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Effects of microenvironment
in osteosarcoma on
chemoresistance and
the promise of immunotherapy
as an osteosarcoma
therapeutic modality

Lei Yu, Jian Zhang and Yunfeng Li*

Department of Radiation Oncology, The Second Affiliated Hospital of Jilin University,
Changchun, China
Osteosarcoma (OS) is one of the most common primary malignant tumors

originating in bones. Its high malignancy typically manifests in lung metastasis

leading to high mortality. Although remarkable advances in surgical resection

and neoadjuvant chemotherapy have lengthened life expectancy and greatly

improved the survival rate among OS patients, no further breakthroughs have

been achieved. It is challenging to treat patients with chemoresistant tumors

and distant metastases. Recent studies have identified a compelling set of links

between hypoxia and chemotherapy failure. Here, we review the evidence

supporting the positive effects of hypoxia in the tumor microenvironment

(TME). In addition, certain anticancer effects of immune checkpoint inhibitors

have been demonstrated in OS preclinical models. Continued long-term

observation in clinical trials is required. In the present review, we discuss the

mutualistic effects of the TME in OS treatment and summarize the mechanisms

of immunotherapy and their interaction with TME when used to treat OS. We

also suggest that immunotherapy, a new comprehensive and potential

antitumor approach that stimulates an immune response to eliminate tumor

cells, may represent an innovative approach for the development of a novel

treatment regimen for OS patients.
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1 Introduction

Osteosarcoma (OS) is an osteoid-producing malignancy of

mesenchymal origin. Worldwide incidence is 3.4 cases per

million people per year (1). OS (accounting for 56%) is much

more common than Ewing sarcoma, chondrosarcoma, and

chordoma (2). Primary OS affects children, teenagers, and

elders, with age-specific incidence varying according to

histological subtype (Table 1). OS typically affects patients

aged 10–30 years. In the group aged 25–59 years, the male to

female incidence ratio of OS is 1.28:1 and the number is elevated

(1.43:1) in the group aged 0–24 years. In addition, the ratio

varies in diverse populations (3). OS frequently arises in the long

bones (particularly the distal femur or the epiphysis of the

proximal tibia) (3, 4). OS carcinogenesis is a complex process

involving genetic mutations and dysregulation of epigenetic

pathways (5). However, through whole-genome and exome

sequencing, transcriptome assessment of gene expression, and

epigenetic modifications, it was revealed that there was

remarkable genomic complexity and significant inter-patient

heterogeneity of genes in OS samples (6).

Currently, the standard treatment protocol for patients with

OS comprises extensive surgical resection, radiotherapy, and

administration of chemotherapeutic agents. The current curative

regimen combines surgery with multiple modes of

chemotherapy using several cytotoxic agents, such as cis-

platinum, doxorubicin, high-dose methotrexate, and ifosfamide

during preoperative and postoperative periods (7). Surgical

excision is preferred over systemic therapy for recurrent
Abbreviations: ACT, adoptive T cell transfer; BIM, BH3-only protein, a

mediator of apoptosis; CAR, chimeric antigen receptor; CSCs, cancer stem

cells; CSF1R, colony-stimulating factor 1 receptor; CTL, cytotoxic T cells;

CTLA4, cytotoxic T lymphocyte associated protein 4; EMA, European

Medical Agency; EMT, epithelial-mesenchymal transition; HIFs, hypoxia-

inducible factors; HRE, hypoxia response element; ICIs, immune checkpoint

inhibitors; IDO, indoleamine 2,3-dioxygenase; IFNg, interferon-gamma;

iNOS, inducible nitric oxide synthase; JNK, Jun N-terminal kinase; LAG-3,

lymphocyte-activation gene 3; MDSCs, myeloid-derived suppressor cells;

Met, metformin; NF-kB, nuclear factor-kappa B; ORR, objective response

rate; OS, osteosarcoma; OXPHOS, decreased oxidative phosphorylation; PD-

1, programmed death-1 and; PD-L1, programmed death-ligand 1; PFS,

progression-free survival; PGE2, prostaglandin E2; PMN-MDSCs,

polymorphonuclear MDSCs; ROS, reactive oxygen species; SDF-1, stromal

cell-derived factor-1; SIRPa, signal regulatory protein a; STAT3, signal

transducer and activator of transcription 3; TAMs, tumor-associated

macrophages; TCR, T cell receptor,; TCRs, T cell receptors; TIC, tumor-

initiating cell; TIGIT, anti-T cell immunoreceptor with Ig and ITIM domains;

TILs, tumor-infiltrating lymphocytes; TME, tumor microenvironment; Tregs,

regulatory T cells; TSA, tumor-specific antigens; VCAM-1, vascular cell

adhesion molecule 1; VEGF, vascular endothelial growth factor.
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disease while unresectable cases would be treated by systemic

therapy or comprehensive therapy (8). Via radiotherapy, we can

take advantage of ionizing radiation to help eliminate

microscopic or minimal residual disease in situations where

substantial surgical resection is not feasible (9). However, in the

majority of OS cases, the efficacy of radiotherapy is limited, and

the indications for this approach are finite (10). Despite

aggressive interventions, patient outcomes have not

significantly improved over the last 20 years. During this

period, the well-known phenomenon of chemotherapeutic

resistance has prevented improvements in prognosis

(7).Furthermore, OS prognosis has not improved over the past

several decades. Facing these hindrances to current curative

regimens, identifying novel therapeutics is critical to promote

the management of OS.

Multidrug resistance is a difficult problem that results in

unsatisfactory clinical outcomes (11). In recent years, many studies

have demonstrated that the tumor microenvironment (TME)

appears to influence clinical outcome and therapeutic response by

regulating tumor chemoresistance (12, 13). Managing TME-related

drug resistance may profoundly affect cancer therapeutic strategies.

TME-related multidrug resistance can be mediated by hypoxic

conditions and soluble factors secreted by tumors or stromal cells.

Inhibiting extracellular ligand–receptor interactions and

downstream pathways are among the TME-targeted treatment

methods (13). We propose that focusing on the primary

mechanism of TME-related multidrug resistance would yield

substantially greater benefits. A combination of drugs that can

simultaneously attack tumor cells and the TME may help reduce

chemoresistance. Herein, we review the effects and mechanisms of

chemoresistance regulated by the OS TME through hypoxia and

immune cells. This review also suggests the novel and therapeutic

potential of immunotherapy for the management of OS treatment.

There is a pressing need to investigate novel therapies that

could impact OS because of its resistance to chemotherapy.

Immunotherapy has gained considerable attention since it has

demonstrated efficacy in the treatment of cancers. For instance,

the combination of nab-paclitaxel and atezolizumab was

recently approved by the Food and Drug Administration

(FDA) for patients with unresectable locally advanced or

metastatic TNBC whose tumors express PD-L1 based on a

PFS benefit over chemotherapy in the Impassion130 trial (14).

Interactions between TME modulation and the immune system

may enhance therapeutic efficacy. Immunotherapy is a

promising therapeutic strategy for improving the curative

efficacy of existing OS treatments despite chemoresistance. In

the current review, we present the mechanism of TME-related

chemoresistance and describe the modulatory effects of the TME

in OS treatment. Subsequently, we discuss new technologies and

strategies— immunotherapy that can be adapted to explore the

roles of the TME in improving the curative effects of drug

treatment by modifying TME-associated factors. A better

understanding of the molecular mechanisms of immunological
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therapy is required, as current research suggests that this may be

a more promising method to develop and implement optimal

preventive and curative approaches to treating patients with OS.

Our review of the active mechanisms of immune-cell regulation

within the TME and the impressive clinical results achieved by

stimulating antitumor immune responses supports the

implementation of immunotherapy together with anticancer

therapies for the treatment of OS.

2 Mechanisms of TME-mediated
chemotherapy resistance in OS

The TME is composed of multiple cell types (fibroblasts,

endothelial cells, and immune cells), extracellular components

that surround tumor cells and are nourished by the vasculature

(chemokines, cytokines, hormones, and ECM), and various physical

and chemical factors surrounding tumor cells (hypoxia and acidic

environment) (15). The TME plays a pivotal role in carcinogenesis,

tumor development, andmetastasis. For example, the TMEmakes a

remarkable contribution to the acquisition and maintenance of

cancer hallmarks, such as inducing angiogenesis, sustaining

proliferative signaling, resisting cell death, and activating invasion

and metastasis (15). The TME also exerts profound effects on

therapeutic efficacy. TME-reduced multidrug resistance results

from sustained crosstalk between tumor cells and their

surrounding matrix. Owing to genomic instability, tumor cells are

prone to chemoresistance, whereas non-tumor cells in the TME are

more genetically stable and susceptible to stimulation. Hence, the

insight that cancer progression and therapeutic resistance are

closely related to the TME raises the possibility that efforts

devoted to targeting TME elements or their signaling pathways

could achieve therapeutic advances for cancer patients.
2.1 Hypoxic TME and chemoresistance
in OS

Tumor cells typically live in a state of hypoxia because of

hypermetabolism, abnormal proliferation, and high oxygen

consumption (16). A compelling set of links between drug
Frontiers in Immunology 03
resistance and hypoxia-inducible factors (HIFs) has emerged

