinical prognosis estimation. Thematernal age, endo-

metrial thickness, follicle-stimulating hormone, body mass

index, and anti-Mullerian hormone were also highly associated

with the live-birth rate per transfer (Figure 3B).

To evaluate the model’s performance and generalizability, we

further validated these AI models using two independent
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external cohorts including a double em-

bryo transfer pregnancy (LBO-DET) and a

single embryo transfer pregnancy (LBO-
SET). For the LBO-DET dataset, the AUC was 0.734 (95% CI:

0.690–0.773) for the clinical metadata-only model, 0.820 (95%

CI: 0.789–0.849) for the embryo image model, and 0.857 (95%

CI: 0.830–0.878) for the combined model (Figure 3C). The AI

demonstrated similar performance for the LBO-SET dataset

(Figure 3D). Taken together, these findings demonstrate not

only the validity the AI model but also the potential real-life feasi-

bility and utility of an AI-based platform.

Visualization of evidence for AI prediction
Visualization and interpretation of self-supervised learned repre-

sentations are of great interest. We investigated whether it could

help researchers better understand embryo development and

benefit embryo selection and implantation by providing clinical

correlation. Here, we visualized the embryo image representa-

tions, embryo image saliency maps, and video attention values

to demonstrate the performance of our pre-trained visual and

temporal encoders. First, we used t-distributed stochastic

neighbor embedding (t-SNE) to analyze the representations

learned by the visual encoder pre-trained by VTCLR. The t-

SNE algorithm maps similar embryo-encoded feature vectors

into adjacent 2D points. For representations extracted from em-

bryo images, Figure 4A shows that our visual encoder learns to

generate similar representations for embryos with similar frag-

mentation rates, which is essential for themorphological assess-

ments of embryos at different stages. For representations ex-

tracted from frames of videos, Figure 4B shows that our model

is also able to learn the intrinsic development dynamics of em-

bryos, as close representations for embryos have similar HPI

times. Overall, these results demonstrate that our VTCLR

method effectively enables our IVFormer encoders to extract

both morphological and developmental information from

embryos.
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Figure 3. AI models’ performance in predict-

ing live-birth occurrence

(A) ROC curves showing performance of live-birth

occurrence prediction on internal test set. The

green, orange, and blue ROCcurves represent using

the metadata-only model, the embryo image-only

model, and the combined model, respectively.

(B) Illustration of features contributing to progression

to live-birth occurrence by SHAP values. Features

on the right of the risk explanation bar pushed the

risk higher, and features on the left pushed the risk

lower.

(C and D) ROC curves showing performance of live-

birth occurrence prediction on (C) external validation

set 1 (double embryo transfer pregnancy) and

(D) external validation set 2 (single embryo transfer

pregnancy).

ll
OPEN ACCESSArticle
To further investigate the interpretability of the AI model for

morphology assessment tasks, we applied integrated gradients

(IGs) to generate saliency maps that highlight the areas of the im-

ages that were important in determining the AI model’s predic-

tions. The saliencymaps from the explanation techniques suggest

that themodel tends to focus on different spatial features depend-

ing on the specific embryo morphology task. For example, the

model concentrates on the pronuclei for evaluating the day-1 em-

bryomorphology (Figure 4C). For the prediction of number of blas-

tomeres (Figure 4D) and degree of cell symmetry (Figure 4E), the

model tends to focus on the spatial features around the center

of day-3 embryos. Additionally, the saliency maps suggest that

the AI model focuses on fragments around the cells of day-3 em-

bryos for cytoplasmic fragmentation (Figure 4F).

Finally, to investigate the importance of different frames in

time-lapse videos for ploidy prediction, we visualized the atten-

tion values generated by the temporal encoder. We marked the

HPI of time-lapse morphokinetic parameters with mean and

standard deviation values across time-lapse videos to indicate

the development events of each frame. Our results indicate

that the AI model focuses on frames at specific developmental

stages, such as the tPNa, tPNf, t2, t3, t8, t9, tSB, tB, and tEB,

for which the attention values produced by the AI model are

higher than the average. The attention maps produced by the

AI model are highly consistent with the timings/frames in time-

lapse video for differentiation of non-euploids vs. euploids re-

ported in the literature34,35 (Figures 4G and 4H). This suggests

that the frames at transitions between stages and the whole

blastocyst stage are the most relevant for determining ploidy.

