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The availability of viral entry factors is a prerequisite for the cross-species transmission of
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Large-scale single-cell
screening of animal cells could reveal the expression patterns of viral entry genes in different
hosts. However, such exploration for SARS-CoV-2 remains limited. Here, we perform single-
nucleus RNA sequencing for 11 non-model species, including pets (cat, dog, hamster, and
lizard), livestock (goat and rabbit), poultry (duck and pigeon), and wildlife (pangolin, tiger,
and deer), and investigated the co-expression of ACE2 and TMPRSS2. Furthermore, cross-
species analysis of the lung cell atlas of the studied mammals, reptiles, and birds reveals core
developmental programs, critical connectomes, and conserved regulatory circuits among
these evolutionarily distant species. Overall, our work provides a compendium of gene
expression profiles for non-model animals, which could be employed to identify potential
SARS-CoV-2 target cells and putative zoonotic reservoirs.
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evere acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) is the etiological agent for coronavirus disease 2019

(COVID-19), which continues to threaten millions of lives
worldwide!~4. Infected individuals without apparent clinical
symptoms may also transmit the viruses®. Most patients infected
by SARS-CoV-2 displayed symptoms of fever, dry cough, head-
ache, dyspnea, and pneumonia’. Before the emergence of SARS-
CoV-2 in December 2019, six coronaviruses (CoVs) are able to
infect humans. These include four epidemic CoVs causing mild
respiratory symptoms in human (i.e., HCoV-NL63, HCoV-229E,
HCoV-0C43, and HCoV-HKU1) and two CoVs related to
animal-to-human spillover events, including SARS-CoV and
Middle East respiratory syndrome CoV. These six CoVs all ori-
ginate from bats or rodents®~11. Currently, SARS-CoV-2 shares
highest sequence similarity with a bat B-CoVs (BatCoV-
RaTG13)!2, indicating a probable bat origin. Another mammalian
animal, pangolins, has also been suggested as a potential host for
SARS-CoV-213-15, Tt is also reported that SARS-CoV-2 was
capable of infecting cats, dogs, etc.!®17. However, the precise
intermediate animals involved in the bat-to-human transmission
of SARS-CoV-2 remain controversial and require continuous
investigation.

Angiotensin-converting enzyme 2 (ACE2) has been recognized
as the receptor for the spike protein of SARS-CoV, SARS-CoV-2,
and HCOV-NL63!21819 Because of the diverse types of receptors
and potential hosts of different viruses, understanding the tissue
tropism and host range of a novel virus remains challenging.
Regarding the high biosafety level required for the operation of
highly pathogenic live viruses such as SARS-CoV-2, experiments
involving cellular or animal models are mostly restricted to a
small number of qualified laboratories, which hinders the large-
scale investigation for the preferential tissues and hosts for these
pathogens.

Single-cell sequencing has been applied to construct the single-
cell atlas for a wide variety of species?9-26. Previous studies
suggested that animal tissues show high heterogeneity in terms of
cellular composition and gene expression profiles, and ACE2 is
only expressed in a small proportion of specific cell populations?7,
thus revealing the potential application of single-cell analysis in
investigating SARS-CoV-2 tropism. In this study, we applied
single-nucleus RNA sequencing to determine the potential target
cells and hosts for SARS-CoV-2. A comprehensive single-cell
atlas was constructed for 11 species, comprising ~300,000 cells
derived from a wide variety of anatomical locations, thus repre-
senting the broadest single-cell atlas to date.

We first systematically screened for putative SARS-CoV-2
target cells (indicated by the co-expression patterns of SARS-
CoV-2 entry receptor ACE2 and SARS-CoV-2 entry activator
TMPRSS2) to assess the potential tissue tropism and host range
for the virus. In addition to screening virus entry factors, single-
cell atlases for multiple species have been utilized to identify
highly conserved regulomes and connectomes within evolutio-
narily distant species?8-30, However, despite encouraging pro-
gress in state-of-the-art single-cell sequencing in traditional
evolutionary biology and neural science, single-cell studies on
non-neural tissues over a broad spectrum of non-model species
are lacking.

Here we show extensive cellular cross-talk mediated by ligands
and receptors, as well as dynamic intracellular regulatory circuits
of critical pulmonary cell types in mammals, reptiles, and birds.
Our findings could help narrow down suspected animal hosts of
newly emerging viruses and accelerate the identification of animal
species involved in virus amplification and interspecies trans-
mission. Furthermore, our study could be employed to explore
fundamental cellular and molecular networks among evolutio-
narily distant species.

Results

Generation of single-cell atlas for cat, tiger, and pangolin.
Although the intermediate animal host involved in the emergence
of SARS-CoV-2 remains obscure, cats, tigers, and pangolin were
found permissive for CoV infection!317:31:32. To establish a
comprehensive transcriptome atlas for these three susceptible
species, we generated single-nucleus libraries using 10x Genomics
for various tissues (cat lung, kidney, liver, heart, eyelid, esopha-
gus, and rectum; tiger lung, kidney, liver, spleen, and heart; and
pangolin lung, kidney, liver, spleen, heart, esophagus, stomach,
duodenum, and large intestine) (Fig. la and Supplementary
Data 1). In total, 34,173, 80,608, and 92,863 single-cell tran-
scriptomes passing quality control (see “Methods”) were obtained
for the cat (Fig. 1b), tiger (Fig. 1c), and pangolin (Fig. 1d),
respectively (Supplementary Data 1). Cell clustering analysis was
performed using Seurat3®3* and cell type annotation was con-
ducted according to the expression of canonical cell type markers
(Fig. 1e-m, Supplementary Figs. 1-4, and Supplementary Data 1).
Unsupervised clustering analysis revealed 30, 25, and 30 major
cell types for the cat, tiger, and pangolin, respectively (Fig. 1b-d).
The heart atlas for the three species mainly consisted of endo-
thelial cells, fibroblasts, cardiomyocytes, and macrophages
(Fig. 1e, h, k and Supplementary Figs. 1-3). The liver atlas for the
three species primarily contained hepatocytes, Kupffer cells,
hepatic stellate cells, endothelial cells, and liver sinusoidal endo-
thelial cells (Fig. 1f, i and Supplementary Figs. 1-3). The spleen
atlas for the tiger and pangolin included B cells, T cells, macro-
phages, and endothelial cells (Fig. 1j and Supplementary
Figs. 2-3). The kidney atlas for the three species included prox-
imal tubular cells, collecting duct cells, podocytes, Henle’s loop
cells, and endothelial cells (Fig. 1g and Supplementary Figs. 1-3).
The cat and pangolin esophagus primarily contained endothelial,
epithelial, and smooth muscle cells (Fig. 1m and Supplementary
Figs. 1 and 3). The cat eyelid tissue consisted of Wolfring’s gland,
endothelial, epithelial, and immune cells (Supplementary Fig. 1),
whereas the rectum tissue contained goblet, Paneth, enter-
oendocrine, and progenitor cells (Supplementary Fig. 1). In the
pangolin digestive tract, we identified endothelial cells, epithelial
cells, macrophages, secretory cells, and smooth muscle cells in the
stomach (Supplementary Fig. 3); endothelial cells, enteroendo-
crine cells, goblet cells, Paneth cells, progenitor cells, stem cells,
transit-amplifying (TA) cells, and tuft cells in the duodenum
(Supplementary Fig. 3); and enterocyte cells, enteroendocrine
cells, goblet cells, macrophages, progenitor cells, stem cells, and
TA cells in the large intestine (Supplementary Fig. 3). Alveolar
type 1 cells (AT1), alveolar type 2 cells (AT2), ciliated cells,
secretory cells, endothelial cells, fibroblasts, T cells, B cells, and
macrophages were identified in the lung atlas (Supplementary
Fig. 4 and Supplementary Data 1). Taken holistically, we con-
structed the single-cell atlas for three important, yet poorly
characterized, non-model species, which revealed their cellular
taxonomies and thus laid the foundation for in-depth study
regarding the cellular biology and development of these animals.