(17). Following hypoxia, HIFs secreted for hypoxic adaptation

are capable of triggering the expression of a variety of genes

related to erythropoiesis, glycolysis, and angiogenesis, as well as

restore oxygen homeostasis at the epigenetic and transcriptional

levels (18, 19). Undoubtedly, hypoxia may result in an acidic

environment and the Warburg effect is the typical example:

tumor cells tend to obtain energy through glycolysis. Through H

+-ATPases, Na+-H+ exchangers, and HCO3- transporters, the

acidoid can be transported from an intracellular area to an

extracellular one (20, 21). In addition, the rapid tumor

proliferation and abnormal vascular structures accelerate

further accumulation of acid, eventually leading to an

extracellular pH of 6.7–7.1 for tumor cells and an intracellular

pH > 7.4. In comparison, the extracellular and intracellular pH

of normal cells is approximately 7.4 and 7.2, respectively (12).
2.1.1 Hypoxic TME induces chemoresistance by
regulating signaling pathways

Accumulating evidence suggests that hypoxia plays a vital

role in the molecular mechanisms underlying drug-resistant

cancers by regulating gene expression (Table 2). For instance,

overexpression of efflux transporters (primarily the ATP-

binding cassette [ABC] superfamily of pump proteins,

including P-glycoprotein [P-gp] encoded by the multidrug

resistance gene 1 [MDR-1]) may amplify the efflux of certain

drugs from tumor cells, thereby resulting in resistance to

anticancer drug (37–39). Roncuzzi et al. (35) showed that

hypoxia-inducible factor 1-alpha (HIF-1a), the most

influential regulator of cell adaptation to hypoxia, promotes

export of intracellular doxorubicin by increasing the level of P-

gp in OS. Furthermore, by modulating the expression of c-Myc

and p21, HIF-1a can prevent doxorubicin-induced OS

apoptosis, indicating that HIF-1a could be a valuable

therapeutic target . Ma et al . (40) determined that

overexpression of spindle-and kinetochore-associated complex

subunit 1 (SKA1) can reduce express ion of some

multidrug resistance genes, such as ABCB1 (MDR1), ABCC2

(MRP2), and GSTP1, as well as enhance sensitivity to the drugs
TABLE 1 Categories and treatment options for OS.

Subtype of OS Incidence Common anatomical distribution Chemosensitivity Radiosensitivity

Conventional OS (3 subtypes: osteoblastic,
chondroblastic, fibroblastic)

75.0% Metaphysis of long bone around knee and shoulder
joint, axial skeleton

Sensitive Radiotherapy can be
useful

Parosteal OS 3.5–4% Posterior cortex of distal femur Hyposensitivity Hyposensitivity

Telangiectatic OS 3–4% Similar to conventional OS Sensitive Hyposensitivity

Periosteal OS 1.5–2% Tibia or femur Hyposensitivity Hyposensitivity

Small cell OS 1.5% — Sensitive Sensitive

Low grade central OS 1–2% Intramedullary distal femur, proximal tibia, pelvis — —

High-grade surface OS <1% Long bone, distal femur Sensitive Radiotherapy can be
useful
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TABLE 2 A schematic diagram of the expression of hypoxic and drug resistance factors.

Study.
(year).
Ref

Source Mechanism Target
gene

Expression
change

Clinic char-
acters relat-

edness

Wang
et al.(2019)
(22)

MG-63 and U2-os cells Visfatin was involved in cisplatin resistance of OS cells
by upregulating expression of Snail via HIF-1a induced
transcription

Snail and
its mRNA

↑ cisplatin
resistance

Keremu
et al.(2019)
(23)

20 osteosarcoma patient samples and human
OS cell lines (MG-63, U-2OS and SaoS-2)

Overexpression of miR-199a resensitizes cisplatin
resistant cells to cisplatin through inhibition of HIF-1a

miR-199a ↑ cisplatin
resistance

Zheng
et al.(2017)
(24)

U-2OS (derived from bone tissues of a 15-
year-old OS patient) and MG-63 (derived
from bone tissues of a 14-year-old OS
patient) cells

HIF-1a-induced Mxd1 up-regulation suppresses the
expression of PTEN under hypoxia, which leads to the
activation of PI3K/AKT antiapoptotic and survival
pathway

Mxd1 ↑ hypoxia-induced
cisplatin
resistance

Guo
et al.(2017)
(25)

MG63, U2OS and 143B cells MiR-335 targets CSCs and regulates OS stem cell-like
properties via downregulated POU5F1 to synergize with
chemotherapeutic drugs

miR-335 ↓ stem cell-like
properties

Ma
et al.(2017)
(26)

Human OS cells (SOSP-9607, MG-63, SaOS-
2)

Hypoxia increased the expression of MRG and enhanced
the sensitivity of EPI and IFO in OS patients

SKA1 ↓ chemotherapy
resistance

Zhao
et al.(2016)
(27)

MG-63 and U2-os cells Hypoxia reduced sensitivity to Dox by promoting the
AMPK signaling and has no association with HIF-1a

AMPK ↑ Dox resistance
and Dox-
induced
apoptosis

Zhou
et al.(2016)
(28)

human OS cell lines (MG-63, U-2OS and
SaoS-2)

Hypoxia induced microRNA-488 expression to promote
proliferation, reduce apoptosis and decrease the Dox
sensitivity of OS cells

microRNA-
488

↑ tumor
proliferation,
apoptosis and
Dox resistance

Wang
et al.(2016)
(29)

human OS cell lines MG-63, U2OS, Saos-2
and normal os-
teoblastic cell line HOB

miR-367 suppressed the increase of KLF4 induced by
ADR in OS cells, as well as Bax and cleaved caspase-3

MiR-367 ↑ ADR-induced
apoptosis

Lin
et al.(2016)
(30)

U2OS and G293 cell lines miR-202 promotes chemotherapy resistance by targeting
PDCD4

miR-202 ↑ Dox resistance
and Dox-
induced
apoptosis

Xu
et al.(2016)
(31)

MG-63 cell line and Dox-resistant cell line
(Mg-63/Dox)

miR-30a downregulated in Mg-63/Dox and miR-30a
reduced chemoresistance via suppressing Beclin-1-
mediated autophagy

miR-30a ↓ chemoresistance
and autophagy

Li
et al.(2016)
(32)

human MG-63 OS cells Notch signaling is up-regulated in human OS
cells under hypoxia and Notch1 may represent a viable
target to overcome chemoresistant OS cells in a hypoxic
niche by
regulating MRP1 gene expression.

Notch1
and MRP1

↑ chemoresistant

Guo
et al.(2015)
(33)

human MG-63 OS cells HIF-1a inhibitor combined with paxilitaxel blocked
autophagy and augmented the anti-tumor effects.

— — paxilitaxel-
induced
apoptosis

Zhang
et al.(2015)
(34)

human OS cell lines (MG-63 and U-2OS) miR-301a and HMGCR were up-regulated in
chemotherapy-resistant OS, subsequently reduced
Dox-induced cell apoptosis and contributed to
chemoresistance of OS cells

miR-301a ↑ Dox resistance
and Dox-
induced
apoptosis

Roncuzzi
et al.(2014)
(35)

human MG-63 OS cells HIF-1a hindered Dox-induced apoptosis and promoted
the outward transport of intracellular Dox by activating
P-gp expression in OS in normoxic conditions

c-Myc ↓ Dox-induced
apoptosis

p21 ↑ Dox-induced
apoptosis

MDR-1/P-
gp

↑ Dox resistance

(Continued)
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epirubicin and ifosfamide, which have been used in OS patients.

Downregulation of SKA1 expression is mediated by hypoxia,

which increases chemoresistance in human OS cells. Li et al. (32)

concluded that hypoxia and the Notch signaling pathway display

crosstalk. Specifically, hypoxia upregulates the Notch signaling

pathway in human OS cells, contributing to OS cell proliferation

and G0/G1-S-G2/M phase transition and consequently

promoting multidrug resistance. Western blot analysis showed

hypoxia elevated secretion of HIF-1a and Notch1, resulting in

the upregulation of MRP1 (which encodes a homolog of the

multidrug resistance protein).

Another mechanism of hypoxic TME function was reported

by Zhao et al. (27). Hypoxia visibly impaired the sensitivity of

U2-OS cells to doxorubicin by upregulating the AMPK signaling

pathway. This impaired sensitivity was independent of HIF-1a
but was promoted by hypoxia in U2-OS cells. Further research

(27) has confirmed that the primary mechanism is associated

with a distinct upregulation of phosphorylated AMPK and

phosphorylated acetyl-CoA carboxylase (ACC). Both were

modu l a t ed by th e AMPK ac t i v a t o r A ICAR and

the AMPK inhibitor Compound C. AICAR and Compound C

decreased or increased the sensitivity of U2-OS cells to

doxorubicin by promoting or downregulating AMPK activity,

respectively. Therefore, the prevalent application of HIF

inhibitors in clinical settings remains controversial, despite

progress made in the research of many types of tumors (41).