These results show that our AI model could extract develop-
mental features to generate clinically

meaningful insights for ploidy predictions

and improve the assisted reproduction

process.

DISCUSSION

Progress in embryo selection is aimed at

maximizing IVF success rates and reducing

the time to conceive while minimizing the

risk of multiple pregnancies. Current
morphological grading methods rely on descriptive parameters

to rank cleavage-stage embryos for transfer. In addition, the

non-invasive strategy of time-lapsemicroscopy has been applied

to human embryos, and the possible prognostic effect of mor-

phokinetic data has been reported.36 Although interest in the

use of AI to support embryo quality assessment has grown and

with numerous AI algorithms having already been developed for

the analysis of images or static images from time-lapse videos

to aid in the selection of embryos for transfer, they focused on

specific tasks for embryo selection, which limited their applica-

tion in actual clinical practice. In this study, we developed a

generalized AI platform on embryo evaluation and live-birth

occurrence prediction for the entire IVF cycle, including an em-

bryo morphology grading module, a non-euploidy detection

module, and a live-birth prediction module. To make full use of

large unlabeled multi-modal data including static images and

temporal videos, we utilized an SSLVTCLR framework via a novel

transformer network, IVFormer, tailored for embryo-development

learning. Experiments show that our pre-trained model achieves

great improvement on various benchmarks and shows general-

izations in auxiliary tasks related to embryo development found

in videos/images. Our results raise the possibility of AI-based se-

lection of embryos based on subtle visual features beyond clini-

cians’ observational power.

Althoughprevious studies have studied AI-assistedmorpholog-

ical grading37 and blastocyst prediction,38 this study has several

key differences to consider. First, in clinical settings, labeled tem-

poral video data of the embryo ploidy (euploids vs. non-euploids)

and thesubsequent live-birthoccurrence fromtime-lapse technol-

ogy is relatively limited. Accordingly, we bring a wealth of static
Patterns 5, 100985, July 12, 2024 7
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Figure 4. Visualization of evidence for embryo morphology and ploidy assessment

(A and B) Visualization of embryo representations learned by VTCLR via t-SNE. Representations were extracted from (A) embryo images and (B) frames of time-

lapse videos in the pre-training dataset. Each point is colored according to its corresponding label of (A) embryo fragmentation (%) and (B) hours post insem-

ination (HPI) on time-lapse video (hours).

(C–F) Visualization of evidence for embryo morphological assessment using the integrated gradients method. The original image (upper) and an attention map

generated from our model are presented. Upper panels: the original embryo images. Lower panels: explanation method-generated saliency heatmaps. (C)

Normal pronuclear type of day 1 (good); (D) blastomere cell number of day-3 embryo (normal); (E) blastomere symmetry of day-3 embryo (good); (F) fragmentation

rate of day-3 embryo (normal).

(legend continued on next page)
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images and temporal video to the learning process, aiming at

learning strong representations with large-scale unannotated

data. Video frames (or even uncurated image data) typically differ

from static images, as they have both spatial and temporal varia-

tions (the contents of a single frame belong to the same space,

and frames are collected across time). Another challenge is con-

structing SSLmodels to allow for the interpretation of multi-modal

data across time. Therefore, we propose VTCLR, a novel contrast

learning framework tailored for image and video synthetic

augmentation. For example, as embryo development is not a uni-

form process, our sampling method adopted a developmental-

based sampling strategy adaptive for embryo-development dy-

namics as temporal augmentation. This approach allowed our

SSLmodel to take advantage of the large-scale unlabeled embryo

datawith bothmorphological andmorphokinetic information. This

multi-modal pre-trained framework can facilitate the model in

learning the embryo-development dynamics by better utilizing

the large-scale static images and valuable time-lapse videos of

embryos without downstream task labels. Together with the intro-

duction of our IVFormermodel, which is designed to capture tem-

poral and spatial embryo features, our AI system demonstrated

better performance for embryomorphological grading and blasto-

cyst development,31 the euploidy ranking,18,31 and live-birth

occurrence prediction,39 being effective and interpretable for indi-

vidualized embryo selection for transfer.