Investigation of SARS-CoV-2 tissue tropism. Although the
susceptibility of cats, tigers, and pangolins to CoV has been
reported!>17:3132 little information is available regarding the
distribution of putative SARS-CoV-2 target cells in these animals.
Utilizing the high-quality and comprehensive single-cell atlas for
distinct tissues of the three species, we systematically evaluated
the cellular distribution of SARS-CoV-2 entry factors.

In the cat, ACE2-expressing cells and TMPRSS2-expressing
cells were observed in all the tissues sampled (Figs. 2a, ¢ and 3a).
ACE2 and TMPRSS2 co-expressing cells were detected in the
kidney (collecting duct cells, endothelial cells, Henle’s loop cells,
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proximal tubule cells, and stromal cells), heart (epicardial cells),
eyelid (endothelial cells, epithelial cells, and Wolfring’s glands
cells), rectum (enteroendocrine cells) (Fig. 2b, d), and lung
(AT2 cells, ciliated cells, endothelial cells, fibroblasts, and
secretory cells) (Fig. 3b-d). Notably, we observed the co-
expression of ACE2 and TMPRSS2 in over 40% of kidney

proximal tubule cells (Fig. 2b and Supplementary Data 2). In
addition, co-expression of ACE2 and TMPRSS2 was detected in
more than 50% of Wolfring’s gland cells in the cat eyelid and
epicardial cells in the cat heart (Fig. 2b and Supplementary
Data 2), suggesting the possibility that such tissue could act as
a putative portal for the initial infection and transmission of
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Fig. 1 Single-cell atlas for cat, tiger, and pangolin. a |llustration of the overall project design. Single-nucleus RNA-seq was performed with multi-tissues of
cat (lung, kidney, liver, heart, eyelid, esophagus, and rectum), tiger (lung, kidney, liver, spleen, and heart), and pangolin (lung, kidney, liver, spleen, heart,
esophagus, stomach, duodenum, and large intestine), with tissue types indicated by corresponding images. Lung tissues were used from other animals
(deer, goat, rabbit, dog, hamster, lizard, duck, and pigeon). b-d tSNE plot showing single-cell atlas of cat (b), tiger (¢), and pangolin (d). Dots with colors
represent different cell types, which were indicated below. LSECs, liver sinusoidal endothelial cells. TA cells, Transit-amplifying cells. e-g Plot (upper panel)
showing different cell types in cat heart, liver, and kidney. Feature plot (lower panel) showing expression of marker genes (above) of indicated cell types
(below). h-j Plot (upper panel) showing different cell types in tiger heart, liver, and spleen. Feature plot (lower panel) showing expression of marker genes
(above) of indicated cell types (below). k-m Plot (upper panel) showing different cell types in pangolin heart, stomach, and esophagus. Feature plot (lower
panel) showing expression of marker genes (above) of indicated cell types (below). In feature plot, red dots representing cells expressed the marker gene

and corresponding cell types were highlighted with colored lines.

SARS-CoV-2. Thus, our data showed that cats may be prone to
multiple organ (lung, kidney, heart, rectum, and eyelid) infection
by SAR-CoV-2 when exposed.

In the tiger, ACE2-expressing cells and TMPRSS2-expressing
cells were observed in all the tissues sampled (Fig. 2e, g). ACE2
and TMPRSS2 co-expression was detected in five out of eight
kidney cell types (collecting duct cells, Henle’s loop cells,
mesangial cells, podocytes, and T cells), one out of six heart cell
types (endothelial cells) (Fig. 2f, h and Supplementary Data 2),
and six out of nine lung cell types (AT1 cells, AT2 cells, ciliated
cells, endothelial cells, fibroblasts, and secretory cells) (Fig. 3b, e,
f), thus indicating infection potential of the lung, kidney,
and heart.

In the pangolin, ACE2-expressing cells and TMPRSS2-expres-
sing cells were observed in all the tissues sampled (Fig. 2i, k).
Potential SARS-CoV-2 target cells were mainly found in the
kidney (collecting duct cells, endothelial cells, podocytes, and
proximal tubule cells), liver (hepatocytes), spleen (macrophages),
and stomach (secretory cells) (Fig. 2j, 1 and Supplementary
Data 2). Unlike the tiger and cat, however, SARS-CoV-2 target
cells were only present in a small proportion of pangolin lung
endothelial cells, with other lung cell types absent of ACE2 and
TMPRSS2 co-expression (Fig. 3b and Supplementary Data 2).
Similar to the cat, exposure to SARS-CoV-2 may lead to systemic
infection in the pangolin.

Collectively, we evaluated SARS-CoV-2 tissue tropism in the
cat, tiger, and pangolin. Distributions of putative SARS-CoV-2
target cells were restricted in specific cell types of certain tissues,
with skewed expression towards the respiratory and urinary
systems in the cat, respiratory system in the tiger, and urinary
system in the pangolin.

Screening of SARS-CoV-2 entry factors in lung atlases. Lung is
one of the main target tissue of various respiratory viruses® and
pneumonia is a typical symptom of COVID-193¢, To characterize
lung cell compositions in a broad range of species, we generated
single-nucleus libraries of lung cells for 11 species covering live-
stock, poultry, pets, and wildlife (Fig. 3a and Supplementary
Fig. 4), resulting in a total of 114,015 pulmonary cells passing
quality control (Supplementary Data 1).