2.1.2 Hypoxic TME induces chemoresistance by
regulating autophagy

Autophagy, also known as type II programmed cell death, is a

self-digestion process by which cells form double-membraned

autophagic vesicles that sequester damaged, denatured, or

senescent organelles, and target them for degradation in

lysosomes (42). The complicated relationship between

autophagy and carcinoma indicates that it plays a dual role in

tumorigenesis and tumor development (43). In the early stages of

tumorigenesis, the inhibition of autophagy promotes cell

proliferation, indicating that this process plays an inhibiting

role in the earliest stages of tumor development. Later in tumor

development, autophagy inhibits tumor cell apoptosis and
Frontiers in Immunology 05
promotes metastasis, allowing tumor cells to continue

proliferating. Increasing evidence supports that autophagy can

cope with intracellular and environmental stresses, such as

hypoxia or nutrient shortage, thereby favoring tumor

progression (42, 44). For instance, the ATG4B chemical

inhibitor (a cysteine proteinase that activates LC3 which is

crucial for OS development) may result in autophagy deficiency

and a decreased proliferation in vitro and tumor growth in vivo

(45). This indicates that autophagy is capable in promoting

proliferation and resistance to anti-cancer therapy in OS tumor

cells (46, 47). As a result, tumor cells can survive under conditions

of hypoxia or nutrient deficiency via autophagy in advanced

stages of tumor development. A recent study by Moscowitz et al.

(48) suggests that hypoxia could promote resistance to irradiation

by activating autophagy to accelerate the clearing of reactive

oxygen species (ROS) in MG-63 human OS cells. These

hypoxia-exposed OS cells displayed compartmental recruitment

of GFP-tagged LC3 and restored the radiation sensitivity on

autophagy inhibition, showing the possible causative link

between hypoxia and autophagy. The regulating function does

not just apply to radiotherapy-resistance. Zhang et al. (49) showed

that CD271+ OS cells showed a higher autophagy activity than

CD271- OS cells under hypoxia while autophagy deficiency in the

CD271+ cells restored chemotherapeutic sensitivity and restricted

the advantage of CD271+ OS cells in terms of tumorigenesis in

vivo. Additionally, autophagy can promote tumor cell growth by

inducing angiogenesis (50).

In contrast, autophagy can protect tumor cells from the

damage of chemotherapy and/or radiotherapy; however, it can

induce programmed apoptosis of tumor cells in response to

antineoplastic drugs. Therefore, the complicated role of

autophagy in tumor treatment is bidirectional and has been

examined by a growing number of scholars. The results of a

recent study (33) suggested that paxilitaxel and a HIF-1a
inhibitor can be used to effectively improve OS chemotherapy

in the future. This study illustrates that PTX induces

autophagy through the HIF-1a pathway. Moreover, in rescue

studies, co-treatment with the HIF-1a inhibitor YC-1

and autophagy inhibitor 3-methyladenine markedly

blocked autophagy and blunted PTX resistance (33).
TABLE 2 Continued

Study.
(year).
Ref

Source Mechanism Target
gene

Expression
change

Clinic char-
acters relat-

edness

Scholten
et al.(2014)
(36)

Human OS cells (143B, MNNG/HOS, MG-
63)

Hypoxic OS cells can be sensitized to Dox treatment by
inhibition of the Wnt/b-catenin signaling pathway

Wnt/b-
catenin
signaling
pathway

↓ Dox-mediated
toxicity
*CSCs, cancer stem cells; ADR, adriamycin; Dox, Dox;↑, upregulated; ↓, downregulated.
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2.1.3 Hypoxic TME induces chemoresistance by
modulating microRNAs

There is evidence that microRNA (miRNA) dysregulation is

predictive of tumor progression and prognosis and contributes

to tumorigenic processes (Table 2). HIF-1a has been identified

as a direct target of miRNAs in multiple tumor types. For

instance, the overexpression of miR-199a re-sensitizes

cisplatin-resistant cells by inhibiting the HIF-1a pathway in

vitro and in vivo (23). Furthermore, exogenous overexpression of

miR-488 induced proliferation and suppressed sensitivity to

doxorubicin in OS cells by targeting the tumor suppressor

BIM (BH3-only protein, a mediator of apoptosis). Hypoxia

can induce expression of miR-488, which is present in high

concentrations in primary OS tissues and OS-derived cells, by

binding to the hypoxia response element (HRE) in its

promoter (28).
2.2 Immune cells within the TME
modulate chemoresistance in OS

At the onset of carcinogenesis, immune cells infiltrate the

TME. Intriguingly, the dynamic tumor immune landscape has a

profound impact on tumor development and dissemination, and

the activation state of immune cells within the TME can fluctuate.
2.2.1 Tumor-associated macrophages
modulate chemoresistance in OS

Tumor-associated macrophages (TAMs) are key

components of the TME and in most cases display tumor-

suppressive properties and therapeutic response regulations. In

solid tumors, TAMs are rooted in circulating monocytes rather

than in proliferating resident macrophages within tumors.

Monocytes in the bone marrow can enter neoplasms via the

bloodstream and subsequently differentiate into macrophages.

Based on their polarization condition, macrophages are

classified as type M1 or M2. M1 macrophages differentiate in

response to the Th1 cytokine interferon-gamma (IFNg), whereas
M2 macrophages are activated by Th2 cytokines, such as

interleukin (IL)-4, IL-10, and IL-13 (51, 52). Similarly, M1

macrophages are generally considered to be cancer-fighting,

while M2 macrophages promote carcinogenesis (53, 54). In

fact, the TME plays a major regulatory role in the functional

polarization of TAMs (54).

Chemotherapeutic agents may induce misdirected repair

responses orchestrated by TAMs, contributing to limiting

tumoricidal efficacy in drug applications (55). Compelling

evidence has revealed that TAMs can mediate resistance to

certain chemotherapeutics (5-fluorouracil, doxorubicin,

paclitaxel, and platinum salts) and anti-VEGF (vascular

endothelial growth factor) treatment in vitro and in vivo (56–

59). Multiple mechanisms underlie the contribution of TAMs to
Frontiers in Immunology 06
chemoresistance: (i) several chemokines secreted by tumor cells

increase the recruitment of immunosuppressive TAMs and

suppress CD8+ T cell responses during chemotherapy (60); (ii)

TAMs develop the capacity to create a number of inhibitory

cytokines, such as IL-1b, IL-6, IL-10, and TGF-b, consequently
blocking the activation of an effective adaptive response and

leading to T cell suppression in the TME (51, 61); (iii) TAM-

derived cathepsins may mediate the activation of the nuclear

factor-kappa B (NF-kB) signaling pathway and the signal

transducer and activator of transcription 3 (STAT3) to

facilitate therapeutic resistance (62–64); (iv) TAMs increase

the tumor initiating potency of cancer stem cells (CSCs) and

preserve CSCs from chemotherapy damages, thereby blunting

chemotherapeutic responses (64); (v) by upregulating the

enzyme cytidine deaminase that metabolizes the drug

following its transport into cancer cells, TAMs can produce

acquired resistance to chemotherapy (65).

Specifically, TAMs can activate STAT3, promote epithelial-

mesenchymal transition (EMT), and upregulate matrix

metallopeptidase 9 (MMP-9) in OS cells to facilitate

chemoresistance. Evidence verified in animal models and OS

patients demonstrated that TAMs possess the ability to induce

OS cell migration and invasion by upregulating cyclooxygenase-

2 (COX-2) and MMP9, phosphorylating STAT3, and promoting

EMT (66). Shao et al. discovered that M2 TAMs enhanced the

tumor initiation and stem-like capacity of CSCs by upregulating

the number of CD117(+)Stro-1(+) cells accompanied by an

increase in CSC markers (CD133, CXCR4, and Oct4) (67).

This indicates that M2 TAMs induce OS cells to acquire stem

cell characteristics and subsequently enhance the drug resistance

of OS. Furthermore, evidence from this study suggest that the

ratio of M1 to M2 macrophages could transform the OS

chemoresistance by regulating the TME. Taken together, there

is a growing interest in TAM-centered treatment regimens,

which involve converting TAM-polarization from an M2 to

M1 phenotype in the TME, transporting anticancer drugs into

the TME via TAMs, suppressing the recruitment of monocytes

and TAMs, and neutralizing the original tumor products of

TAMs (68).

Based on the crucial role that TAMs play in OS growth and

metastasis, many clinical trials were moved forward (Table 3).

For instance, the use of mifamurtide (the liposome-encapsulated

muramyl and macrophage-activating agent) as an effective

immunomodulatory can greatly improve the event-free

survival rate, suppress tumor proliferation, and induce cell

differentiation by switching TAM-polarization from an M2

phenotype to M1 in patients with OS (69–72). Induced by

IFN-g, mifamurtide can activate macrophages to exert

antitumor activities (73). In a phase II clinical trial,

mifamurtide combined with chemotherapeutics (cisplatin,

doxorubicin, methotrexate, and ifosfamide) promoted the

elevation of the overall survival rate and progression-free

survival (PFS) rate through the infiltration of activated
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macrophages in the adolescent OS group (71). To remodel the

immune response, mifamurtide has been ratified by the

European Medical Agency for the adjuvant chemotherapy of

nonmetastatic OS (74). Additionally, the specific blocking of

receptor-ligand binding between macrophages and OS cells may

improve phagocytosis and antitumor effects of macrophages,

and appears to be a promising strategy for cancer therapy.