Oocyte40 and embryo aneuploidies, affecting more than half of

embryos produced and increasing in frequency with advancing

maternal age, are the main reasons for implantation failure and

miscarriages in an IVF cycle, which are currently detected by suc-

cessful application of an IVF PGT-A test. However, this procedure

is invasive and can cause embryonal damage due to biopsy and

vitrification. Furthermore, misdiagnosis or mosaicism in PGT-A

may result in embryo wastage, and genomic assessment by

PGT-A also means a higher cost for an IVF procedure. Significant

differences in morphokinetic patterns between euploid and non-

euploid embryosmay exist, but since they are undetectable to hu-

man observers the clinical significance has been absent to

modest at best. An alternative non-invasive method for selecting

euploids based on a deep-learningmethod using spatial and tem-

poral information stored in time-lapse images would be much

more cost effective and could result in fewer complications.

Time-lapsemicroscopy evaluates the embryo quality by capturing

the precise timing and duration of cell divisions,which provides in-

formation on all the kinetic parameters of embryo development.

These images,with corresponding clinical parameters,may reveal

the genetic information encoding proper embryo development

and are therefore amenable to AI-based prediction of embryo

ploidy (euploids vs. non-euploids) without the use of biopsy. If

we can build a non-invasive method for selecting euploids based

on a deep-learningmethod using spatial and temporal information

stored in time-lapse videos, it would be muchmore cost effective

and could result in fewer complications. Through contrasting pos-
(G) Average intensity of attention generated by AI during embryo development. T

encoder with all frames averaged over cases in the internal validation set. Each

defined time-lapse morphokinetic parameter.

(H) Case study of the temporal attention for embryo ploidy at specific frames durin

the temporal encoder of the given time-lapse video. The peaks in these maps corr

highlighted in red boxes.
itive pairs against negative pairs from augmentations, VTCLR

learns informative representation with IVFormer backbones.

Moreover, our AI-based approach shows the potential to interpret

morphokinetic features and be used as a surrogate for PGT-A to

determine the chromosomal status of pre-implantation embryos.

In addition, this study has assessed the role of automated AI al-

gorithms in improving the live-birth rate using embryo images and

clinical metadata, and the selection accuracy was assessed for

both single embryo transfers and double embryo transfers

(Figures 3Cand3D).We further investigatedourAImodel’s perfor-

mance compared to current clinical practitioners including the

baseline rate reported from literature (Kamath et al.41), baseline

rate of the external validation set (LBO-SET), and live-birth rate

by PGT-A screening (Theobald et al.42), in predicting successful

live-birth rate (Figure S2). On the LBO-SET dataset, compared

with the baseline live-birth rate using embryos selected by embry-

ologists and that reported in previous studies,41 the live-birth rate

byAI-assisted ranking and screening of thepotential embryoswas

significantly improved.We further evaluatedourAImodel’s perfor-

mancewitha transfer rateof selectedembryos similar to thatof the

PGT-A test,42 demonstrating that AI-assisted evaluation could

help optimize embryo selection and maximize the likelihood of

viable pregnancy with an accuracy comparable to that of a

PGT-A test. Moreover, the PGT-A test is invasive and limited by

only allowing transplantation of blastocysts on day 5. Additionally,

ourAImodel can yield acontinuousscore that represents thequal-

ity of the embryo. We showed that the AI system’s operating point

can be set differently for different clinical applications, balancing

the embryo-selection rate and the live-birth rate outcomes.

There are some limitations we hope to address in the future.

Since our AI was trained in the Chinese population and tested

in an external Chinese cohort from several different geographic

areas, its generalizability in other racial populations needs to

be further validated. Additionally, various non-embryo-related

factors, such as the mother’s health and environmental expo-

sures, could affect the final live-birth outcome and were not

explicitly considered in this research. The integration of these

data could further enhance the performance of the models in

future studies. In summary, the findings presented herein could

potentially provide a non-invasive, high-throughput, and low-

cost screening tool to greatly facilitate embryo selection and

maximize outcome performance. Such AI algorithms could

also potentially assist in the standardization of embryo-selection

methods across multiple clinical environments.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will

be fulfilled by the lead contact, Guangyu Wang (guangyu.wang24@

gmail.com).
he intensity values of attention were extracted from the pre-trained temporal

bar on the top represents the mean and standard deviation values of HPI of a

g embryo development. Blue-coloredmaps indicate the attention generated by

esponded to the temporal location of morphokinetic characteristics, which are
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Materials availability

This study did not generate new unique reagents.