Recent comparative and structural analysis of ACE2 predicted
a broad SARS-CoV-2 host range in vertebrates’”. Consistently,
functional and genetic analysis of ACE2 orthologs among
mammals suggested a broad potential host tropism of SARS-
CoV-238, To evaluate the expression patterns of SARS-CoV-2
entry factors in lung cells for various species, we screened eight
mammalian species (cat, tiger, pangolin, dog, hamster, deer,
rabbit, and goat) (Fig. 3a and Supplementary Data 3). Results
suggested that, in addition to the three previously mentioned
species (cat, tiger, and pangolin) (Fig. 2), four other mammalian
species (dog, hamster, deer, and goat) also demonstrated co-
expression of ACE2 and TMPRSS23 in specific cell types (Fig. 3b
and Supplementary Data 3). Putative SARS-CoV-2 target cells

were detected in three cell types in the dog (AT1, AT2, and
ciliated cells). In the hamster lung, putative SARS-CoV-2 target
cells were abundant in ciliated cells and found in a small
proportion of AT1 cells (Fig. 3g, h). Four deer cell types
(AT1 cells, AT2 cells, fibroblasts, and endothelial cells) co-
expressed ACE2 and TMPRSS2. In the goat lung, ACE2 and
TMPRSS2 co-expression was detected in ATI1, ciliated, and
endothelial cells (Fig. 3i, j). The proportions of SARS-CoV-2
target cells in the cat lung ciliated cells were higher than the
proportions in corresponding cell type of the other species
studied (Fig. 3b and Supplementary Data 21). Meanwhile, the
proportion of cells co-expressing ACE2 and TMPRSS2 in the cat
lung ciliated cells was higher than macrophage cells (Fig. 3b and
Supplementary Data 22). Besides, we investigated the expression
of SARS-CoV-2 entry factors in human lung3® and detected co-
expression of ACE2 and TMPRSS2 in AT2 and ciliated cells
(Supplementary Fig. 5).

Next, we screened the expression patterns of orthologs of ACE2
and TMPRSS2 in the lung cells of two avian species (duck and
pigeon) and one reptile species (lizard). Consistent with previous
research that SARS-CoV-2 replicates poorly in ducks*?, no
putative SARS-CoV-2 target cells were found in the lung cells of
the poultry species (Fig. 3a, b). Intriguingly, ACE2 and TMPRSS2
co-expression was detected in the AT2 and ciliated cells of the
lizard lung (Fig. 3a, b). As the binding affinity of ACE2 to SARS-
CoV-2 has not been evaluated in lizards, this result should be
interpreted with caution.

Cross-talk landscape of cat cells and viruses. To reveal the
putative cellular tropism of feline viruses or viruses that may
potentially infect cats at single-cell resolution, we investigated the
expression patterns of 13 virus entry factors (Nectinl, Ncaml,
Anpep, Ngfr, Grm2, Tnfrsf4, Flvcrl, Cxcr4, Nectin2, F11r, Slc20al,
Tfrc, and Slc20a2) (Supplementary Data 4). Overall, the 13 viral
receptors could be classified into three clusters (Fig. 4a, b). Briefly,
cluster A receptors (Ncaml and Anpep) demonstrated a highly
specific target cell spectrum, while cluster C receptors (Flvcrl,
Cxcr4, Nectinl, Nectin2, F11r, Slc20al, Tfrc, and Slc20a2) showed
pan-expression patterns (Fig. 4a, b). In contrast, cluster B
receptors (Ngft, Grm2, and Tnfrsf4) were expressed at very low
levels in all 31 feline cell types included in this study.

Different receptors for the same virus show high variability in
terms of expression abundance and spatial distribution. For
example, rabies lyssavirus (RABV) was reported to infect the
kidney, lung, and heart of cats*!#2, So far, three well-known
receptors for RABV have been reported, i.e., Ncaml, Ngfr, and
Grm2*3. Here, Ncam1 was enriched in kidney stromal cells, lung
ciliated cells, and heart cardiomyocytes and fibroblasts, whereas
Ngfr and Grm2 were weakly expressed, indicating the diverse
cellular tropism of RABV in cats. Both Cxcr4 and Tnfrsf4 are
receptors of feline immunodeficiency virus (FIV). Here, Cxcr4
was expressed in T and B cells of the heart and liver, in line with
previous study showing that FIV can infect T and B
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Fig. 2 Screening of putative SARS-CoV-2 target cells at single-cell resolution in various tissues of cat, tiger, and pangolin. a, e, i Dot plot showing
the expression of ACE2 and TMPRSS2 in various cell types of cat (a), tiger (e), and pangolin (i). Each dot represents gene expression within indicated
cell type, of which the color represents average normalized expression level and the size indicates the percentage of cells that expressed the gene
within each cell type. b, f, j Bar plot showing percentage of cells that co-express ACE2 and TMPRSS2 within each cell type of cat (b), tiger (f), and pangolin
(). ¢, g k Feature plot showing the expression pattern of ACE2 and TMPRSS2, respectively, in indicated cell types in kidney of cat (¢), tiger (e), and pangolin
(i). d, h, | Feature plot showing the co-expression of ACE2 and TMPRSS2 in indicated cell types in kidney of cat (d), tiger (h), and pangolin (I). Putative

SARS-CoV-2 target cells were highlighted with red-colored labels.
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Fig. 3 Expression of ACE2 and TMPRSS2 in lung cells of wildlife, pets, livestock, and poultry. a Dot plot showing expression level and percentage of ACE2
and TMPRSS2 (indicated on the right) in each cell type (indicated on the left) of lungs across a variety of species (indicated above). Dot color represents
scaled average expression level and dot size represent percentage of cells that expressed indicated gene within each cell type. b Bar plot showing
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Feature plot showing the expression pattern of ACE2 and TMPRSS2, respectively, in indicated cell types in lung of cat (c), tiger (e), hamster (g), and goat
(i). d, f, h, j Feature plot showing the co-expression of ACE2 and TMPRSS2 in indicated cell types in lung of cat (d), tiger (f), hamster (h), and goat (j).
Putative SARS-CoV-2 target cells were highlighted with red-colored labels.
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Fig. 4 Cross-talk landscape of cat cells and representative feline viruses. a Dot plot showing expression percentages and average expression levels of
virus receptors (indicated below) in each cell types (indicated on the right) of cat cells. b Feature plot showing the expression patterns of virus receptors

(F11r, Ncam1, Nectin2, Slc20al, Slc20a2, Tfrc, Cxcr4, Anpep, Flvcrl) in cat cells.

Corresponding virus species and image were illustrated approximate to the

feature plot. CCov, canine coronavirus; FA27, feline leukemia virus strain C; FCV, feline calicivirus; RABV, Rabies lyssavirus; FCoV, feline coronavirus; FeLV-

B1, feline leukemia virus strain B; FPLV, feline panleukopenia virus; FIV, felin
infectious bronchitis virus; TGEV, transmissible gastroenteritis virus. ¢ Bubb
receptors in cat. The dot color was positively correlated with enrichment lev

e immunodeficiency virus; HCoV-229E, human coronavirus 229E; IBV,
le plot showing the immune-related GO terms of eight representative virus
els, whereas dot size was determined by count of genes in that GO term. P-

values were calculated using hypergeometric test. Multiple comparisons adjustment was performed using Benjamini and Hochberg method. Exact P-value

and source data were included in the Source Data file.

lymphocytes#4. In contrast, Tnfrsf4 was expressed poorly in feline
cells, implying a receptor usage preference of FIV.