Colony-stimulating factor 1 receptor (CSF1R), which is

capable of controlling the differentiation and survival of

macrophages and is related to the prognosis of OS, can be

selectively suppressed by pexidartinib (a novel small molecule

tyrosine kinase inhibitor) (75, 76). Pexidartinib depletes TAMs

and boost antitumor immune responses by blocking CSF1R and

has been identified to be safe and well-tolerated in anti-cancer

therapy (77, 78). It is currently being recruited for unresectable

OS patients who are treated with pexidartinib combined with

sirolimus (NCT02584647). In addition, the a4-integrin located

on the surface of TAMs is able to bind to vascular cell adhesion

molecule 1 (VCAM-1) that is expressed in the OS

cytomembrane, resulting in the significant protection of OS

cells from pro-apoptotic cytokines (79). Therefore, it would be

effective to prevent tumor proliferation and metastasis in OS by
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using antibodies that are directed against a4-integrin, such as

natalizumab (NCT03811886) (80).

Owing to the antitumor effects of macrophages in

tumorigenesis, the application of immunomodulatory therapy

is gaining increased attention. A variety of macrophage-related

immune checkpoint inhibitors (ICIs) have been found to inhibit

the proliferation and metastasis of OS through TAMs (Table 3).

For instance, the transmembrane protein CD47, which is

overexpressed in human OS samples, is an innate immune

checkpoint and binds to the inhibitory receptor signal

regulatory protein a (SIRPa) on the surface of TAMs, playing

roles in the evasion of phagocytosis and cell mortality (81–84).

Preclinical studies have indicated that CD47 may be a potential

therapeutic target in OS treatment. The anti-CD47 monoclonal

antibody may enhance the phagocytic effects of macrophages by

restraining the interaction between CD47 and SIRPa in OS

mouse models (84, 85). The efficacy of CD47 mAb +

doxorubicin therapy demonstrates visibly increased TAM

levels and their further phagocytic capabilities in mouse

models of OS, resulting in an additive therapeutic effect (86).

It was also confirmed that SIRPa knockout macrophages boost

phagocytosis in an OS-bearing mice model (87). Although
TABLE 3 Schematic diagram of progressive clinical trials on OS TAM-centered treatments.

Clinical
trial

Phase Combined
drug

Interventions Therapeutic
target

NCT02441309 II Ifosfamide +
Mifamurtide

Group 1: mifamurtide alone; Group 2: ifosfamide alone for 6 weeks then ifosfamide + Mifamurtide for 6
weeks, then mifamurtide alone for 30 weeks; Group 3: ifosfamide + mifamurtide for 12 weeks then
mifamurtide alone for 24 weeks. All participants will receive 36 weeks or more of mifamurtide.

Macrophage

NCT00631631 — — Mifamurtide (L-MTP-PE), intravenous, at a dose of 2 mg/m^2 twice weekly (at least 3 days apart) for 12
weeks, and then weekly for an additional 24 weeks, for a total of 48 doses in 36 weeks.

Macrophage

NCT03811886 I Natalizumab Traditional 3 + 3 escalation of natalizumab at a weight-based dosing 2 mg/kg not exceeding 300 mg. If no
subjects experience a dose limiting toxicity (DLT), 3 more subjects are enrolled at the next dose of 3 mg/kg,
not to exceed 300 mg. If no subjects experience a DLT, 3 more subjects will be enrolled at the next and
final dose of 4 mg/kg, not exceeding 300mg.

TAMs

NCT01459484 II Methotrexate,
Cisplatinum,
Doxorubicine,
Ifosfamide +
Mifamurtide

Group1: Chemotherapy for patients who over express ABCB1/P-glycoprotein:PRE-SUGERY
TREATMENT: methotrexate:12 g/m2 (3cycles) + cisplatinum:120 mg/m2 (3 cycles), doxorubicin + ADM
75 mg/m2 (3 cycles); POST-SURGERY TREATMENT for good responder patients with positive
PGLYCOPROTEIN:methotrexate 12 g/m2 (10 Cycles) cisplatinum 120 mg/m2; Doxorubicin 90 mg/m2
MEPACT 2 mg/m2 twice a week for the first 3 months the weekly for the next 6 months (total length of
treatment: 44 weeks); POST-SURGERY TREATMENT for poor responder patients with positive P-
GLYCOPROTEIN: methotrexate 12 g/m2; cisplatinum 120 mg/m2; doxorubicin 90 mg/m2, ifosfamide 15
g/m2 MEPACT 2 mg/m2 twice a week for the first 3 months the weekly for the next 6 months (total
length of treatment 44 weeks);Group 2: high-grade osteosarcoma treatment for patients who do not over
express ABCB1/P-glycoprotein: high-grade osteosarcoma that does not over express ABCB1/P-glycoprotein
will be treated with a standard 3-drug regimen
PRE-SUGERY TREATMENT: methotrexate: 12 g/m2 (3 cycles), cisplatinum: 120 mg/m2 (3 cycles)
doxorubicin: ADM 75 mg/m2 (3 cycles)
POST-SURGERY TREATMENT: methotrexate 12 g/m2 (10 cycles), cisplatinum 120 mg/m2; doxorubicin
90 mg/m2 (total length 34 weeks)

TAMs

NCT02584647 I Sirolimus +
PLX3397

Subjects with unresectable or metastatic sarcoma will take orally PLX3397 (600 - 1000mg) in combination
with Sirolimus (2-6 mg) daily

TAMs

NCT02502786 II GM-CSF +
humanized
anti-GD2
antibody:
hu3F8

One cycle consists of treatment with hu3F8 at a dose of 2.4 mg/kg/dose for 3 days (day 1, 3, and 5) in the
presence of subcutaneous (sc) GM-CSF (day 4 through 5). These 3 doses of hu3F8 and 10 days of GM-CSF
constitute a treatment cycle. Cycles are repeated at ~2–4-week intervals between first days of hu3F8,
through 5 cycles.

GM-CSF
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clinical trials are performed with CD47/SIRPa blocking on

mult ip le mal ignancies , such as B-ce l l lymphomas

(NCT02953509), acute myeloid leukemia (NCT05266274),

non-small cell lung cancer (NCT04881045), there are currently

no ongoing registered clinical trials in OS using this concept.

However, even without CD47 targeting drugs in OS therapy,

these suggested strategies targeting CD47/SIRPa may still be an

efficient treatment strategy in patients with OS (88).

2.2.2 Myeloid-derived suppressor cells
modulate chemoresistance in OS

Myeloid-derived suppressor cells (MDSCs) are consisting of

myeloid progenitor cells, immature macrophages, immature

granulocytes, and immature dendritic cells. These cells expand

during carcinogenesis and significantly suppress T cell responses

(89). The regulatory mechanisms of MDSCs are related to

multiple immunosuppressive factors in suppressing T cell-

mediated antitumor immunity, including the production of

ROS, inducible nitric oxide synthase (iNOS), COX-2, TGF-b,
and arginase (90–92). In return, tumor cells secrete COX-2 and

prostaglandin E2 (PGE2) to provoke MDSCs expressing

arginase and iNOS (93). Due to the novel focus of MDSCs as

the target in OS immunotherapy, several studies have been

highlighted (Table 4).

For instance, Uehara et al. (98) found that metformin (Met)

reduced the number of MDSCs in tumors, particularly

polymorphonuclear MDSCs (PMN-MDSCs), which is

independent of T cells. The molecular mechanism underlying

this phenomenon involves decreased oxidative phosphorylation
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(OXPHOS) and increased glycolysis in the metabolism of

MDSCs regulated by Met, suggesting that we should regard

the regulation of metabolism of MDSCs as a potential

therapeutic strategy. Additionally, the reduced reactive oxygen

species (ROS) concentration and proton leakage in MDSCs and

TAMs could be confirmed in the OS tumor model (98).

Furthermore, to suppress T cell function, MDSCs not only

remove the key nutrients for T cell proliferation and

metabolism by freeing ROS, but also inhibiting the trafficking

of CTLs into the tumor (101). A recent study (96) showed that

OS tissues were infiltrated by MDSCs with the ability to inhibit

CTL expansion. Moreover, MDSCs were CXCR4+, and migrated

toward the stromal cell-derived factor-1 (SDF-1) gradient in the

OS TME. The axis of CXCR4/SDF-1 may mediate reduced

apoptosis of MDSCs by activating the downstream AKT

pathway. The authors also note that the anti-PD-1 anti-body

immunotherapy effect was strengthened by targeting CXCR4 in

an OS murine model. Moreover, IL-18 induced MDSCs to

infiltrate into the tumor parenchyma in an OS model,

suggesting an IL-18 inhibitor as a potential strategy in MDSC-

targeted immunotherapy in patients with OS (99). MDSCs play a

crucial role in refractoriness to several chemotherapeutic agents,

such as doxorubicin, cisplatin, and ifosfamide, which are

standard treatments for OS (95, 102, 103).

A localized disease approach cure rate of nearly 70% is

achieved, while a metastatic disease approach cure rate of less

than 25% can be achieved. Hence, therapies that prevent OS

metastasis are crucial to patients with OS. Using MDSC-targeted

therapy for blocking OS metastasis may also be a possible
TABLE 4 A schematic diagram of promising therapeutic roles of MDSCs in OS.

Study.
(year).
Ref

Source Mechanism Promising
therapeutic

target

Ligon
et al.(2021)
(94)

tissue from OS
patients

Targeting MDSCs suppressing T-cell infiltration into the PM of OS to block OS metastasis Gene regulation

Deng
et al.(2020)
(95)

80 OS patients from
database and 27 OS
patients

Neoadjuvant chemotherapy reduce the MDSCs number and convert OS into an immune “hot” tumor. MDSCs’
reduction

Jiang
et al.(2019)
(96)

K7M2 mouse OS
model

OS-infiltrating MDSCs were CXCR4 positive and would migrate toward an SDF-1 gradient. The axis of CXCR4/
SDF-1 could reduce the apoptosis of MDSCs.