Data and code availability

Data and any additional information required to reanalyze the data reported in

this paper are available from the lead contact upon request. All data and code

access requests will be reviewed and (if successful) granted by the Data Ac-

cess Committee.

The deep-learning models were developed and deployed using standard

model libraries and the PyTorch framework. Custom codes were specific to

our development environment and used primarily for data input/output and

parallelization across computers and graphics processors. All original code

has been deposited at Zenodo and is available under the terms of the Apache

2.0 license.43

Dataset characteristics

Retrospective data (embryo images and medical records) were collected from

cohorts from the China Consortium of Assisted Reproductive Technology

Investigation (CC-ARTI), which consists of hospitals/cohorts from Beijing, Hu-

bei Province, Hunan Province, and Guangdong Province between March 2010

and December 31, 2021. All participants provided written informed consent

and received the standard clinical treatment administered at each facility.

The consent form includes a statement that the study involves research, an

explanation of the research purposes, a description of the procedures, risks,

and benefits, voluntary participation, and confidentiality. Institutional Review

Board (IRB)/Ethics Committee approvals were obtained in all hospitals of the

CC-ARTI committee, and all participating subjects signed a consent form.

The work was conducted in compliance with the Chinese Health and Quaran-

tine Law and compliance with patient privacy regulations in China and was

adherent to the tenets of the Declaration of Helsinki.

IVF-ET cycles

Pronuclear stage. The oocytes were inseminated by conventional IVF before

retrieval. For the day 1 (16–18 h later) embryo morphological evaluation, an

embryologist scored the zygote according to the number, size, and location

of the pronuclei. Scott et al.44 classified zygotes into four groups Z1–Z4 ac-

cording to pronuclear morphology corresponding to their quality, using nuclear

size, nuclear alignment, nucleoli alignment and distribution, and the position of

the nuclei within the zygote.

Cleavage stage. Next, all the two-pronuclei embryos were cultured individu-

ally after a fertilization check. Cleavage-stage embryos were evaluated by cell

number, the relative degree of fragmentation, and blastomere asymmetry, ac-

cording to the Istanbul consensus (consensus 2011).27 Blastomere symmetry

was defined as previously reported by Prados et al.29: embryos with blasto-

meres with a diameter difference of <25% were deemed symmetrical (�)

and embryos with R25% diameter differences were deemed asymmetrical

(+). This was calculated by dividing the diameter of the smallest blastomere

by that of the largest blastomere.

Blastocyst stage. On the fifth day, the embryo forms a ‘‘blastocyst,’’ consist-

ing of an outer layer of cells (the trophectoderm) enclosing a smaller mass (the

ICM). If the embryo was cultured to blastocyst, day-5 or day-6 photographs

were stored for analysis as well. Parameters, such as the ICM and TE

morphology at the blastocyst stage, were used as data points in the selection

of good-quality embryos. Only viable blastocysts (defined as stageR3, and at

least one score of ICM or TE is RB) were selected for transfer or frozen for

future use, according to Gardener scoring. The ground truth of morphokinetic

features assessment was calculated based on manual evaluation by an expert

panel including two independent embryologists, with a senior embryologist

providing a further review.

PGT-A cycles. If an embryo was scheduled for PGT-A, a biopsy was per-

formed on day 5 or day 6 according to the blastocyst grade, and next-gener-

ation sequencing (NGS) was employed for euploidy assessment. Here, non-

euploid was defined as all abnormalities other than euploidy, including simple

aneuploid, complex, and mosaic embryos. In PGT-A cycles, all the embryos

went on blastocyst culture, and available blastocysts were biopsied and

NGS carried out for euploidy assessment.

Live birth. Live birth was defined as the delivery of any viable neonate who

was 28 weeks of gestation or older.45 The live-birth rate per embryo transfer

was defined as the number of deliveries divided by the number of embryo

transfers.46
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Images and time-lapse video collection from IVF-ET cycles

Most of the embryos were transferred according to morphological scores on

day 3 or the blastocyst stage, while in PGT-A cycles embryos were selected

according to PGT-A diagnosis reports. The embryos were observed daily up

to day 5/6 with each embryo having at least two photographs: at fertilization

check (16–18 h after insemination) and day-3 embryo assessment (66 h after

insemination). Time-lapse videos were also carried out for a portion of the pa-

tients and were also used for analysis. We used images from the Primo Vision

time-lapse system, which takes an image of the embryos every 10 min at nine

focal planes, at 10-mm increments (Tables S1 and S2).