Receptors for different strains of the same virus show a high
degree of heterogeneity. For instance, Slc20al and Slc20a2 are the
receptors for feline leukemia virus (FeLV) strain B/lambda-B14>,
whereas Flvcrl is the receptor for the FeLV strain C/FA2740,
These three receptors were all present in the cluster C receptors
(pan-expression cluster). Infection of FeLV in the myocardium,
thymus, mesentery, liver, kidney, and lung has been reported in
cats?”+48, consistent with our observation that Flvcrl, Slc20al, and
Slc20a2 were highly expressed in stromal cells and distal
convoluted tubule cells of the kidney, epicardial cells of the

NATURE COMMUNICATIONS | (2021)12:7083 | https://doi.org/10.1038/541467-021-271

heart, and ciliated cells of the lung. Notably, the expression
proportions of Slc20al and Slc20a2 in corresponding cell types
were much higher than that of Flverl. In addition to the
commonly expressed cell types, we observed abundant expression
of 8lc20a2 in heart cardiomyocytes and liver hepatocytes, whereas
the expression of the other two receptors (Slc20al and Flvcrl) was
much less significant.

Furthermore, our study indicated that potential target tissue
could be predicted based on viral receptor expression patterns.
As a cell adhesion molecule that can mediate pseudorabies virus
(PRV) entry, Nectinl colocalizes with E-cadherin at the
adhesion junction of epithelial cells*®, consistent with the
7
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enrichment of Nectinl in the epithelial cells of the eyelid.
Interestingly, although PRV infection has been detected in the
hearts of dogs, rats, and pigs®*->2, no PRV infection has been
reported in cats heart previously. Here we observed that
Nectinl was enriched in epicardial cells of feline heart,
indicating cat heart could probably be permissive to PRV
infection. In addition, Anpep is a receptor commonly used by
feline infectious peritonitis virus, transmissible gastroenteritis
virus, and infectious bronchitis virus. These viruses have been
detected in kidney of cats®>>%4, Consistently, Anpep was found
to be highly expressed in stromal cells and proximal tubule cells
of kidney. Besides, we detected the enrichment of Anpep in
hepatocytes and hepatic stellate cells of liver, indicating the
possibility that these liver cells could be targeted by viruses
using Anpep as entry factor (Fig. 4a).

SARS-CoV-2 entry factors are reportedly co-expressed with
immunity genes in human and monkey cells?”>°, suggesting
that SARS-CoV-2 target cells are conditioned to express
immunity genes to reduce their susceptibility to viruses?’. To
explore whether this trend holds true for other viruses and non-
model species, we applied Pearson’s correlation coefficient
analysis for all 13 feline viral receptors of all 31 cat cell types.
Briefly, we identified the top 100 genes positively correlated
with each virus receptor, followed by Gene Ontology (GO)
enrichment analysis (Supplementary Data 4). We noticed that
viral receptors co-expression analysis could reveal novel gene
signatures that is not simply reflected in the cell type
differentially expressed genes (DEGs) (Supplementary Fig. 6).
Intriguingly, we observed co-expression of humoral immune
response genes (A2m, Fga, and C9) with Anpep and Nectinl, co-
expression of adaptive immune response genes (Ptprc, Skapl,
and SamsnlI) with Cxcr4 and Tfrc, and co-expression of type 2
immune response genes (Anxal and 1I133) with Nectin2 (Fig. 4c
and Supplementary Data 4), suggesting the existence of
extensive cell-virus cross-talk in the host-pathogen interaction
interface. In summary, our data indicated that the co-
expression of viral receptors and immunity genes may be more
common than previously recognized. This phenomenon could
be the result of the long-term “arms race” between viruses and
hosts, which collectively shape the immune landscape of
animals and host tropism of viruses®.

Conservation of pulmonary cellular connectomes. In addition
to exploring cell-virus cross-talk, a pan-species single-cell atlas
can be applied to investigate divergent and conserved cell-cell
interactions among multiple species. To identify putative cellular
communications, we constructed a ligand-receptor-mediated
interaction network for lung cells within each species, except
the rabbit (due to limited cell numbers) and pigeon (due to
limited number of ortholog genes), which revealed extensive and
dynamic cellular cross-talk in pulmonary cells (Fig. 5a and Sup-
plementary Data 5 and 6). Overall, the source connectome
topology of distinct species was quite similar, with fibroblasts
have dominant source weight and hub scores. As for target
analysis of network centrality, endothelial cells function as sig-
naling authority across most species including dog, hamster,
lizard, goat and tiger. The immune cells were relatively less active,
in both source and target analysis of connectome topology
(Fig. 5b). This tendency was quite robust regardless of cutoff
threshold values (Fig. 5¢). In general, communication pairs were
classified into 44 signaling modalities (Supplementary Data 6).
Consistent with previous study?, the AT1 cells dominated the
vascular endothelial growth factor (VEGF) family signaling net-
works in most tested species (Fig. 5d).

We next identified pan-conserved cellular connectivity, which
may correspond to ancient signaling vectors inherited from
common ancestors of mammals, reptiles, and birds. In total, we
detected 642 pairs of cell-cell interactions conserved among all
nine species (Supplementary Data 6), most of which were
associated with the extracellular matrix (collagens and fibronec-
tin) and the development (VEGF) and morphogenesis (Sema-
phorin, SEMA) of pulmonary endothelial cells. Neuropilin-1, a
receptor critical for vascular growth and remodeling, can convey
SEMA and VEGF signaling®”. Here we detected a fibroblast-
Sema3c-Nrpl-endothelial and AT1-Vegfa-Nrpl-endothelial sig-
naling axis in all nine species (Fig. 5e). Intriguingly, SEMA
signaling plays a pivotal role in vascular patterning, and signal
disruption can lead to anomalous pulmonary venous
connections®8. Here, cellular cross-talk mediated by other SEMA
signaling components (e.g., Semaba, 6a, and 6d) was also highly
conserved (Supplementary Data 6).

In addition to pan-conserved cellular cross-talk, we explored
why cell-cell cross-talk was conserved in all mammalian lung
cells but was absent in the pulmonary cells of reptiles (lizard) and
birds (duck). In total, we found 147 pairs of cellular interactions
that were specifically conserved in mammals (Fig. 5f and
Supplementary Data 6). The mammalian-specific conserved
cellular connectivity included ADAM (Adam9-Itga3, Adam9-
Itgav, and Adam9-Itgb5), ephrins (Efnb2-Pecaml and Efnal-
Epha7), fibronectins (Fnl-Itga3 and Fnl-Robo4), intracellular
trafficking (Calr-Itga3 and Calr-Itgav), laminin signaling (Lama2,
Lama4, Lamcl, and Lamc2 to Itga3), matrix metalloproteinases
(MMPs) (Timp2-Itga3), NOTCH (Jagl-Notch2), SLIT (Slit2-
Robo4), VEGF (Vegfc-Lyvel), and TGFB (Tgtb2-Eng). Jagl-
Notch?2 signaling is reported to play a major role in orchestrating
alternative cell fate choices of ciliated cells®®. Indeed, the Jagl
ligand broadcast from AT1 and AT?2 cells is predicted to connect
to the Notch2 receptor in ciliated cells. In addition, MMPs play
critical roles in lung organogenesis®®. In our study,
Timp2 signaling from the fibroblasts and endothelial cells may
target the Itga3 receptor of the AT1, AT2, ciliated, and
endothelial cells. Endothelial ephrinB2 function was reported to
be essential for lung alveolar formation®!; here we detected
endothelial cell-Efnb2-Pecam1-AT?2 cell signaling was conserved
in all mammalian species (pangolin, dog, hamster, deer, goat, cat,
and tiger) but was absent in lizard and duck. Transforming
growth factor-p plays crucial roles in epithelial-mesenchymal
interactions for proper alveolarization and lung branching
morphogenesis, and is thus critical for lung organogenesis and
homeostasis®2. Our data suggested that mammalian AT1 cells,
AT2 cells, ciliated cells, and fibroblasts may regulate endothelial
cells via Tgfb2-Eng signaling, but such signaling was not observed
in the non-mammalian species. In summary, this study system-
atically revealed those highly conserved and lineage-specific cell-
to-cell signaling within vertebrate lungs.