MDSCs’
apoptosis
induction

Shi
et al.(2019)
(97)

K7M2 mouse OS
model

Combining SNA with anti-PD1 regulated innate immune cells, slowed OS tumor growth and prolonged survival
time of tumor-bearing mice via inhibiting the function of MDSCs with a selective PI3Kd/g inhibitor to enhance
responses to immune checkpoint blockade.

Supplement
classical
immunotherapy

Uehara
et al.(2019)
(98)

K7M2neo OS model Met regulated the metabolism of MDSCs to decrease OXPHOS and enhance glycolysis to inhibit OS growth. MDSCs’
metabolism

Guan
et al.(2017)
(99)

Mouse tumor model IL-18 inducing MDSC to infiltrate into the OS parenchyma MDSCs’
migration

Long
et al.(2016)
(100)

NSG mice ATRA treatment enhances efficacy of GD2-CAR T cells against OS by eradicating monocytic MDSCs and
diminishing the suppressive capacity of granulocytic MDSCs.

MDSCs’
reduction
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treatment as MDSCs inhibit the infiltration of T-cells into the

PMN, especially pulmonary metastasis.

Overall, both hypoxia and immune cells within the TME serve

as basic modulators of OS chemoresistance. However, there is

more involving the correlation between hypoxia and the immune

landscape. Many scholars would like to further explore the impact

and interplay of hypoxia and immunity within the TME.
2.3 Angiogenesis-mediated drug
resistance in OS

The process of angiogenesis is complex, highly adaptive, and

a hallmark of cancer, which is crucial for tumor growth,

metastasis, and drug resistance. A variety of processes

accompany angiogenesis , including endothelial cel l

proliferation, differentiation, migration, recruitment of smooth

muscle cells, and maturation of blood vessels (104). An

imbalance between pro- and anti-angiogenic signals in tumors

can form an abnormal vascular network that typically displays

dilated, convoluted, and hyperpermeable vessels, resulting in

spatiotemporal heterogeneity in either tumor blood flow and

oxygenation or increased tumor interstitial fluid pressure (105).

Moreover, dysregulation of angiogenic and angiocrine activities

can trigger altered bone homeostasis (106). The physiological

consequences of these vascular abnormalities and the resultant

microenvironment fuel tumor progression are conspicuous in

the impaired efficacy of chemotherapy, radiotherapy, and

immunotherapy (105). Apart from the influence of

angiogenesis in hypoxia, acidity, and increased interstitial fluid

pressure toward drug resistance, the abnormal vascular structure

of OS also limits delivery of anticancer drugs (107). As

chemotherapeutics must cross blood vessel walls and penetrate

tumor tissues to kill cancer cells, anticancer drug distribution is

asymmetrical. Therefore, a proportion of target tumor cells

located proximal to tumor blood vessels receive a potentially

lethal concentration of the cytotoxic agent (108). Consequently,

the killing effect of the drug is limited.

Preclinical studies (109–112) of OS have shown that anti-

angiogenic inhibitors transform the abnormal tumor vasculature

into normal vasculature, characterized by attenuation of

hyperpermeability, a normal basement membrane, increased

vascular pericyte coverage, and a resultant decline in tumor

hypoxia and interstitial fluid pressure. In return, the ameliorative

vascular phenotype could favor the metabolic profile of the

TME, delivery of chemotherapy agents, efficacy of

radiotherapy and immunotherapy, and a diminution in

metastatic cells shed by tumors into circulation in mice.

Clinical trials (113–116) of targeted anti-angiogenic drugs have

demonstrated that OS patients with a low OS vascularization

phenotype have higher overall and relapse-free survival rates.

Furthermore, patients with a low OS vascularization phenotype
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showed a better response to neoadjuvant chemotherapy than

that of other patient groups.

Although combinatorial regimens of anti-angiogenic drugs

and chemotherapeutic agents have been widely accepted, several

clinical studies (117, 118) found that these combinations yielded

unsatisfactory results. For instance, the observed histological

response and event-free survival rate in a phase II trial did not

support further evaluation of the combination of chemotherapy

and bevacizumab in OS (119). This may be due to the anti-

angiogenic therapy itself. Although the abnormal structure and

function of cancerous vasculature leads to an anoxic

microenvironment and increases the difficulty of drug delivery,

it is one of the main routes for immune cells as well

as chemotherapy agents to travel through the blood vessels.

Hence, the inhibition of vascular production affects the delivery

and final efficacy of anticancer drugs.

Notably, cells and structures integrated within the TME

strongly shape the functions of one another, modulating

antitumor therapy. For instance, pre-existing blood vessels fail

to perfuse the tumor sufficiently during tumor growth; thus, a

microenvironment deficient in oxygen and nutrients is formed

where metabolites and immunosuppressive modulators

accumulate (120). The resultant anoxic microenvironment

stabilizes HIF-1a or HIF-2a, subsequently activating PDK1

and LDH-A, promoting an acidic extracellular environment

(121, 122). Furthermore, HIF-regulated vascular endothelial

growth factors can induce angiogenesis (121). In addition,

hypoxia alters cellular metabolism and regulates expression of

several immunomodulatory molecules, thereby influencing the

infiltration and phenotype of immune cells (122–124).

Other hypoxia-driven signals affect immune cells as well, such

as acidic environments, cytokines, and nutrient fluctuations.

Thus, it seems that there is a complex and powerful

relationship among anoxic and acidic environments, the

tumor vascular system, and immune cells, orchestrating

cellular progression and metastasis, ultimately leading to drug

resistance (125).

All TME components mentioned above play important roles

in drug resistance in OS therapy. Given the barriers involved in

chemoresistance, novel therapeutic approaches to treat OS is

urgently needed. In the present review, we summarize the effects

and mechanisms of the TME in terms of chemoresistance in OS.

Moreover, we pay considerable attention to immune cells, a key

component of the TME, as a valid strategy to address drug

resistance due to the clinical success of emerging ICIs in

immunotherapy. A detailed analysis of other popular

treatment regimens is beyond the scope of this manuscript.

Thus, suggest that those interested in reading other

comprehensive reviews to find them elsewhere (126, 127). The

current review highlights the therapeutic potential of

immunotherapy in the management of OS. Herein, we review

recent advances in promising new immune checkpoint targets
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for their use in the improvement of chemoresistance and

treatment effects in OS therapy.
3 Immunotherapy: A promising
therapeutic option for OS

Efficacious cancer treatment remains challenging due to

chemoresistance and toxicity. Therefore, limited success can be

achieved with traditional chemotherapy. Tumor cells induce TME

to suppress antitumor immunity, and immunosuppressive cells

and cytokines constitute the extrinsic factors of tumor drug

resistance. Today, immunotherapy is regarded as a promising

and revolutionary therapeutic option for multiple cancers and has

received considerable attention. The discovery of cancer therapy

through inhibition of negative immune regulation was recognized

with the 2018 Nobel Prize. Detailed classification of the main

tumor-infiltrating immune cell lineages is shown in Figure 1.

Human antibodies targeting immune checkpoint proteins

are used to break immune tolerance and activate T cell

responses. These antibodies are called ICIs and include

cytotoxic T lymphocyte associated protein 4 (CTLA4),

programmed death-1 (PD-1), and programmed death-ligand 1

(PD-L1) (128–130). A variety of methods such as adoptive T cell

transfer (ACT), STING agonists, and cancer vaccines leverage

the immune system to assis in recognizing and rejecting tumors.

However, recent studies have highlighted that the TME can

inhibit the functions of immune cells to favor immunological

resistance and suppress antitumor effector functions, indicating

the interwoven relationship between the TME and

immunotherapy (131–133).

In addition, diverse strategies have been proposed to either

enhance the function of antitumor effector cells or to dampen

the protumor activities of immunosuppressive cells (134). In the

following section, we will present a general review of current

state-of-the-art immunotherapies as well as the obstacles that

must be addressed to increase their efficacy.
3.1 Application of ICIs

To reactivate the immunological response of T cells and restore

immune activity in the TME, a single or combined dose of ICIs

inhibits the transmission of immunosuppressive signals, eventually

contributing to the antitumor effect. Two types of ICIs have been

approved by the FDA thus far: CTLA4 (ipilimumab) as well as PD-

1 (nivolumab and pembrolizumab) or PD-L1 (atezolizumab) (135).

Owing to the high response rates of prolonged duration among

certain subsets of melanoma, non-small-cell lung cancer, and renal-

cell carcinoma, the desire to establish new clinical trials for OS has

increased (136–139). Of note, this enthusiasm should be moderated

because of the hysteretic anti-OS drug testing meditated by ICIs.
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The insensitive effect for OS treatment has been revealed according

to the preclinical studies showed in anti-PD-1 monotherapy (140).

It is of great value to evaluate the role of chemoresistance to

therapeutic ICIs in OS and to enhance the sensitivity of OS tissue

to anti-PD-1 monoclonal antibodies. Therefore, more research is

required to design successful endogenous antitumor activity and a

prospective application to improve tumor immunogenicity.

Significantly, the factors determining the remarkable efficacy of

ICIs may include but are not limited to T cell intratumoral

distribution, expression of PD-1/PD-L1, tumor antigenicity, and

fitness of tumor-infiltrating T cells (127).