Pre-training and downstream datasets

For the model development (EMB-Dev) and internal validation (EMB-Internal),

we collected retrospective data from several hospitals, including the First Affil-

iated Hospital of Sun Yat-sen University, Yichang Central People’s Hospital,

Capital Institute of Pediatrics Affiliated Children’s Hospital, and the Sixth Med-

ical Center of the General Hospital of the People’s Liberation Army. These data

were randomly split with a ratio of 2:1 for development and internal validation,

respectively. The EMB-Dev dataset was used for unsupervised pre-training

and fine-tuning of downstream tasks. EMB-Internal datasets (EMB-MA,

EMB-PGT, and EMB-LBO) were used for validation only andwere not included

in any training or fine-tuning processes. External validation datasets (PGT-HE,

LBO-DET, and LBO-SET) came from another hospital, Xiangya Reproductive

and Genetic Hospital.

Pre-training dataset

We first pre-trained the AI models using the VTCLR method and a develop-

mental dataset (EMB-dev) that contains 41,279 embryo static images and

2,136 embryo time-lapse videos. For VTCLR pre-training, both static images

and time-lapse videos are split into a training set and tuning set with a ratio

of 9:1 without labels.

Downstream dataset

Thepre-trainedAImodels are fine-tunedon three downstream tasks for embryo

morphological assessment, embryo ploidyprediction, and live-birth occurrence

prediction. The downstream taskswere applied on the same training and tuning

sets as the ones used for pre-training, and samples without corresponding la-

bels were excluded. A total of six additional datasets were included for internal

and external validations. The internal datasets for the three downstream tasks

(EMB-MA, EMB-PGT, and EMB-LBO) were samples from the same hospitals

as the development datasets and without patient-level overlapping. The em-

bryo morphological assessment tasks including pronucleus type on day 1,

abnormal number of blastomeres (number of blastomeres= 4 vs. others), asym-

metry (asymmetry +/++ vs. asymmetry�), and severe fragmentation of blasto-

meres (fragmentation >25% vs. others) on day 3, and grade of ICM and TE on

day 5, used the same patient-level dataset split with the pre-training dataset

and were evaluated on an internal validation dataset. The embryo static images

with known live-birth labels and clinical metadata were utilized to develop AI

models for live-birth outcome prediction in groups of embryo transfer level.

External validation datasets (PGT-HE, LBO-DET, and LBO-SET) came from

Xiangya Reproductive and Genetic Hospital. LBO-DET and LBO-SET, consist-

ing of 1,343 and 488 embryo transfers from 1,262 patients and 467 patients,

respectively, were used for live-birth outcome prediction validations. The em-

bryo transfers in the LBO-DET were all double embryo transfers, and the

ones in the LBO-SET were all single embryo transfers. The embryo time-lapse

videos with known PGT-A labels and clinical metadata were utilized for PGT-A

prediction. The internal validation set was constructed with 520 embryos from

356 patients, EMB-PGT, and an additional external validation set, PGT-HE, was

constructed with 256 embryos from 222 patients for human evaluation. There

was no patient-level overlap between datasets (Figure S3).

Image annotation and pre-processing

During the image-grading process, all embryo images were first de-identified

to remove any patient-related information. Study participants were excluded

due to poor photographic quality or unreadable images. Photographs must

follow certain criteria, such as: sufficient lighting such that the structures are

visible; sharp focus of the zona pellucida and trophectoderm; one embryo

per micrograph with no visible instruments and little or no debris in the visual

field; the entire embryo shown within the limits of the image (including the zona

pellucida); and text or symbols in the images not hindering the visibility of the



ll
OPEN ACCESSArticle
embryos. Expected stages of embryo images were annotated based on the Is-

tanbul consensus (Table S4). For embryo image scoring, nine senior embryol-

ogists from the two centers scored embryos according to scoring rules. In the

image pre-processing stage, we used a segmentation network, U-Net, to

automatically crop all embryo images with bounding boxes to reduce the

bias introduced during data collection.