Conservation of regulomes in pulmonary cells. To reveal the
regulatory mechanisms underlying alveolar development from
the perspective of evolutionary biology, we predicted the reg-
ulomes in pulmonary cells for nine species (rabbit and pigeon
were excluded for the same reasons mentioned above), resulting
in an average of 469,796 Transcription Factor (TF)-target inter-
actions for nine cell types (GENIE3 score > 0.01) (Supplementary
Data 7-15). The number of TF-target interactions conserved in at
least two species ranged from 5049 in AT2 cells to 44,009 in T
cells (Fig. 6a and Supplementary Data 16). Encouragingly, several
regulators for AT1 cells (Cux1 and Gata6)3, AT?2 cells (Etv5)©3,
ciliated cells (Rfx3 and Glis3)0%%%, secretory cells (Nfib),
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Fig. 5 Conserved pulmonary cellular connectomes. a Communication network of receptor-ligand pairs between lung cell types of indicated species. Cell
type was represented by colored node, of which the size was directly proportional to sum of receptor-ligand pairs between this node and all other nodes.
Edge width was directly proportional to number of receptor-ligand pairs between two connected nodes. b Plot (upper) showing source weight and hub
score of various cell types in indicated nine species. Plot (lower) showing target weight and authority score of nine cell types. ¢ Comparison of degree
rankings and the effect of thresholding of lung cell types in indicated species. The x-axis (“percent.source”) is percent of cell type expressing the marker,
and the y-axis is the degree of each node plotted on a logarithmic scale. d Plot showing source weight of VEGF signaling family in nine cell types. e Violin
plots showing expression level of indicated ligand and receptor genes within each cell type of lung in different species. f Circos plot of mammalian-specific
conserved connectome in cat. Receptors and ligands were displayed near the upper and lower half circle, respectively.
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fibroblasts (Zeb2 and Foxp1)%7-98, endothelial cells (Tcfl2 and
Dach1)%70, macrophages (Mef2a and PPARg)”172, T cells (Sox5
and Tkzf1)7374, and B cells (Mef2c and Ets1)7576 were active in
the genetic regulatory network of the corresponding cell types
(Supplementary Data 16), consistent with their expected reg-
ulatory functions. Of particular interest, we found a variety of
regulatory circuits that were highly conserved among multiple
species. Briefly, 37, 29, 533, 84, 151, 221, 1 097, 217 and 126 pairs
of TF-target interactions were deeply conserved in AT1 cells, AT2
cells, ciliated cells, secretory cells, fibroblasts, endothelial cells,
macrophages, T cells, and B cells, respectively (present in at least
four species) (Supplementary Data 17). In the ATI cells, 37
interactions associated with 12 TFs (Nfia, Dachl, Foxpl, Tox,
Erg, Meisl Cuxl, Epasl, Mecom, Tcf12, Teadl, and Zeb2) were
conserved in at least four of the nine species investigated. Nota-
bly, Cux1 contributed to 49% of the highly conserved interactions
in AT1 cells (Fig. 6b). Cuxl is a known transcription factor
regulating AT1 cell differentiation®. Rtkn2, the predicted target
of Cuxl, is reported to be an AT1 cell-specific gene’”. The deeply
conserved regulatory relationships between Cuxl and other
functional genes (Lmo7, Cpedl, Rtkn2, Apls3, Arhgef26, Cadml,
Col4a3, Ctdspl, Ctnnal, Lama3, Nrgl, Pdzd2, Uncl3b, and Wwc2)
suggest that Cuxl may manipulate the expression patterns of
those developmental genes to instruct the differentiation, devel-
opment, and morphogenesis of AT1 cells in a species-conserved
manner.

In addition to well-known regulators, we also identified a
variety of putative novel regulators in each cell type, e.g., Epasl,
Kifs, Myb, Nfia, Tcf712, Tox, and Zeb2 in AT1 cells;
Zbtb16, Sox5, and Tox in ciliated cells, and Mitf, Arid1b, Trpsl,
Etv6, Foxn3, Tcfl2, Jarid2, Lrrfipl, Arid5b, Kmt2c, Elfl, and
MIIt10 in macrophages. The regulatory functions of these
transcription factors were inferred based on the enriched GO
terms of their predicted target genes (Supplementary Data 18),
which supported the proposed functions of each regulator in
the corresponding cell type. For example, targets for AT1
regulators were closely related to GO terms covering epithelial
cell development (Arhgef26, Cdk6, and Tmodl), lung epithe-
lium development (Foxp2, Gata6, and Ncor2), morphogenesis
of a branching epithelium (Grebll, Cd44, and Digl), and
epithelial tube morphogenesis (Tgfbr2, Dlcl, and Efnb2).
Additionally, targets under the control of ciliated cell regulators
were enriched in GO terms associated with cilium organization
(Bbs9, Cfap43, and Rfx3), cilium assembly (Lrguk, Mak, and
Rpl), cilium movement (Ccdcll4, Ccdc39, and Dnahl0),
cilium-dependent cell motility (Cfap57, Spagl6, and TektI),
motile cilium assembly (Intu, Kif3a, and Lrrc46), epithelial
cilium movement involved in determination of left, right
asymmetry (Dnahll, Lrrc6, and Ccdc40), and regulation of
cilium beat frequency (Armc4, Dnaafl, and Bbs4). Targets for
macrophage regulators were associated with macrophage
chemotaxis (Mapk14, Lgals3, and Ptprj), macrophage migration
(Rpl13a and Nup85), and macrophage cytokine production
(Cd36, Cd74, and Sema7a) (Fig. 6c). Overall, our study
systematically identified conserved regulators for pulmonary
cells, including both well-recognized and novel regulators.