3.1.1 PD-1/PD-L1 in OS
PD-1 (CD279) is expressed on the surface of activated CD8+

T cells, B cells, and NK cells (141). The ligands of PD-1 are PD-

L1 (CD274 or B7-H1) and PD-L2 (CD273 or B7-DC), which are

typically expressed on the surface of APCs, tumor cells, and

tumor-infiltrating lymphocytes (TILs) within the TME (141).

The engagement of PD-1 and PD-L1/PD-L2 results in a

negative signal for the inhibition of cytokine secretion and

lymphocyte proliferation, interferes with the formation of

immunological synapses, and inhibits T cell receptors (TCRs)

(142, 143), resulting in an attenuated antitumor immune

response (Figure 2).

Studies involving PD-1, PD-L1, and TIL expression in OS

cell lines and tumor tissues are listed in Table 5 (139, 144–151).

According to a series of studies, in 15 patients with OS, biopsy

samples demonstrated PD-1 and PD-L1 expression (47 and 53%,

respectively) and metastases samples showed 40 and 47%,

respectively, whereas resection samples showed no expression

at all, indicating that biopsy or metastatic samples

are most useful in determining whether PD-1 and PD-L1 are

active (152). Using flow cytometry, PD-1 expression was

measured in 56 OS patients and 42 healthy donors, revealing

that PD-1 expression was significantly upregulated in both

peripheral CD4+ and CD8+ T cells in OS patients

(150). Furthermore, cases with metastasis had a higher

proportion of PD-1 expression in CD4+ T cells (150),

particularly within the lung (153). Moreover, researchers have

suggested that in the stage III cases, the expression quantity of

PD-1 on CD4+ T cells was significantly increased. PD-

1 expression on CD8+ T cells varied with tumor stage, as it

began to increase from stage II onward. These results (150)

showing dysregulated PD-1 expression in patients with OS

suggests its critical role in the development of this disease.

Additionally, although PD-L1 expression in OS cell lines varies

widely from low to high, doxorubicin-resistant OS cells seem to

express higher PD-1 than that of non-resistant wild-type

cells (154).

There have been promising results in preclinical OS mouse

models where the PD-1 and PD-L1 pathways have been blocked.

In a mouse model of metastatic OS, the function of T cells can be
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significantly activated by interactions with the PD-1/PD-L1

antibody in vitro and in vivo, consequently resulting in an

increased survival rate (155). In a humanized mouse model,

Zheng et al. (156) confirmed that nivolumab restrained OS

metastasis by boosting CD4+ and CD8+ lymphocytes as well

as the cytolytic activity of CD8+ T cells in the lung. This
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indicates that the PD-1 blockade effectively controlled

OS pulmonary metastasis but did not affect primary lesions

in vivo. When given sequentially and continuously, anti−PD−L1

combinatorial treatment (atezolizumab) with GD2− or HER2

−BsAb enhanced T cell function in vivo and improved tumor

control and survival time in the OS mouse model (157).
FIGURE 1

Immune cells in the tumor microenvironment: roles in tumor killing and immune suppression. Immune cells may evolve into antitumor or pro-
tumor phenotypes in response to their microenvironment. Here, we review the category of the major innate immune cell lineages (in rows)
based on their roles in tumor killing and immune suppression (light blue, left; pale red, right, respectively). Main transcription factors occupy the
center of each cell; blue arrows indicate cytokines upstream of each phenotype, whereas yellow arrows indicate downstream cytokines. cDC1,
conventional dendritic cells 1; pDC, plasmacytoid dendritic cells; NK, natural killer cells; ILC 2, innate lymphoid cell type 2; TH1/2, CD4+ T helper
cell types 1 or 2; CD8+ T: CD8+ T cells; Tregs: CD4+ regulatory T cells.
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Furthermore, Liu et al. (158) revealed that atezolizumab

suppressed tumor proliferation and induced immune-

independent apoptosis of OS by impairing intracellular

mitochondria, resulting in increased ROS and cytochrome-c

leakage, subsequently activating the Jun N-terminal kinase

(JNK) pathway to give rise to apoptosis.

As for clinical trials, compared to the objective response rate

(ORR) (18%) of the advanced soft tissue cohort, the ORR in the

bone sarcoma cohort was 5% with 1PR/22 in OS within the

open-label multicenter phase II trial of pembrolizumab

(SARC028) (159). This study showed that the activity of the

anti-PD-1 immunotherapy in bone sarcomas was limited

because of the ineffective ORR. In another phase II trial in

advanced OS (Norway/Rizzol i co l laborat ion tr ia l ,

NCT03013127), pembrolizumab was well-tolerated but only

demonstrated minor clinically significant antitumor activity

(160). We summarized the clinical trials using ICIs for

patients with OS in Table 6.

3.1.2 CTLA-4 in OS
CTLA-4 (CD152) is a transmembrane glycoprotein primarily

expressed by T cells (161). In the immune cycle, T cells can be

activated when antigens are presented to TCRs by MHC-I or

MHC-II, which is amplified by a costimulatory signal in the form
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of the co-activating receptor CD28 binding to CD80 (B7–1) and

CD86 (B7–2) expressed on antigen-presenting cells (APCs) (162).

CTLA-4 can bind to CD80/CD86. Due to the greater affinity of

CTLA4 to B7 proteins than to CD28, CTLA4 delivers inhibitory

signals of T cell proliferation to downregulate immune responses

by preventing the binding of CD28 with CD80/CD86 in the

priming phase (135), as shown in Figure 2. CTLA4-mediated

inhibitory signaling is complex and occurs within the lymph

nodes, whereas it is generally in the peripheral tissue where PD-

1-mediated inhibitory signaling takes place. Although CTLA4 and

PD-1 signals inhibit the activity of AKT signaling pathways, the

targeted signaling molecules are disparate. CTLA4 signaling

dampens T cell activation pathways by interacting with IL-2,

serine/threonine phosphatase PP2A, and SHP2, which directly

dephosphorylates CD3z (163). In addition, recent studies have

revealed a significant association between CTLA4 genetic

polymorphisms and susceptibility to OS (164, 165).

In another notable study, scientists tested combinatorial anti-

CTLA-4 and anti-PD1/PD-L1 therapy in an animal model of

metastatic OS, showing that this regimen resulted in the complete

control of tumors and immunity to further tumor inoculation

(166), suggesting that such therapy may be more beneficial than

stand-alone monotherapy. In addition, the CTLA-4 antibody,

which combines with dendritic cells, can decrease the level of
FIGURE 2

Schematic of antitumor immune cycle. The immune cycle starts from the production of neoantigens in dying or dead OS cells, endocytosed by
APCs for presentation or cross-presentation on MHC. Then, the antigen-loading APCs migrate to the draining lymph nodes to activate antigen-
specific T cells. Activated T cells then infiltrate the tumor cells to drive adaptive immune response and to restrain tumor growth. These
antitumor immune responses are modified by immune checkpoint mechanisms. The interaction of PD-1 and PD-L1 inhibits intracellular
signaling pathways on T cell activation, whereas CTLA-4 prompts inhibitory effects by competitively depriving CD28 ligand and mechanistically
binding B7 molecules. Antibodies that affect ICIs may sustainably stimulate the antitumor immune response in patients with OS. OS,
osteosarcoma; APCs, antigen-presenting cells; MHC, major histocompatibility complex; PD-1, programmed cell death receptor-1; CTLA-4,
cytotoxic T lymphocyte-associated protein 4; B7-H3, B7 homolog 3; PD-L1/PD-L2, programmed cell death receptor-1/2 ligand; ICIs, immune
checkpoint inhibitors.
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CD4+ regulatory T cells (Tregs) and increase the concentration of

cytotoxic T cells in metastatic OS mice for tumor suppression

(167, 168). In a phase I trial with ipilimumab, four of 33 patients

with advanced pediatric solid tumors (including eight OS

patients) confirmed stable disease and two patients had

unconfirmed stable disease by standard RECIST criteria,

indicating that there is no objective tumor regression under the

treatment with ipilimumab (169). Recent meta-analysis showed

that CTLA-4 is significantly associated with OS risk and may play

a crucial role in carcinogenesis of OS (164, 170). A full description

of the clinical trials is provided in Table 6.
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In summary, although the application of PD-1 or PD-L1

antibodies showed promising outcomes in suppressing tumor

growth in an OS mouse model, the effects of ICIs had limited

therapeutic benefit for patients with OS in clinic trials.

Unfortunately, there have been no current breakthroughs in

clinical trials involving new drugs developed for this

dilemma. However, mifamurtide was shown to improve

overall survival in a phase III trial (70). Moreover,

mifamurtide would promote immune cell to infiltrate into

OS metastases, consequently improving the efficacy of anti-

PD-1 antibodies (171).
TABLE 5 Studies of PD-1/PD-L1 expression in OS.

Study Samples Detection
techniques

Positive Expression of PD-1/PD-L1 Clinical guide

Chen et al.
(2020) (139)

15 OS patients IHC Biopsy samples (PD-1 47% and PD-L1 53%); none in
resections; metastases samples (PD-1 40% and PD-L1 47%)

Assessment of PD-1/PD-L1 in biopsy or metastatic
specimens have clinical value in predicting
therapeutic response.

