Supplementary Online Content

Seow WJ, Shu X-O, Nicholson JK, et al. Association of untargeted urinary metabolomics and lung cancer risk among never-smoking women in China. *JAMA Netw Open.* 2019;2(9):e1911970. doi:10.1001/jamanetworkopen.2019.11970

- eTable 1. Spearman Correlations Between Significant Metabolites (<10% FDR) in Controls Only, Cases Only and Overall Study Population
- eTable 2. Associations Between Urinary Metabolites and Lung Cancer Risk, Stratified by Lung Cancer Subtypes
- eTable 3. Associations Between the Most Significant Metabolite (5-Methyl-2-Furoic Acid) and Lung Cancer in Tertiles, Stratified by Lung Cancer Subtypes
- eTable 4. Identification of the Top Three Metabolites
- eTable 5. Associations Between neg_2.60_369.0408mz, pos_2.61_184.0325n and Lung Cancer, by Tertiles
- eTable 6. Univariate Linear Regression and Correlation Between the Most Significant Metabolite (5-Methyl-2-Furoic Acid) and Diet Variables Among Controls

This supplementary material has been provided by the authors to give readers additional information about their work.

eTable~1.~Spearman~correlations~between~significant~metabolites~(<10%~FDR)~in~controls~only,~cases~only~and~overall~study~population

Metabolite 1	Metabolite 2	Controls		Cases		Overall	
		Correlation coefficient	P-value	Correlation coefficient	P-value	Correlation coefficient	P-value
pos_2.61_184.0325n	pos_2.61_127.0382m/z	0.89	9.98x 10 ⁻²³⁰	0.88	1.87x 10 ⁻²⁰⁶	0.89	<9.98x 10 ⁻²³⁰
neg_2.60_369.0408m/z	pos_2.61_127.0382m/z	0.77	8.31x 10 ⁻⁹⁵	0.68	5.93x 10 ⁻⁵²	0.74	6.18x 10 ⁻¹⁵⁰
pos_2.61_184.0325n	neg_2.60_369.0408m/z	0.69	3.04x 10 ⁻⁵⁷	0.62	3.54x 10 ⁻³⁸	0.67	9.02x 10 ⁻¹⁰¹

Abbreviations: FDR, false discovery rate

eTable 2. Associations between urinary metabolites and lung cancer risk, stratified by lung cancer subtypes

Lung cancer subtype	Metabolite ^a	Cases	Controls	OR (95% CI) ^b	P-value
Adenocarcinoma ^c	pos_2.61_127.0382mz	135	289	0.57 (0.43-0.76)	0.00012
	neg_2.60_369.0408mz	135	289	0.97 (0.96-0.98)	0.00013
	pos_2.61_184.0325n	135	289	0.53 (0.39-0.74)	0.00011
Non-adenocarcinoma ^d	pos_2.61_127.0382mz	28	289	0.51 (0.29-0.89)	0.017
	neg_2.60_369.0408mz	28	289	0.96 (0.93-0.99)	0.0035
	pos_2.61_184.0325n	28	289	0.44 (0.23-0.83)	0.012
Unclassified	pos_2.61_127.0382mz	104	289	0.58 (0.42-0.79)	0.00072
	neg_2.60_369.0408mz	104	289	0.97 (0.95-0.99)	0.00079
	pos_2.61_184.0325n	104	289	0.58 (0.41-0.82)	0.0024

Abbreviations: OR, odds ratio; CI, confidence interval

^aMetabolites were natural log transformed.

^bAll models were adjusted for age, BMI, history of respiratory diseases and passive smoking.

^cAdenocarcinoma cases include (8140/3) Adenocarcinoma, (8250/3) Bronchiolo-alveolar adenocarcinoma, (8251/3) Alveolar adenocarcinoma, (8260/3) Papillary adenocarcinoma and (8480/3) Mucinous adenocarcinoma.

^dNon-adenocarcinoma cases include: carcinoma (2), small cell carcinoma (1), squamous cell carcinoma (9), neuroendocrine carcinoma (1), mucoepidermoid carcinoma (1) and adenosquamous carcinoma (14).

eTable 3. Associations between the most significant metabolite (5-methyl-2-furoic acid) and lung cancer intertiles, stratified by lung cancer subtypes

Lung cancer subtype	Metabolite tertile	Cases	Controls	OR (95% CI) ^a	P-value	P-trend
Adenocarcinoma ^b	1 st Tertile	70	96	1.00	-	0.0023
	2 nd Tertile	35	95	0.55 (0.33-0.91)	0.021	
	3 rd Tertile	30	96	0.45 (0.26-0.77)	0.0035	
Non-adenocarcinoma ^c	1 st Tertile	15	96	1.00	-	0.15
	2 nd Tertile	6	95	0.42 (0.15-1.19)	0.10	
	3 rd Tertile	7	96	0.52 (0.20-1.37)	0.19	
Unclassified	1 st Tertile	51	96	1.00	-	0.0043
	2 nd Tertile	27	95	0.48 (0.27-0.86)	0.014	
	3 rd Tertile	25	96	0.44 (0.25-0.79)	0.0063	

Abbreviations: OR, odds ratio; CI, confidence interval

^aAll models were adjusted for age, BMI, history of respiratory diseases and passive smoking.

