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In addition to transcription factor binding, the dynamics of DNA modifications

(methylation) and chromatin structure are essential contributors to the control of

transcription in eukaryotes. Research in the past few years has emphasized the

importance of histone H3 methylation at lysine 27 for lineage specific gene repression,

demonstrated that deposition of this mark at specific genes is subject to differentiation-

induced changes during development, and identified enzymatic activities, methyl

transferases and demethylases, that control these changes. The present review

discusses the importance of these mechanisms during intrathymic αβ T cell selection and

late differentiation.
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INTRODUCTION: CHROMATIN AND CONTROL OF GENE
EXPRESSION

Pioneering studies in prokaryotes have led to the paradigm that adjusting gene transcription in
response to environmental signals involves transcription factors, proteins that bind specific DNA
sequences (cis-regulatory elements) close to the transcription start site. Such binding promotes
DNA-templated RNA synthesis by the RNA polymerase. The same paradigm governs the control
of transcription in eukaryotic cells, with added layers of complexity at virtually every step,
including the multiplicity of RNA polymerases, the functional overlap among trans-acting factors,
and the unsuspected promiscuity of transcription factors with cis-regulatory elements. Typical
genes are controlled by multiple, often tissue-specific cis-regulatory elements, potentially distantly
located relative to the transcription start site. Such elements are bound by transcription factor
assemblies which themselves typically recruit cofactor complexes that mediate their action on the
polymerase complex.

In addition, eukaryotes use two important layers of controls of gene expression, DNA
methylation and chromatin dynamics. Eukaryotic DNA is methylated on cytosines located
upstream of a guanine, and stretches of such palindromic CpG dinucleotides (called CpG islands)
are frequently found in cis-regulatory elements. Their methylation status is inversely correlated
with gene expression (1). The impact of CpGmethylation is not limited to transcriptional silencing,
as it affects transcription factor binding, positively or negatively depending on the transcription
factor and target sequence (2). Additionally, eukaryotic DNA is packaged into nucleosomes and
higher-order nucleosome-based structures referred to as chromatin, in which DNA is tightly
associated with histones, thereby restraining its accessibility to transcription factors or to the
polymerase machinery. Such packaging is dynamic and subject to two sets of modifications.
First, “chromatin remodeling,” performed by energy-dependent enzymatic complexes, changes the
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position of nucleosomes over DNA; this process is essential
to “open” specific regulatory sequences for transcription
factor binding or polymerase recruitment (3). Second, histone
molecules themselves are subject to covalent modifications,
including acetylation, methylation, and ubiquitination (4). Many
of these modifications occur on specific amino-acid residues
within the amino-terminal “tail” of histone molecules, that is not
tightly associated with DNA. Through their combinatorial effect,
these modifications constitute a high-order “code,” that has a
broad impact on chromatin structure and gene expression (5, 6).
Covalent modifications are “written” (added) or “erased” (by
catalytic removal) by specific enzymatic complexes, and recruit
“reader” protein complexes that affect transcription.

Specific histone modifications are associated with specific
gene expression states or regulatory regions (4). Acetylation
of histone H3 on lysines 9 or 27 (H3K27Ac or H3K9Ac) is
preferentially found at enhancers or promoters of expressed
genes. Similarly, methylation of H3 lysine 4 is associated with
active enhancers (H3K4 mono- or di-methylation) or found
at the promoter of actively transcribed genes (H3K4Me3). In
contrast, H3 K9 methylation, and in particular tri-methylation, is
associated with heterochromatin formation. This review focuses
on the methylation of H3 lysine 27 (H3K27Me3), which has
attracted much interest because of its association with lineage-
specific gene repression and because its impact on transcription
is in large part mediated through its interactions with Polycomb
Repressive Complexes (PRC), which were initially identified as
controllers of homeotic gene expression in Drosophila (7, 8).