Torabi et al.
(2017) (144)

OS samples Western blot Positive PD-L1 expression —

qRT-PCR More content of PD-1 mRNA —

26 OS samples IHC PD-1 detected in all tissue samples —

Costa Arantes
et al. (2017)
(145)

9 oral OS patients
of 13

IHC High positive expression of PD-L1 No significant correlation of PD-L1 gene expression
with clinicopathologic features.

Sundara et al.
(2017) (146)

85 samples IHC Positive rate of PD-L1 is 27.8% Higher expression of PD-L1 was detected in
metastatic lesions (48%)

Koirala et al.
(2016) (147)

Cell lines Western blot Positive rate of PD-L1 is 40% Primary OS tumor expressing PD-L1 were more
likely to contain cells that express PD-1.

qRT-PCR Positive rate of PD-L1 mRNA is 75% within 21 cell lines —

107 tissue samples IHC, flow
cytometry

Positive rate of PD-L1 mRNA is 67% within tumor
specimens

Expression level of PD-L1 is connected with the
presence of T cells, DCs and NK cells.

Western blot Positive rate of PD-L1 is 30% within patient samples —

Lussier et al.
(2015) (148)

16 patients IHC Positive rate of PD-L1 is 75% within the metastatic OS Metastatic tumors can tolerize infiltrating T cells
within TME by PD-L1 interactions

Chowdhury
et al. (2015)
(149)

15 OS patients of
115 pediatric
tumors

IHC Positive rate of PD-L1 expression is 47% among OS
patients

Patients expressing PD-L1 showed distinctly better
survival

Zheng et al.
(2015) (150)

56 OS patients IHC, flow
cytometry

High expression level of PD-1 is detected in peripheral
CD4+ and CD8+ T cell within OS patients

PD-1 is involved in tumor progression.

Shen et al.
(2014) (151)

OS cell lines qRT-PCR,
IHC,
flow cytometry

There is slightly higher PD-L1 expression of drug-resistant
variants OS cell lines in comparison with that in parental
cell lines

—

38 patients with
OS

qRT-PCR,
IHC, flow
cytometry

High PD-L1 expression level (23.7%) —

Intermediate PD-L1 expression level (50%) Median survival time is 89 months at low levels of
PD-L1 but is only 28 months at high levels of PD-
L1.

Low PD-L1 expression level (10.5%) PD-L1 expression is distinctly related to TIL
expression.

Negative PD-L1 expression level Pulmonary metastatic cases showed higher PD-L1
expression than that of the non-pulmonary
metastatic lesions.
*OS, osteosarcoma; PD-1, programmed cell death receptor-1; PD-L1, Programmed cell death receptor-1 ligand-1; IHC, immunohistochemistry; qRT-PCR, quantitative real time
polymerase chain reaction; DCs, dendritic cells; NK cells, natural killer cells; TME, tumor microenvironment; TILs, Tumor-infiltrating lymphocytes.
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3.1.3 T cell immunoreceptor with Ig and ITIM
domains in OS

T cell immune checkpoint molecules may be prospective

immunotherapeutic targets for tumor therapy. Currently, anti-T

cell immunoreceptor with Ig and ITIM domains (TIGIT)

therapies are considered curative checkpoint markers because

of their potential to treat hepatocellular carcinoma and breast

cancer by modulating CD8+ T cells, Tregs, and NK cells (172,

173). Wang et al. showed that macrophage M1 types, which are

highly infiltrated in metastatic cases, could predict the overall

survival and disease-free survival of OS, which would be

positively connected to immune checkpoints PD-L1, CTLA4,

and TIGIT (174). Zhou et al. (175) revealed that TIGIT was

widely expressed in CD8+ T, CD4+ T, and NK cells, and that

Tregs showed high immunoinhibitory molecules involving

TIGIT in OS through bioinformatics analysis, indicating that

TIGIT blocking may be a promising avenue for OS treatment. In

addition, peripheral blood CD3+ T cells were isolated from OS

tissues with high and low infiltrated TIGIT+CD3+ T cells

respectively for the detection of cytotoxic activities of the CD3

+ T cells. These results (175) suggest that the TIGIT-blocking

antibody substantially reinforced the cytotoxicity of CD3+ T

cells to promote the death of OS cells, demonstrating the

possibility of TIGIT inhibition for future OS therapies.
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3.1.4 Indoleamine 2,3-dioxygenase in OS
The beginning and rate-limiting stages of the kynurenine

pathway in the metabolism of the essential amino acid

tryptophan are catalyzed by the intracellular enzyme

indoleamine 2,3-dioxygenase (IDO) (176). The biological

function of IDO involves the protection of tumor cells by

inhibiting attacks from T cells (177). High expression of IDO

was observed in multiple tumors, such as pulmonary, colorectal,

and melanoma (178–180), indicating a clinical adverse

prognostic factor (179). Liebau et al. (181) demonstrated for

the first time that IDO was activated by IFN-g in four human OS

cell lines and concluded that IDO was highly expressed in

human OS cells. Urakawa et al. also confirmed these findings

(182). Furthermore, the authors revealed that elevated IDO

expression in OS was associated with metastasis and a poor

clinical outcome in patients by univariate analysis.

However, the multivariate analysis has been particularly

disappointing, showing that there was no discernible link

between IDO expression and metastasis-free survival or overall

survival. Taken together, IDO may be a reliable and promising

prognostic predictor and has the potential to become a novel

molecular target in the therapy for OS. At present, more research

is required to undertake the challenges of improving

immunotherapy efficacy.
TABLE 6 Clinical trials of immune checkpoints inhibitors for patients with osteosarcoma.

Clinical trial Phase Treatment Intervention Immunotherapy
targets

NCT02301039
(SARC028)

II Pembrolizumab Pembrolizumab will be administered i.v. at 200 mg every 3 weeks PD-1

NCT03013127 II Pembrolizumab Pembrolizumab 200 mg i.v. every 3 weeks for up to 35 cycles PD-1

NCT05182164
(PEMBROCABOSARC)

II Pembrolizumab
+ Cabozantinib

Pembrolizumab will be administered i.v on day 1 every 3 weeks (200 mg). Cabozantinib
will be administered per OS once daily (40 mg)

PD-1

NCT02500797 II Nivolumab Patients receive nivolumab i.v over 30 minutes once every 2 weeks. Cycles repeat every 42
days for up to 108 weeks in the absence of disease progression or unacceptable toxicity.
Patients who progress after 10 weeks on single agent nivolumab may elect to cross over to
Arm II.

PD-1

NCT03628209 I/II Nivolumab +
Zacitidine

Participants will be treated with nivolumab i.v., 3 mg/kg on days 1 and 15 of each cycle.
Phase I Dose Escalation - Dose level 1: NA. Dose level 2: 60 mg/m^2. Dose level 3: 75
mg/m^2. Phase II Expansion - Treated at recommended Phase II dose (RP2D).

PD-1

NCT04803877 II Regorafenib +
Nivolumab

Regorafenib 40 mg + 480 mg i.v. over 30 min every 28 days for patients aged 18 and
older; regorafenib 20 mg + nivolumab 3 mg/kg (maximum dose 240 mg) will be
administered i.v. over 30 minutes on day 1 and 15 of each 28-day cycle for subjects
younger than 18 years;

PD-1

NCT02304458 I/II Nivolumab +
Ipilimumab

— PD-1 + CTLA-4

NCT05302921 II Nivolumab +
Ipilimumab

Nivolumab and ipilimumab will be given on day 1 of 21-day cycles for cycles 1-4,
followed by nivolumab alone on days 1 and 15 of 28-day cycles for cycles 5+. Patients will
receive up to 13 cycles of therapy unless unacceptable toxicity or progression of disease.

PD-1 + CTLA-4

NCT05019703 (TACOS
study)

II Atezolizumab +
Cabozantinib

Patients receive atezolizumab IV over 60 minutes on day 1 and cabozantinib PO QD on
days 1-21.

PD-L1

NCT01445379 I Ipilimumab Ipilumumab given on day 1 of a 21-day cycle for 4 cycles, from cycle 5+ CTLA-4
*IV, Intravenous; OS, osteosarcoma.
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3.2 Adoptive T cell transfer in OS

ACT refers to collecting innate T cells from cancer patients,

expanding or genetically engineered them ex vivo, and

retransferring them back into the patient with the intent to

specifically kill cancer cells. There are currently three major

modalities of ACT: TILs, engineered T cell receptor (TCR) T

cells, and chimeric antigen receptor (CAR) T cells. Among these

three categories, CAR T cell therapy has facilitated

transformational advancements in the management of cancer

treatments. For instance, the impressive results of CAR-T

therapy trials prompted its usage by the FDA in refractory

large B cell lymphoma and acute lymphoblastic leukemia (183,

184). For OS, clinical trials have been performed with several

promising target antigens. For instance, HER2-CAR T

cells proved to be therapeutic for OS through xenograft in

vitro and in vivo models. Phase I/II clinical trials were

conducted by applying CAR-T therapy in patients with

relapsed/refractory HER2-positive sarcoma, with 16 enrolled

OS patients (84%) (185). Out of these 16 patients, none

(100%) had an objective response. Three patients (19%) had

stable disease for 12–15 weeks while 11 patients (69%) had

progressive disease. The value of this study is that it confirms

that dose-limiting toxicity is not observed in HER2-CAR T cell

reception, which prepares for additional studies that

combine ACT with other anticancer treatments to enhance

their expansion and persistence. Presently, breakthrough

successes have been achieved in the clinic for hematological

malignancies and have gained interest in developing ongoing

trials to extend CAR-T therapy application to solid tumors as

well as its usage beyond cancer. Additionally, T lymphocytes

expressing CAR or TCR can recognize a wide range of antigens

and are not restricted to tumor-specific antigens due to retaining

their endogenous TCR expression (127). Therefore,

autoimmune diseases or other immune-mediated hyper-

responses may be triggered in patients undergoing ACT.
3.3 Targeting NK cells in OS