Overview of the AI framework

Our AI framework performs multi-modal self-supervised contrastive learning

for images and video representation, named VTCLR, on top of a spatial-tem-

poral transformer network backbone, named image video transformer (IV-

Former). In recent years, rapid progress in non-invasive imaging and time-

lapse techniques has generated an unprecedented amount of embryo data

including both static images and temporal videos. To utilize the large-scale

static images and valuable time-lapse videos of embryos without downstream

task labels, our IVFormer is compatible with both modalities by a shared visual

encoder for images and a temporal encoder to capture the temporal informa-

tion from videos. VTCLR is applied to transfer embryo-development knowl-

edge between the two modalities of unlabeled embryo data by alternating

training shared encoders using images and videos. Temporal augmentation

based on a dynamic-aware sampling strategy constructs more challenging

positive and negative view pairs together with spatial augmentations to

improve the quality of the embryo representations. The enhanced embryo rep-

resentations are used for the downstream tasks for embryo selection covering

the entire IVF cycle.

Architecture

For the compatibility of embryo images and time-lapse video, our IVFormer

model consists of a visual encoder and a temporal encoder. The visual

encoder for static embryo images and frames in embryo time-lapse videos

can share common knowledge about embryo morphology, and the temporal

encoder can extract temporal information about embryo development from

time-lapse videos. For an image/frame input x, the encoded image feature

vector is hv = fvðxÞ, where fvðxÞ is the visual encoder. Specifically, we adopted

the Swin Transformer (Swin-S),47 which is a hierarchical transformer-based

image backbone with shifted windows for feature extraction, as the visual

encoder. For a time-lapse video that consists of multiple images X = ½x1;x2;
.xN�, the images are first sampled with a sampling strategy as X0 = ½x01;x02;
.x0M�. They are then encoded into static representations with the visual

encoder, H0
v = ½h0v1;h0v2;.h0vM�. The static representations of frames are en-

riched with a learnable embedding to help clarify the time stamp of each frame.

The video representation is further acquired as h0t = ftðH0
vÞ, where ft is the tem-

poral encoder that consists of three attention-based blocks of the same archi-

tecture but independent parameters. In each attention-based block, the tem-

poral enriched representations are sequentially fed into global and local

relation layers. The global relation layer captures long-range relations with

multi-head attention, and the local relation layer increases the feature dimen-

sions and blends neighboring vectors by 1D convolution with rectified linear

unit activation. We apply layer normalization after the global and local relation

layers, after which residual connections are added to stabilize the training pro-

cess. In the last layer, we apply an average pooling on the transformed tempo-

ral embeddings to produce a video representation. The model prediction is

generated via an MLP as y = MLPðhÞ, based on the visual or temporal

representation.

Multi-modal self-supervised contrastive pre-training

VTCLR is a contrastive pre-training framework to learn different but comple-

mentary visual and temporal knowledge from modalities both of image and

video. Contrastive learning aims at learning representation through contrasting

positive view pairs against negative view pairs. Given a set of augmented

views fbxkg, the training objective is to identify the positive sample bxj among

a set of unrelated noise samples fbxkgksj for a given bxi, where the current

view bxi and the positive sample bxj are two different augmented views of the

same data input, and the negative samples are augmented views of others.

Our VTCLR is designed to learn representation frommodalities, therefore con-

sisting of two parts: spatial and temporal augmentations for images and videos

and a two-stage training process.

Data augmentations. For static images and frames in time-lapse videos, all

images are applied with spatial augmentations including random resized

crop, random horizontal flip, and random color jitter. For time-lapse videos,
we used a dynamic-aware sampling strategy to reduce redundancy in frames

sampled from videos. Given the fact that embryos appear relatively static be-

tween stage transitions during development, the commonly used strategies

such as continuous sampling with a fixed stride or uniform sampling along

the temporal dimension will cause redundancy of morphology in the sampled

frames. Therefore, we adopted a sample method based on image-level differ-

ence to increase the difference of motion magnitude between sampled

frames.48 Specifically, the motion signal St of frame t, t >1 is quantified with

St =
PH

j = 1

PW
i = 1jIði;j;tÞ � Iði;j;t � 1Þj, where Iði; j; tÞ is the pixel value of frame

t, and normalized to motion salience distribution M with L1-norm (i.e.,
P

mt =

1;mt = St=
P

St0 ). To adjust the uniformity of the distribution M, a hyper-

parameter m is introduced and the adjusted distribution is formulated as

bmt = ðmtÞm=
P ðmtÞm. To sample N frames from a video, the video is

segmented into N parts with the same cumulated motion salience bmt inside

each part, then one frame is randomly sampled from each part to form a video

sample. Specifically, we set the m = 0:5when sampling. By adopting the above

sampling strategy, frames with more morphological changes will have a higher

probability of being sampled, and the sampling process keeps sufficient

randomness for temporal data augmentations.