Conserved gene modules of AT1 and AT?2 cells. Conserved core
expression programs have been identified by cross-species com-
parison of microglia single-cell RNA sequencing data across
evolutionary timescales?®. Here we compared the transcriptomic
landscapes of nine species (cat, tiger, pangolin, dog, hamster,
deer, goat, lizard, and duck) spanning more than 312 million
years of evolution”8. Briefly, we selected 5442 genes showing
expression in the lung cells of the nine species, followed by

hierarchical clustering (see “Methods” and Supplementary
Data 19). Cluster 4, 5 (1432 genes) from AT1 cells (Fig. 7a and
Supplementary Data 19) and cluster 3, 5 (1429 genes) from AT2
cells (Fig. 7b and Supplementary Data 19) showed conserved
expression patterns across all nine species and were thus con-
sidered as conserved core gene expression programs for the AT1
and AT2 cells, respectively. Those cell type conserved genes
showed largely non-overlapping molecular signature with cell
type highly expressed genes (Supplementary Fig. 7). The AT1 cell
core gene expression program was related to epithelial cell mor-
phogenesis, proliferation, migration, and respiratory system
development (Fig. 7c and Supplementary Data 20). In contrast,
the AT2 cell-conserved genes were enriched in stem cell differ-
entiation, stem cell population maintenance, activation of innate
immune response, and lung alveolus development (Fig. 7d and
Supplementary Data 20). For example, Cavl, a critical regulator
of lung injury that is highly expressed in mouse AT1 cells”*,
was conserved in the AT1 cells in multiple species (Fig. 7e), and
Etv5, which is essential for the maintenance of mouse AT2 cells8!,
was deeply conserved in the AT2 cells (Fig. 7f).

Interestingly, a set of lung disease genes overlapped in the core
gene expression programs of the AT1 and AT2 cells, thus linking
evolutionary biology with pulmonary pathology. For example,
multiple genes in the AT1 cell program were closely related to
pulmonary veno-occlusive disease (PVOD) (Bmpr2 and Eif2ak4),
lung cancer (Itga9 and Braf), pulmonary fibrosis (Cadml and
Itgb6), pulmonary hypertension (Bmpr2 and Cavl), and pulmonary
emphysema (Itgh6). Several genes of AT2 core program were
strongly associated with lung disease such as lung cancer (Mvp and
Braf), pulmonary fibrosis (Parn), and PVOD (Eif2ak4) (Fig. 7a and
Supplementary Data 20). Here we presented several examples that
evolutionarily conserved genes are developmentally important, and
interruptions in those genes can lead to disorders of well-balanced
developmental programs, thus leading to a variety of pathological
consequences. Collectively, we revealed core gene expression
programs of alveolar cells that are highly conserved in mammals,
reptiles, and birds, thus presenting gene modules of fundamental
importance to alveolar cellular identity maintenance.

PANDORA: a website for non-model specie single-cell atlas. To
fully exploit single-cell resources, we developed an online plat-
form, named PANDORA (http://120.79.46.200:81/Pandora),
composed of five main functional modules: ie., panAtlas, pan-
Scan, panConnectome, panRegulome, and panCoreProgram. The
panAtlas module allows users to explore gene expression patterns
of any genes in any tissue included in this study. In the panScan
module, visualization of the expression patterns of virus receptors
in cell populations of each tissue can be calculated, giving clues
about cell tropism of each virus. In the panConnectome module,
cellular interactions mediated by ligands and receptors can be
depicted. In the panRegulome module, putative TF-target reg-
ulations within each cell type can be predicted. In the panCor-
eProgram module, the core expression program for each cell type
can be presented. In summary, we developed a comprehensive
and integrated online platform, which can hopefully maximize
the functionality and applicability of our resources.

Discussion

The SARS-CoV-2 pandemic has caused a catastrophic global
health crisis. Although drugs and vaccines will help reduce loss in
life and economic impact caused by COVID-19, their large-scale
application is time-consuming and labor-intensive. Thus, the
identification of intermediate hosts or animal reservoirs is crucial
for the prevention and control of SARS-CoV-2 and other zoo-
notic viruses. So far, functional and genetic analyses of ACE2
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orthologs in 48 species have found that 44 can mediate cell entry
of SARS-CoV-2, implicating a broad range of host tropism for
this virus?’. With the advancement of single-cell sequencing
technologies, the single-cell atlas for human, mouse, zebrafish,
fruit fly, frog, and nematode have been successfully
constructed?0-23.82.83 However, studies on the cell composition
of non-model species are lacking. To expand single-cell resources
for non-model species, we generated a single-cell atlas for
11 species that are in close contact with humans (livestock,
poultry, and pets) or possibly harbor enzootic viruses, thus pro-
ducing a transcriptome of 272,148 high-quality cells derived from
29 tissues. Based on these resources, we screened putative virus
target cells, revealed critical regulators of cell fate commitment,
dissected genetic regulatory networks of pulmonary cells, and
identified core gene expression programs deeply conserved
among mammals, reptiles, and birds.

SARS-CoV-2 target cells were widely distributed among tissues
within the digestive system (esophagus, rectum), respiratory
system (lung), and urinatory system (kidney) of the «cat.
Regarding the licking habits of felines, cats could be infected by
SARS-CoV-2 via the fecal-oral route or the airborne transmission
route. Here, our results provide some explanation for the obser-
vation that cats are highly permissive to SARS-CoV-240 and
highlight the necessity to monitor and evaluate the possible roles
of cats during the COVID-19 pandemic.

Cellular signaling is crucial for the emergence of tissue
properties and the maintenance of tissue homeostasis3C. In this
study, we painted a system-level portrait of pulmonary cell-cell
cross-talk. In addition, we identified a variety of conserved
cellular connectivity exclusively present in mammals. The
evolution of vertebrate lungs suggests that the emergence of
new pulmonary structures is usually derived from modifications
of preceding ones in order to adapt to new functional
requirements®4. Yet, there remains a huge gap between lung
morphological innovations and pulmonary cellular commu-
nication modifications. Thus, our study could provide some
clues regarding the underlying mechanisms of evolution inno-
vation from primitive lungs to advanced mammalian lungs at
the cellular and molecular levels.

Several well-known master regulators of pulmonary cells
were found to be active in corresponding cell types in a species-
conserved manner, in line with their expected functions, thus
providing a repertoire of regulatory circuits that deserve further
investigation. In addition, we identified a range of novel reg-
ulators that may work cooperatively with canonical TFs to
regulate pulmonary cell development. However, the functions
of TFs in lung development of non-model species remain
poorly understood, and follow-up functional studies are needed
to reveal their previously underappreciated regulatory func-
tions. Our study also showed that developmentally important
regulators were evolutionarily conserved, indicating that con-
served TF-target pairs may represent critical regulatory cir-
cuits, which are worthy of experimental verification. Thus,
cross-species comparison of genetic regulatory networks among
evolutionarily distant species offers a strategy to pinpoint reg-
ulatory circuits that are fundamental for lineage commitment
and cell identity maintenance.

Taken together, our study provides a unique resource and
framework to study putative virus target cells, making it possible
to screen the entry factors of a wide range of viruses in various
species in an unbiased manner. Evolutionarily conserved con-
nectomes and regulomes are of fundamental importance for
organism development and cell fate commitment. Considering
the high diversity and heterogenicity of animal tissues, it is
necessary to elucidate tissue evolution at single-cell resolution.

With the development of single-cell sequencing and advancement
of international collaborative projects, atlases for more species
will be generated at an accelerated speed. We anticipate that the
information gained from the present study could augment future
research and provide insights into prevention and control stra-
tegies against enzootic viruses such as SARS-CoV-2. Further-
more, our research should allow further investigations on the
regulatory networks, cellular cross-talk, and core gene expression
programs across evolutionary timescales. Hopefully, our resour-
ces can be utilized by evolutionary biology researchers to eluci-
date the cellular and molecular mechanisms underlying the origin
and evolution of lungs, an important interface for pathogen-host
interactions and a crucial respiratory organ that plays an
important role in vertebrate adaptation to unique ecological
niches.