A strategy that incorporates NK cells into OS treatment

represents a promising immunotherapeutic approach to boost

tumoricidal properties. Although activated NK cells can express

PD-1 (186) and CTLA4 (187), more research is required to

determine whether ICIs directly affect NK cells. It has been

reported that anti-PD-1 treatment can re-engage NK cell

antitumor responses in multiple myeloma (188). Furthermore,

blockade of CTLA4 or release of cytokines can overcome the

stagnancy in NK cell antitumor responses (161). Clinical trials

(189) have shown that NK cells may have the potential to attack

and eliminate cancer cells for OS prevention and treatment

response. Compared to normal controls, the quantitative
Frontiers in Immunology 15
observation of lower-level NK cell defects in peripheral blood

of patients with OS indicated the regulatory role of NK cells in

human autoimmunity and OS tumor development. NK cell

antitumor activity is determined by reactivity and inhibition

of NK cells and their engagement by cognate ligands toward

target tumor cells (190). Metastatic and primary OS cells are

susceptible to activated/expanded NK cell lysis both in vivo and

in vitro, which relies on heterogeneous interactions between the

NK group-2 member D (NKG2D) receptor and NKG2D ligands

(NKG2DL) (191). In other words, NK cells can kill OS cells,

including the tumor-initiating cell (TIC) compartment, in an

NKG2D–NKG2DL dependent manner. In addition, the NK cell-

derived NK-92 cell line has been genetically modified to express

CARs that target both hematological malignancies and solid

tumor antigens in preclinical and clinical trials (192), such as

GD2 on neuroblastomas (193) or HER2 on neoplasms (194).

However, despite these conflicting results, several

hindrances need to be overcome to maximize the curative

effects of NK cell-based immunotherapies. Such obstacles

include patients needing to be injected with a large number of

cells, the lack of cellular memory, poor NK cell infiltration of

solid tumors, limited expansion in vivo, and systemic toxicity of

cytokines such as IL-2 (195, 196). Hence, to optimize NK cell

infiltration and performance in solid tumors, it is imperative that

strategies be developed to address these issues.
4 Discussion

OS is the most common malignant bone tumor. Although

OS is sensitive to some chemotherapeutic drugs, cancer cells

may develop chemoresistance. Although advances in

neoadjuvant chemotherapy and their rapid and wide

applications have a crucial impact on the overall survival rate

of patients with OS, their overall survival rate has not

significantly improved over the last 30 years. Similarly, the

prognosis of patients with metastatic or recurrent OS remains

poor, with an overall five-year survival rate of 20% (197).

Current standard treatment for OS therapy is the delivery of

chemotherapeutic agents such as high-dose methotrexate,

doxorubicin, and platinum salts. However, clinical outcomes

from chemotherapy have been reported to be unsatisfactory

in recent studies. To date, there have been no obvious

breakthroughs in clinical trials of new drugs developed for this

dilemma. Furthermore, many clinical trials have found that the

efficacy of most promising targeted therapies is very poor and far

below expectations (198–202).

The main reasons for the lack of development of OS therapy

include tumor heterogeneity, chemoresistance, and the lack of

discovery of tumor-specific antigens (TSA) in OS. Some studies

have emphasized that the TME is involved in the proliferation

and migration of cancer cells (199, 203). Despite vital

improvements made in preclinical trials, many clinical trials
frontiersin.org

https://doi.org/10.3389/fimmu.2022.871076
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yu et al. 10.3389/fimmu.2022.871076
targeting the TME to suppress tumor growth or improve drug

resistance have failed to show promising efficacy in multiple

cancers. The only exception is immunotherapy, including the

usage of ICIs (15). In fact, most anticancer therapies act on

immune regulatory factors that comprise part of the TME. The

immune microenvironment should also be regarded as a clinical

treatment option. Furthermore, these cells and molecules that

constitute the OS microenvironment may improve the

chemoresistance and enrich potential therapeutic targets for

OS therapy, such as blood vessels, T cells, and macrophages

(198, 204–206). Given the barriers of OS treatment involved in

chemoresistance, novel therapeutic approaches to treat OS is

urgently needed. The immune system is a significant part of the

OS microenvironment, in which cytokines are closely related to

the development and dynamic balance of bone cells. As a novel

antitumor model, immunotherapy benefits from the immune

system in a subtle way to improve anticancer treatment efficacy.

Finding biomarkers that can be used to predict responses is a

leading difficulty in immunotherapy but would help determine

the best possible treatment options. Multiple tumor immune

phenotypes (PD-1 or PD-L1 expression), somatic genomic

characteristics (mutational burden and microsatellite

instability), the gut microbiome (207), and the HLA class I

genotype (208) have all been proposed as predictors of responses

to checkpoint inhibitors.
4.1 Mechanisms of unsatisfactory effects
of ICIs against OS

Though ICIs such as PD-1 or PD-L1 showed promising

results in preclinical research, OS showed minor tumor

regression with the usage of ICIs based on the current clinical

trial results listed in Table 6. The main reason for the

unsatisfactory effects of PD-1 antibodies can be summarized

into four points: 1) insufficient immunogenicity of TSA: the lack

of highly immunogenic TSA resulting in the inability of T cells to

recognize tumor cells. A higher burden of nonsynonymous

mutations with durable clinical benefit displayed in patients

with non-small cell lung cancer treated by anti-PD-1 through

exome sequencing (209). Therefore, we hypothesized that

tumors with high mutational burden have a higher probability

of producing more neoantigens with sufficient immunogenicity

to induce antigen-specific T cell responses; 2) dysfunction of

MHC: variable PD-L1 expression and frequent loss of MHC I

facilitates immune evasion of OS cells. The mutation of beta 2-

microglobulin (b2-GM) led to dysfunctional antigen

presentation of HLA I complexes, which were active in the

MHC I pathway, resulting in the weakening cytotoxicity of T

cells (210); 3) paucity of CD8+ T cells: shortage of CD8+ T cells

upregulated multiple inhibitory receptors, such as CTLA-4, PD-

1, T cell immunoglobulin, mucin domain 3 (TIM-3), T cell
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immunoglobulin, TIGIT, and lymphocyte-activation gene 3

(LAG-3), as well as by producing immunosuppressive

cytokines or other soluble factors (211, 212); 4) inhibition of

the TME: immunosuppressive mechanisms in the TME involve

the suppressive action of Tregs, MDSCs, TAMs, or other

undefined cells, and the specific mechanism of these cells as

mentioned above. Furthermore, cytokines and tumor-derived

chemokines would also meditate drug resistance by recruiting

immunosuppressive cells into the TME (213).
4.2 Future perspectives

Targeting components of the TME, such as immune cells,

immunosuppressive cytokines, and inhibitory receptors of T cells

may be a novel therapeutic approach to improve the dilemma of

drug-resistance and the unconspicuous OS tumor recession.

Although the significant breakthroughs toward improving

outcomes of TME target therapies have been made in vitro and

in vivo, promising efficacy in human OS patients remains to be

seen. In multiple malignancy, immunotherapy is the jewel in the

crown because of its the unique exception of feeble TME targeting

therapy (15). Therefore, immunotherapy involving ICIs could be

an effective and alternative tact to avoid the hindrance faced in OS

treatments. For the success of OS immunotherapy, it is necessary

to expound the mechanism of immunosurveillance, confirm TSA

for OS, and conduct collaborative multicenter research.

Several biological features of OS imply that modulation of

the immune response regulation may be beneficial. However,

nuances within the specific TME and the complexity of the

immune system make it an extremely challenging work. As seen

with conventional chemotherapy drugs, tumors utilize multiple

pathways to resist immunotherapy, suggesting that

combinatorial approaches targeting multiple pathways will be

explored to achieve robust responses. Chemotherapy,

radiotherapy, tumor-vaccines, and ICIs, or compatibility with

ACT, may yield meaningful clinical benefits. Additionally, in the

OS microenvironment, Tregs, TAMs, and MDSCs could play

crucial roles in immunoreaction with overactivated inhibitory

receptors including PD-1, CTLA-4, and TIGIT. In order to

develop targeted immunotherapies through utilizing those

immunologic markers in intratumoral microenvirenments, we

must better understand and characterize the OS immune system.

Other adults strategies explored, including the combination of

PD-1 agents and IDO since IDO has been shown to inhibit T-

ce l l prol i ferat ion and induce Tregs , among other

immunosuppressive properties. The ubiquitous expression of

IDO in primary OS may make the combinatorial strategy more

attractive for OS treatments.

A more comprehensive understanding of the mechanisms of

resistance is likely to be required for the development of effective
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therapies for patients with OS, identifying predictive biomarkers

to help guide the appropriate usage of these treatments, as well as

developing rational combinatorial treatments to overcome such

resistance. Despite many challenges, there is hope that

immunotherapy will lead to breakthroughs that will

revolutionize OS therapy.
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