There is compelling evidence that changes in H3 K27
methylation are not simply associated with gene expression
status, but have a causative role in setting gene transcription
levels (9–11). However, it has been difficult to quantify the actual
contribution of thismechanism because chromatinmodifications
and sequence-specific transcription factors serve cooperatively to
control transcription, and because these mechanisms mutually
affect each other with multiple examples of interactions between
transcription factors and H3K27Me3 writer, eraser or reader
complexes (12, 13). Additionally, the genetic tools available for
such studies, i.e., inactivation of chromatin modifiers, methyl-
transferases and demethylases for H3K27Me3, by definition have
a broad impact on the transcriptome, complicating mechanistic
studies. The present review will discuss how these mechanisms
control H3K27Me3 homeostasis in the thymus and contribute to
the development of αβ T cells.

αβ T Cell Development
Early Stages
T cell development in the thymus is a multi-step process
combining cell proliferation, differentiation and survival-
selection events (14). As a result, it has attracted interest not
only because of the essential role of T cells in immune responses,
but also because it is one of the few developmental processes
that is amenable to both genetic and functional studies after
the completion of embryonic development. Two main lineages
of T cells can be separated based on the composition of their
heterodimeric antigenic receptor: αβ and γδ T cells, respectively
expressing TCRα and TCRβ, or TCRγ and TCRδ chains. All T

cells derive from bonemarrow precursors, and their development
can be divided into three schematic steps: (i) T cell lineage
commitment, common to both αβ and γδ lineages (15–17),
(ii) antigen receptor gene rearrangement and commitment to
either of the two main T cell lineages (αβ vs. γδ) (18, 19), and
(iii) selection-maturation of αβ- and γδ-committed T cells. This
review will focus on the selection and maturation of αβ lineage T
cells (20), a process involving acquisition of long-term survival,
choice of either of the two main lineages of αβ T cell, defined
by the expression of CD4 and CD8 surface molecules (14), and
intrathymic migration events that culminate in the egress of
mature thymocytes to the blood circulation and their entry in
secondary lymphoid organs.

Conventional T Cell Differentiation From Early αβ

Lineage Precursors
The earliest αβ lineage-committed thymocytes have successfully
rearranged one of their TCRβ-encoding genes and express
neither CD4 nor CD8 coreceptors (“double-negative” [DN]
thymocytes) (Figure 1). After they have up-regulated both
molecules (and are thus called “double-positive” [DP]), these
cells rearrange their TCRα genes, allowing the surface expression
of TCRαβ complexes which “probe” the set of MHC peptide
complexes expressed by thymic epithelial cells (22). In the
absence of productive MHC-peptide interactions (and therefore
signaling though their TCR), these short-lived cells undergo
programmed cell death in the thymic cortex within 3 days of
their generation (23). In contrast, thymocytes that express an
αβ TCR with appropriate affinity for MHC peptide complexes
are rescued from cell death, a process referred to as positive
selection (24–27); positive selection is closely associated (and
possibly mechanistically linked) to the termination of TCRα gene
rearrangement and changes in chemokine receptor expression
that will eventually lead DP thymocytes from the cortex to the
thymic medulla (28). Of note, cells with high avidity for MHC
peptide complexes are either targeted for activation-induced cell
death (“negative selection” by deletion) or diverted to alternate
developmental fates, most notably differentiation into regulatory
T cells with suppressive activity (29–31). Although the latter
processes are critical for immune tolerance, they have not been
shown to be affected by H3K27 methylation and will not be
further discussed below.

Positively selected DP thymocytes differentiate into either
CD4- or CD8-lineage T cells, defined by the cessation of
either CD8 or CD4 expression and accompanied by “pre-
programming” for helper vs. cytotoxic functions, respectively
(32–34) (Figure 1). The “choice” of lineage is determined by the
cell’s MHC specificity, so that thymocytes that recognize MHC-II
bound peptides become CD4+ T cells, whereas those recognizing
MHC-I-bound peptides become CD8+ T cells (35). This process
involves multiple transcription factors, including two with
lineage specific expression, the zinc finger molecule Thpok in
CD4+ thymocytes and Runx3 in CD8+ thymocytes (36–39).
Following their CD4-CD8 differentiation, differentiating αβ