There are several limitations in this study. First, the ACE2/
TMPRSS2-expressing cells might be under-detected due to
intrinsic feature of single-cell sequencing. Second, there may exist
inter-individual heterogeneity of each species. Third, differences
in innate and adaptive immune responses could putatively affect
viral replication, assembly, and/or release®”. Therefore, the results
of this study should be interpreted cautiously and the exact host
range for SARS-CoV-2 should be determined by experimental
confirmation.

Methods

Ethics statement. All experimental procedures and sample collection protocols
were performed with the approval of the Institutional Review Board on Ethics
Committee of BGI (NO. BGI-IRB A20008). All sampling procedures strictly fol-
lowed the “Guidelines on the Ethical Treatment of Experimental Animals” estab-
lished by the Ministry of Science and Technology, China.

Sample collection. This study was fully endorsed and approved by Institutional
Review Board on Ethics Committee of BGI. All sampling activities were conducted
in collaboration with technical staff. All the samples were stored carefully and used
for research purposes only. We declare that this study complied with the Con-
vention on Biological Diversity and the Convention on Trade in Endangered
Species of Wild Fauna and Flora. Tissue samples were obtained from 11 animals,
including: (1) four pet species: cat (Felis catus, domestic short-haired cat), dog
(Canis lupus familiaris, German Shepherd), hamster (Mesocricetus auratus, golden
hamster), and lizard (Anolis carolinensis, green anoles); (2) two livestock species:
goat (Capra aegagrus hircus, domestic goat) and rabbit (Oryctolagus cuniculus
domesticus, domestic rabbit); (3) two poultry species: duck (Anas platyrhynchos
domesticus, domestic duck) and pigeon (Columba livia domestica, domestic
pigeon); and (4) three wild animal species: tiger (Panthera tigris altaica, Siberian
tiger), pangolin (Manis javanica, Sunda pangolin), and deer (Cervus nippon, Sika
deer). The pangolin samples were collected from an individual that died of natural
causes in Guangdong Provincial Wildlife Rescue Center, China, and was imme-
diately stored in a —80 °C freezer after dissection. The tiger samples were obtained
from an individual that died of natural causes in the Siberian Tiger Park in Hei-
longjiang Province, China. Tiger samples were immediately stored in a —80°C
freezer after dissection. Deer samples and corresponding genome assembly were
kindly provided by the Institute of Special Animal and Plant Sciences (ISAPS) of
the Chinese Academy of Agricultural Sciences. Other animals were obtained from
markets with permission from the BGI Ethics Committee. Animals were kept in a
pathogen-free environment and provided with sufficient living space and adequate
food and water. After animal euthanasia in accordance with the animal experiment
guidelines issued by the Chinese Ministry of Science and Technology, dissection
was carried out to separate each tissue. The collected tissues were rinsed using 1x
phosphate-buffered saline, then quick-frozen, and stored in liquid nitrogen. Nuclei
of each tissue were separated by mechanical extraction. Briefly, the tissues were first
thawed, infiltrated by 1x homogenization buffer (containing 30 mM CaCl,, 18 mM
Mg(Ac),, 60 mM Tris-HCI pH 7.8, 320 mM sucrose, 0.1% NP-40, 0.1 mM EDTA,
and 0.2 U/pl RNase inhibitor), and cut into smaller pieces, with the single nucleus
then isolated by 2 ml of Dounce homogenizer. After filtration with a 30 pm
strainer, the nuclear extraction was resuspended in 1% bovine serum albumin
(BSA) containing 0.2 U/ul RNase inhibitor and centrifuged at 500 x g for 10 min at
4°C to discard cellular impurities within the supernatant. This step was repeated
twice, after which the nuclei were recollected with 0.1% BSA containing 0.2 U/ul
RNase inhibitor. Subsequently, 4/,6-diamidino-2-phenylindole was used to stain
the nuclei and nucleus density was calculated under a fluorescence microscope for
subsequent library construction.
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Single-nucleus library construction and sequencing. The separated single nuclei
of different tissues (e.g., lungs of cat, tiger, pangolin, dog, hamster, deer, rabbit,
goat, lizard, duck, and pigeon; cat kidney, liver, heart, eyelid, esophagus, and
rectum; tiger kidney, liver, spleen, and heart; pangolin kidney, liver, spleen, heart,
esophagus, stomach, duodenum, and large intestine) underwent library construc-
tion using a Chromium Single-cell 3> GEM, Library & Gel Bead Kit v3 (PN-
1000075) following the guidelines provided by the manufacturer. After conversion
using the MGI Easy Universal DNA Library Preparation Reagent Kit, the libraries
were sequenced using a compatible BGISEQ-500 sequencing platform.

Cross-species homolog gene conversion. Gene models were downloaded from
the National Center for Biotechnology Information (NCBI) database (Supple-
mentary Data 1). To facilitate integration of the cross-species single-cell lung data
sets, we converted genes from other species to the mouse homologs. First, we
downloaded the homologs of eight species (cat, tiger, dog, hamster, goat, rabbit,
lizard, and duck) and the mouse using BioMart®. For the pangolin, pigeon, and
deer, which lack homolog records on Ensemble. Single-copy orthologs were
identified from two species genomes by cluster analysis of gene families using
OrthoFinder®” v2.3.3 with default parameters. Single-copy genes were extracted
from the OrthoFinder output file. If a 1 : 1 match existed between a non-mouse and
mouse gene, the non-mouse gene name was converted to the mouse gene name.

Single-cell transcriptomic data processing. Sequencing data were filtered using a
custom script and the gene expression matrix was obtained using Cell Ranger
v3.0.2 (10x Genomics). The genomes used for read alignment were downloaded
from the NCBI Assembly (Supplementary Data 1). Single-cell analysis was con-
ducted using Seurat3334. Briefly, quality control was performed based on the fol-
lowing criteria: cells with mapped number of genes <200 or with mitochondrial
percentage higher than 10% were removed. Variable genes were determined using
Seurat’s FindVariableGenes function with default parameters (selection.method =
“vst”, nfeatures = 2000). Clusters were identified via the FindClusters function
(resolution = 1) in Seurat using principal components with a P-value <0.01 and
subsequently visualized using the RunTSNE function (reduction = “pca”). All
DEGs for each Seurat object were identified using the FindAllMarkers function
(only.pos = T, min.pct = 0.1, logfc.threshold = 0.25).

Collection of cell type markers. Cell type markers for each cell type were collected
from previously published literature338-91 and the CellMarker database®?.