Training process. Suppose we have a minibatch of B samples and define the

contrastive prediction task on pairs of augmented views derived from themini-

batch, resulting in 2B augmented views. Given a positive pair of views, we

treated other 2B � 2 views as negative views. Each view is encoded by IV-

Former into a hidden vector of h˛Rd . A projection head of MLP is applied

on the encoded vector to produce latent vector z. NT-Xent loss is applied to

the 2B latent vectors to maximize the agreement of positive pairs while mini-

mizing the agreement of negative ones as Lij = � log ðexp ðsimðzi ;
zjÞ =tÞ =S2B

k = 1ðiskÞ exp ðsimðzi ; zkÞ =tÞÞ, where zi and zj are latent vectors of a

positive pair, sim(.) is the cosine similarity between two vectors, and t is the

temperature parameter.

The training process alternates between two stages of SSL on images and

videos, respectively. The consistency of cross-modality knowledge is facili-

tated by sharing the visual encoder in IVFormer. In the first stage, we improve

the feature extraction ability of the shared visual encoder on static images. In

the second stage, we further optimized the temporal encoder with time-lapse

videos based on the shared visual encoder. A similar self-supervised process

is applied to minibatches of sampled time-lapse videos. The positive pair is

derived from two sampled video clips from the same time-lapse video with

both spatial and temporal augmentations. The two training stages are alterna-

tives with an interval of one epoch. After pre-training, the pre-trained model is

further fine-tuned on the downstream tasks.

Prediction of embryo morphology scores using embryo images

To demonstrate the effectiveness of VTCLR on the shared visual encoder of

IVFormer, we fine-tuned it with a joint loss of embryo morphology grading

based on embryo images. Specifically, we introduce the Z score for pronu-

clear-stage embryos, number of blastomeres, number of blastomeres and

cytoplasmic fragmentation for cleavage-stage embryos, and grade of ICM

and grade of TE for blastocyst-stage embryos as the supervised embryo

morphology grading losses. With the assumption of homoscedastic uncer-

tainty, the loss of a task is weighted and factorized to 1
s2
r
Lr + log sr for a regres-

sion task or 1
2s2c

Lc + log sc for a classification task, where s is a trainable param-

eter. Therefore, the combined loss function for the morphology grading can be

formulated as
P�

1
s2
r
Lr + log sr

�
+
P�

1
2s2c

Lc + log sc

�
.

Prediction of live-birth occurrence using embryo images

For the verification of the temporal encoder pre-trained with VTCLR, we fine-

tuned both visual and temporal encoder in the IVFormer with the live-birth

occurrence prediction task. The live birth occurrence prediction task maps a

transfer X with single or multiple embryos to a probability of live-birth occur-

rence, where X is a sequence ofm images of n embryos. To address the input

with different numbers of embryos in each transfer, we adopted IVFormer to

generate transfer-level live-birth occurrence by extracting features from

n3m images. We used two views of the zygote stage and cleavage stage

for each embryo, and the temporal embedding of them is set according to

the time stamp of each image.

Prediction of ploidy using embryo time-lapse videos

We also fine-tuned the pre-trained visual and temporal encoder with the ploidy

prediction task. The ploidy prediction task predicts the embryo ploidy
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(euploids vs. non-euploids) using embryo time-lapse video and clinical meta-

data. For each time-lapse video, we first downsampled the frames of the video

by uniform sampling, resulting in a total of L frames, to capture morphological

features and developmental kinetics of the embryo over the whole process of

embryo development. The model is fine-tuned with an additional classification

head for ploidy prediction.We used a 5-fold cross-validation scheme for ploidy

prediction.