lineage thymocytes undergo terminal maturation, including
expression of surface receptors enabling their migration
to secondary lymphoid organs after thymus exit, and of
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FIGURE 1 | Overview of T cell development. The most immature T cell precursors (CD4−CD8−DN thymocytes), CD4+CD8+ DP and CD4 and CD8 SP thymocytes

are depicted. Relevant DN thymocyte subsets (defined on expression of CD25 and CD44) are shown (14, 21). Commitment to either αβ or γδ lineage occurs after

successful rearrangement, at the early DN3 stage (DN3a, characterized by low expression of surface markers CD27 and CD28), of the corresponding TCR chains

(TCRβ for αβ lineage cells, TCRγ and TCRδ for γδ lineage cells). DP thymocytes signaled by MHC-I or MHC-II-associated peptides undergo positive selection,

differentiate into the CD8 or CD4 lineage (respectively) and complete their maturation before leaving the thymus. Cells signaled by high-affinity ligands are either

deleted (negative selection, not depicted) or directed toward specific fates, including iNK T cells (Figure 2) or regulatory T cells (Treg, not depicted).

S1pr1, a sphingosine phosphate receptor needed for thymic
egress (40, 41).

The differentiation of DP thymocytes into mature T cells
involves extensive changes in gene expression (42), accompanied
by modifications of the chromatin landscape (43–45). Unlike in
many other differentiation processes, αβ lineage thymocytes do
not divide during their intrathymic differentiation into mature
T cells (23, 46). Thus, changes to the chromatin landscape
cannot be mediated by “dilution” of chromatin marks but must
be implemented by active mechanisms that remove or add
chromatin marks on relevant genes.

Innate-Like αβ T Cells Undergo Effector

Differentiation in the Thymus
In addition to classical MHC-I or MHC-II molecules, DP
thymocytes can be signaled by MHC-like molecules and
differentiate into “innate-like” or “non-conventional” αβ T
cells, which acquire effector functions during their intrathymic
differentiation. By far the best characterized among these cells
are invariant natural killer (iNK) T cells, which recognize lipids
bound to CD1d molecules (47–49). In mice, most iNK T cells
express a TCR including a specific Vα14 Jα18 TCRα chain paired
to a restricted set of TCRVβ chains; such type I iNK T cells react
with CD1d-bound α-galactosyl ceramide (αGalCer), and can be
identified through their binding to a tetramerized version of this
complex (Figure 2). In contrast, type II iNK T cells, while also
CD1d-restricted, do not bind CD1d-αGalCer, and do not express
the canonical Vα14 Jα18 chain (50, 51).

Regardless of the ligand they recognize, iNK T cells differ
from conventional T cells in multiple respects (Figure 2). They

FIGURE 2 | iNK T cell subsets. DP thymocytes signaled by CD1d-bound lipids

differentiate into iNK T cells. Most iNK T cells (Type I iNK T cells) express a

Vα14 invariant TCRα chain (and exhibit a reduced TCRβ chain diversity), and

recognize CD1d-bound α-Galactosyl-Ceramide (αGalCer). These cells

undergo functional differentiation in the thymus (requiring the transcription

factor PLZF) into IFNγ, IL-4 or IL-17-expressing effector fates (therefore

referred to as iNK T1, T2, or T17, respectively). A smaller subset of

CD1d-signaled cells (Type II iNK T cells) does not carry the prototypical Vα14

chain and does not recognize αGalCer; these cells also undergo functional

differentiation, although specific cytokine expression patterns are not as

extensively characterized as for Type I iNK T cells.