Cell type identity inference. In general, lung cells were annotated based on the
overall transcriptomic similarity with the reference data set and were combined
with canonic cell type markers. Each lung atlas data set from the 11 species was
integrated with the reference lung atlas (generated using 10x Genomics for human,
pig, mouse, and rat)?" to infer their putative identity. Briefly, data sets of lungs
from different species were integrated with the reference data set using the Seurat
FindIntegrationAnchors and IntegrateData functions with features after homolog
conversion3334, Subsequently, cells in each cluster were marked according to their
origin (from custom or reference data). The cell type identity tag of the reference
cells was obtained from the metadata of the reference lung data set and the pro-
portion of each reference cell type (AT1 cells, AT2 cells, ciliated cells, secretory
cells, fibroblasts, endothelial cells, macrophages, T cells, and B cells) in every cluster
was calculated. The cell type contributing to the highest proportion of the corre-
sponding cluster was adopted as the potential cell type of that cluster. Cell type
identity was further confirmed according to the expression of canonical cell type
markers. Regarding other tissues (heart, liver, spleen, and kidney), cells were
annotated according to canonical markers.

GO term enrichment analysis. The gene list converted to mouse homologs was
subjected to GO analysis using the hypergeometric test implemented in the
clusterProfiler”® package. GO enrichment level was evaluated by adjusted P-values
and multiple test adjustment was conducted using the Benjamini-Hochberg (BH)
method.

Screening of SARS-CoV-2 target cells. A cell was considered a SARS-CoV-2
target cell if ACE2 and TMPRSS2 expression levels were detected (unique molecular
identifier, UMI > 0) simultaneously. The percentage of ACE2&TMPRSS2-positive
cells was calculated for each cell type.

Pearson correlation coefficients. Pearson correlation analysis was conducted
using the corr.test function in the psych package with the parameter: method =
“pearson”. Multiple test adjustment was conducted using the p.adjust function with
parameter: method = “BH”.

Screening of viral receptors in cat cells. Viruses that may infect cats were
collected from previously published literature!:4546:53 and reviewed by virology
experts. A receptor list of viruses was downloaded from the viralReceptor database
(http://www.computationalbiology.cn:5000/viralReceptor). First, the percentage of

receptor-positive cells was calculated for each cell type, resulting in a receptor
percentage matrix (receptors in columns, cell type in rows). We next performed
principal component analysis on all cell types using the receptor percentage matrix.
Pearson’s correlation coefficients between receptors and all protein-coding genes
were calculated, and the top 100 correlated genes of each receptor were subjected to
GO term enrichment analysis.

Statistics analysis for ACE2 and TMPRSS2 co-expression enrichment. To test
the significance of SARS-CoV-2 putative target cells in cat compared to other
species, we randomly sampled 100 times of ciliated cells in each species, with 50%
cells selected each time. After calculation of ACE2 and TMPRSS2 co-expression
ratio in each sampling, Wilcoxon’s rank sum test was conducted using the 100 co-
expression ratios between cat and that of the other 10 species respectively. Simi-
larly, we tested the significance of ACE2 and TMPRSS2 co-expression in ciliated
cells, compared to macrophages.

Cellular communication analysis. Ligands and receptors were downloaded from
the FANTOMS5 database”, a widely used database for inferring connectome in
various species>®>-%7, and included all literature-supported mouse ligands and
receptors. Connectome networks were constructed according to the expression of
ligands and receptors and both degree and centrality were calculated based on
interactions passing different percentage thresholds using methods described by
Raredon3(. Nodal degree, hub authority, and centrality were calculated using the R
package igraph?8. The threshold of cognate ligand-receptor pair expression was
greater than 5% of cells in source and target cell types. We next applied network
centrality analysis and mode dominate analysis to connectomes using the Com-
pareCentrality functions in the R package Connectome (https://github.com/
msraredon/Connectome). CircosPlot function was used to visualize mammalian-
specific conserved interactions.

Identification of pan-conserved and mammalian-specific conserved cellular
interactions. A signaling axis was defined as a combination of the following four
components: source cells, ligands, receptors, target cells. If a signaling axis was
present in all nine species investigated (cat, tiger, pangolin, dog, hamster, deer,
goat, lizard, and duck), then it was considered as a pan-conserved cellular inter-
action. In addition, if a signaling axis was present in all seven mammalian species
(cat, tiger, pangolin, dog, hamster, deer, and goat) but absent in the lizard and
duck, it was defined as a mammalian-specific conserved cellular interaction.

TF-target interaction inference. The TF list for mouse (Mus musculus) was
downloaded from the animalTFDB3.0%°. TFs and other genes were filtered out if
expressed in <5% of corresponding cell types. Only protein-coding genes were
maintained for subsequent analysis. Briefly, GENIE3190 was employed to predict
putative regulatory circuits, with TF-target interactions with a weight value 20.01
retained for further regulatory network construction. Regulomes of representative
TFs were visualized using Cytoscape and the R package igraph”$101.

Conservation analysis of TF-target pairs. The total frequency of each TF-target
pair in a specific cell type in the nine species was counted to evaluate its con-
servation level. If a given TF-target pair was present in at least two of the same cell
types in the nine species, it was regarded as “conserved.” If the count was >4, then
the TF-target pair was considered as “highly conserved.”

Identification of putative cell type regulators. Cell type regulators were iden-
tified as follows: (1) TF-target interactions needed to be present in a specific cell
type in at least two species. (2) TFs in conserved TF interactions (in at least two
species) in each cell type were ranked in descending order according to the number
of targets under their regulation. (3) Targets for each of the top 30 TFs in each cell
type were subjected to GO term enrichment. (4) TFs with targets enriched in GO
terms closely associated with expected biological processes of corresponding cell
types were considered as putative regulators. (5) Extensive literature mining was
performed for the putative regulators identified in the last step. If any report
supported a clear link between the investigated TF and corresponding cell type,
then it was considered as a known regulator. Otherwise, it was annotated as a
putative novel regulator.

Conserved core expression programs identification. A gene was considered as
expressed in a species if it was expressed in at least one cell type (UMI>1) in the
lung atlas of that species. We intersected the expressed gene list of the nine species
and obtained a set of 5442 commonly expressed genes for subsequent analysis. We
first calculated the average gene expression of each cell type among the nine
species. To obtain the percentile values of genes in a certain cell type of a particular
species, we sorted genes according to their average expression levels from low to
high, and then divided the gene ranking by the total number of genes. Using the
same strategy, we generated a percentile matrix for each cell type of all nine species.
Hierarchical clustering was applied to the percentile matrices in the AT1 and AT2
cells in all nine species. The clustered genes were ranked by average percentile
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values, and the top two clusters were considered the core gene expression programs
for the AT1 and AT2 cells.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The raw data and processed data generated in this study have been deposited in the
NCBI database under accession code PRINA747757 and GEO database under accession
code GSE183300. Alternatively, raw transcriptome sequencing data and processed data
were deposited at the CNSA (CNGB Nucleotide Sequence Archive) under accession
number CNP0001882 and CNP0001889. The single-cell atlases of all investigated species
in this study are available via http://120.79.46.200:81/Pandora/Download.html. All other
relevant data supporting the key findings of this study are available within the article and
its Supplementary Information files or from the corresponding author upon reasonable
request. Source data are provided with this paper.

Code availability
Custom scripts for data analysis in this study were present in https://github.com/
DongshengChen-TY/Atlas (https://doi.org/10.5281/zenodo.5139392).
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