Training details

Embryo images/frames were resized to 5123 512. The pre-processed and

sampled frames in the video were stacked along the temporal axis to generate

a L35123512 3D tensor, where we set L = 64. The pre-training of models by

back-propagation of errors was performed for 200 epochs with an Adam opti-

mizer,49 with a learning rate of 10� 3, weight decay of 10� 6, and batch size of

64. For each downstream task, fine-tuning was performed for 32 epochs,

learning rate of 10� 5, weight decay of 10� 6, and batch size of 64.

Interpretation of AI predictions

For data in different modalities, we adopted different visualization methods for

interpreting the AI predictions. There are in total three modalities of data adop-

ted in this study. Therefore, we used the gradient-based method, attention-

based method, and Shapley-value-based method for the interpretations of

static images, time-lapse videos, and risk factors, respectively, in the patient

metadata.

First, we used IGs50 to generate visual explanations that highlight areas

contributing to the model’s prediction based on static images. Given a trained

model f , an input image x, and an output score yc = fðxÞ for class c, the basic

gradient-based visualization method51 generates a saliency map where the

importance weight for each pixel is derived by vyc
vx . The IG method improves

the basic method by path-integrated gradients, which quantifies the impor-

tance of each pixel as follows: ðx � x0Þ3 R 1
a = 0

vfðx0+aðx� x0 ÞÞ
vx da, where x0 is a

baseline image. This overcomes the disadvantage of the basic method that

lacks sensitivity to important features when the model output to the correct

class is saturated. In this study, the baseline image used a black image with

the same size of input images. The generated heatmap was filtered by a

Gaussian kernel with s = 8 for smooth.

Second, we used the mean of attention scores after passing the first global

relation layer in the temporal decoder for the interpretations of themodel’s pre-

dictions based on time-lapse videos. The attention scores can be expressed

as follows: softmax
�
QKTffiffiffiffi
dk

p
�
, where Q and K are the queries and key vectors in

the calculation of a global relation layer, and dk is the dimension of the key vec-

tor. The attention score represents the intensity of the model’s attention to

different frames in the video clip. The attention scores are averaged across

all time-lapse videos in the internal validation set. Finally, to display the impact

of relevant risk factors on prediction for non-euploid detection and live-birth

prediction, we adopted the TreeExplainer in the SHAP method. The

TreeExplainer is a value-explainable tool for tree-based models, which can

efficiently and exactly compute optimal local explanations, as defined by

desirable properties from game theory.

Performance study of the AI system

To assess the impact of the AI system on ploidy predictions, the AI systemwas

compared against chance (randomly assigned ploidy predictions) and eight

embryologists. We conducted experiments to study the AI system vs. embry-

ologist’s performance in the ploidy evaluation. Given an embryo, we provided

the video and corresponding clinical metadata to the embryologists. The em-

bryologists assigned a score of 1–10, with higher score indicating a greater

likelihood of euploidy. Each embryo was scored twice (2 weeks after the initial

reading), and the average was calculated as the final score. We then used the

generated AI probabilities to calculate the ranking score for embryo evaluation

and filtering for further PGT-A tests. The euploidy rate of embryos is calculated

at different thresholds. Embryologists’ scores higher than 5 indicate euploidy.

For the AI performance, we used receiver-operating characteristic (ROC) eval-

uation and operating point-based binary classification, based on the gener-

ated probability.

Statistical analysis

To evaluate the performance of regression models for continuous-values pre-

diction in this study, we applied mean absolute error, R-squared, and Pearson
12 Patterns 5, 100985, July 12, 2024
correlation coefficient. We applied the Bland-Altman plot52 displaying the dif-

ference between the measured value and the predicted value of a sample

against the average of the two. We evaluated the agreement of the predicted

value and actual value by 95% limits of agreement and intraclass correlation

coefficient. Themodels for binary classification were evaluated by ROC curves

of sensitivity vs. 1 � specificity. The AUC of ROC curves was reported with

95%CIs. The 95%CIs of AUCs were estimated with the non-parametric boot-

strap method (1,000 random resamplings with replacement). The operating

point of an AI system could be set differently to balance the true-positive

rate and the false-positive rate. The embryo-level models were generated us-

ing the average outputs of predictions of image level. The AUCs were calcu-

lated using the Python package of scikit-learn (version 0.22.1).
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