are selected in the thymus by CD1d molecules expressed by
DP thymocytes (unlike conventional thymocytes which are
selected by MHC-I or MHC-II molecules expressed by the
thymic epithelium), and their development requires homotypic
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interaction between SLAM-family receptors expressed on both
the CD1d-presenting cell and the CD1d-signaled differentiating
iNK thymocyte (47). As a result of these signals, iNK T
precursors up-regulate the zinc finger transcription factor
PLZF, and undergo intrathymic proliferation and effector
differentiation (52–55). The resulting mature iNK thymocytes
acquire differentiation programs and cytokine production
pattern typical of Th1, Th2 or Th17 effector T cells; they
express the corresponding fate-specific transcription factors
(T-bet, Gata3 and RORγt, respectively) and are thus called
NKT1, NKT2, and NKT17 cells (54); note that this “functional”
classification is unrelated to the aforementioned distinction
between type I and type II iNK T cells, which refers to ligand
specificity. The acquisition of effector functions by iNK T cells
in the thymus contrasts with the vast majority of conventional
thymocytes, which do not acquire effector properties during
their development and leave the thymus as “naïve” T cells.
Importantly, analyses in recombinant mice have shown that
PLZF is both necessary and sufficient for the implementation of
the NK T effector program, and the control of PLZF expression
and function is therefore a critical factor in iNK T differentiation.
Last, most iNK T cells colonize effector sites in tissues rather
than secondary lymphoid organs, most prominently the liver
and gut mucosa, where they contribute to the recognition of
CD1d-bound microbial metabolites (48).

Enzymatic Activities Carrying H3K27
Methylation and Demethylation
H3 K27 Methylation and Methyl Transferases
Nucleosomes carrying trimethylated H3K27 are preferentially
located at and near promoters of silent genes (7, 56–58). There is
evidence that H3K27Me3 actually contributes to transcriptional
repression, mostly by recruiting Polycomb-repressive complex 1
(PRC1), which is considered as the main H3K27Me3 “reader.”
Recruitment is mediated by direct binding of H3K27Me3 to
PRC1 Cbx subunits (8, 12, 59), although recent studies have
highlighted the role of long non-coding RNAs in modulating
these interactions and PRC1 functions (60–62). When recruited
to chromatin, other PRC1 subunits repress transcription, notably
by promoting histone H2A ubiquitination (63). Additionally,
the methylation of H3 K27 prevents its acetylation and
thereby indirectly contributes to transcriptional repression.
Polycomb-repressive complexes 2 (PRC2) “write” theH3K27Me3
modification, through their catalytic components Ezh1 or Ezh2
methyl transferases (7, 64). Both Ezh2 and components of PRC1
are critical at multiple stages of immune cell development and
responses, highlighting the importance of H3K27methylation for
cell homeostasis and differentiation (65–72).

H3K27Me3 Demethylases
Conversely, H3K27Me3 can be “erased” by catalytic
demethylation (into di- and monomethyl forms) by Jmjd3
and Utx demethylases. These enzymes belong to a large family
defined by the presence of a complex catalytic domain, called
JmjC (73–77). Their demethylase activity requires oxygen
and α-ketoglutarate, and is therefore controlled by the cell
metabolic status. The protein sequences of Jmjd3 and Utx are

largely unrelated outside of their JmjC domain, suggesting that
these molecules have unique, and potentially non-redundant,
demethylase-independent activities. In vitro analyses suggest a
strict correspondence between Jmjd3 and Utx catalytic activities
and H3K27Me3 demethylation. That is, both molecules are
highly specific for H3K27Me3, relative to other methylated
histone residues (78–83), whereas most other JmjC-based
demethylases have no significant in vitro activity on H3K27Me3.

Importantly, both H3K27 methyl-transferases and
H3K27Me3 demethylases have histone-independent activities.
Ezh2 methylates non-histone substrates, including cytosolic
factors controlling actin polymerization and TCR signaling
(66, 72). It was also reported to methylate and promote the
degradation of the transcription factor PLZF needed for iNK T
cell differentiation (84, 85). Jmjd3 and Utx have demethylase-
independent activities and are notably part of KTM2 complexes
(also called MLL), which are found at the promoter of active
genes (86) and include H3 Lysine 4 histone methyl transferases
(hence the KTM name). Both Jmjd3 and Utx were reported to
associate with specific (and distinct) KTM2 complexes (87, 88),
in which they may serve a structural (scaffold-like) role, or
promote association with transcriptional regulators. In addition,
Jmjd3 and Utx interact with Brg1-based chromatin remodeling
complexes (89), which displace nucleosomes over the DNA (3)
and have notably been implicated in the control of Cd4 and
Cd8 expression and T cell development (90, 91). For Jmjd3,
this association is independent of its demethylase activity (89)
and has been reported to be important for the function of the
transcription factor T-bet during the differentiation of activated
CD4+ T cells into Th1 effectors (92).