^bAdenocarcinoma cases (new) include (8140/3) Adenocarcinoma, (8250/3) Bronchiolo-alveolar adenocarcinoma, (8251/3) Alveolar adenocarcinoma, (8260/3) Papillary adenocarcinoma and (8480/3) Mucinous adenocarcinoma.

^dNon-adenocarcinoma cases include: carcinoma (2), small cell carcinoma (1), squamous cell carcinoma (9), neuroendocrine carcinoma (1), mucoepidermoid carcinoma (1) and adenosquamous carcinoma (14).

eTable 4. Identification of the top three metabolites

Metabolite	Feature ID	Method	Ion	m/z	Retention time (min)	Fragments
5-methyl furan-2- carboxylic acid (5-methyl-2-furoic	2.61_127.0382m/z ^a	RP UPLC- MS/MS (ESI+)	[M+H ⁺] ⁺	127.038	2.621	71, 81, 109, 113
acid) HMDB #: HMDB59735		RP UPLC- MS/MS (ESI-)	[M-H ⁺] ⁻	125.02	2.713	69, 79, 81, 97, 107
UA	2.61_184.0325n	RP UPLC- MS (ESI+)	[M+H ⁺] ⁺	185.025	2.607	The intensity of this ion is too low to obtain fragmentation information
UA	2.60_369.0408 m/z	RP UPLC- MS (ESI-)	[M+FA- H ⁺] ⁻	369.040	2.60	The ion [M+H ⁺] ⁺ 325.055 and [M+FA-H ⁺] ⁻ are too low intensity to obtain fragmentation information

Abbreviation: UA, unannotated; ESI - electrospray ionization

^aThe fragmentation pattern of this feature has been identified to a level of assignment 2 (putatively annotated compound) and is matched to the fragmentation of the metabolite available on the online database METLIN. RP UPLC-MS – reverse phase ultrahigh performance mass spectrometry.

eTable 5. Associations between neg_2.60_369.0408mz, pos_2.61_184.0325n and lung cancer, by tertiles

Log Metabolite tertiles	Lung cancer	Non-lung cancer	OR (95% CI) ^a	P-value	P-trend
neg_2.60_369.0408mz					
1^{st} Tertile (median = $log0$	2) 153	104	1.00	-	1.17 x 10 ⁻⁵
2^{nd} Tertile (median = 6.9)	9) 62	87	0.47 (0.31-0.73)	0.00061	
3^{rd} Tertile (median = 8.9)	9) 60	98	0.40 (0.26-0.62)	3.18 x 10 ⁻⁵	
pos_2.61_184.0325n					
1^{st} Tertile (median = 9.2)	2) 129	95	1.00	-	
2^{nd} Tertile (median = 9.8)	3) 75	94	0.58 (0.38-0.88)	0.011	0.00061
3^{rd} Tertile (median = 10.5)	5) 64	98	0.48 (0.31-0.74)	0.00089	

Abbreviations: OR, odds ratio; CI, confidence interval

^aAll models were adjusted for age, BMI, history of respiratory diseases and passive smoking.

^bThis group is composed of zero values.

eTable 6. Univariate linear regression and correlation between the most significant metabolite (5-methyl-2-furoic acid) and diet variables among controls

Diet variable	Regression coefficient	P-value ^a	Spearman correlation coefficient	P-value ^b
Egg	0.0069	0.0059	0.13	0.030
Soy food ^a	0.0010	0.0072	0.21	0.00041
Fish	0.0025	0.070	0.10	0.089
Crucifers	0.0011	0.11	0.089	0.13
All vegetables	0.0004	0.13	0.10	0.092
Meat	0.0017	0.21	0.071	0.23
Allium	-0.0067	0.24	0.045	0.45
Poultry	0.0028	0.29	0.014	0.82
Watermelon	0.0004	0.47	0.00093	0.99
Fruit	-0.0001	0.63	0.018	0.76
Rice	-0.0003	0.64	-0.069	0.24

Abbreviations: FDR, false discovery rate

^aAll models were adjusted for age, BMI, history of respiratory diseases and passive smoking. ^bDietary soy food intake includes soy milk, tofu, fried tofu, dried or pressed tofu, fresh green soy beans, dry soy beans, soy sprouts, and other soy products.