H3K27Me3 Erasers: Do They Matter?
Early studies of H3K27Me3 homeostasis raised a puzzling
paradox. They found that disruption of Polycomb genes (writers
or readers) has a strong impact on cell differentiation and
function in multiple experimental systems, including in ES cells
and embryonic development, tumor development, and early
hematopoiesis (93–96). This is in line with experiments in
Drosophila and analyses of tumor-specific mutations in pediatric
glioblastoma, which indicate that H3K27 trimethylation causes,
rather than results from, transcriptional repression (10, 11). In
contrast, and unexpectedly, disrupting H3K27Me3 erasing, by
impairing catalytic demethylation, showed a much lesser impact.
While germline Utx disruption arrests embryonic development
at the time of organogenesis, this involves demethylase-
independent activities of Utx, as shown by analyses of mutant
mice expressing a catalytically inactive version of the protein (97–
100). Germline disruption of Jmjd3, or disruption of Jmjd3 and
Utx demethylase activity, are compatible with the development
of most organs and systems, although it results in death of
newborn mice due to the impaired development of the brain
center controlling respiratory rhythm (101–103).

A tentative explanation for this apparent paradox is that
“dilution” of H3K27Me3 marks at each cell division could make
Jmjd3 and Utx demethylase, but not demethylase-independent,
activities dispensable during differentiation processes associated
with cell proliferation. In antigen-activated mature T cells,
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which extensively proliferate, such “dilution” could account
for the limited effect of Utx disruption on H3K27Me3
distribution during the differentiation of follicular helper
T cells (104). However, other observations challenge the
idea that “dilution” can efficiently clear the mark. Jmjd3
disruption increased H3K27Me3 levels at more than 2,500
genes during the differentiation of Th1 effector CD4+ T cells
(105), which is also accompanied by proliferation. Additionally,
catalytic demethylation serves important functions in vivo,
as it mediates in part the activity of Jmjd3 in macrophage
effector differentiation (101) or in the development of the
brain respiratory center (102), and of Utx in somatic cell
reprogramming (106). As detailed below, studies of Jmjd3 and
Utx functions in developing T cells shed light on this question.

Role of H3 K27 Methyl Transferases and
H3K27Me3 Demethylases During T Cell
Development
Analyses of genomic H3K27Me3 deposition by chromatin
immunoprecipitation followed by deep-sequencing (ChIPseq)
suggested that this modification was important for
transcriptomic changes during late αβ T cell differentiation
(43, 44). Changes (increase or decrease) in H3K27 tri-
methylation were detected at hundreds of promoters during
the differentiation of DP into CD4 SP thymocytes (43, 44). Of
specific interest were the almost complete removal of the mark at
the genes encoding the CD4-differentiating transcription factor
Thpok (38, 39), the S1pr1 receptor required for thymic egress
(40), and the transcription factor Klf2, involved in the terminal
maturation of SP thymocytes and S1pr1 expression (107).
Conversely, increased H3K27Me3 decoration was observed at
genes silenced during αβ T cell differentiation, including those
encoding the recombinases Rag1 and Rag2. These changes in
H3K27 methylation raised the possibility that mutations in Ezh1
and Ezh2 methyl transferases, or in Jmjd3 and Utx demethylases,
would affect positive selection and the subsequent differentiation
of αβ T cells in the thymus.

Experimental assessments of these predictions have produced
mixed results. Deletion of Ezh2, the predominant H3K27
methyltransferase in the T cell lineage, has no reported impact
on the differentiation of SP from DP thymocytes, unlike at
earlier stages of T cell development, during the differentiation
of iNK T cells, or in mature T cells (66–71, 108). This
unexpected result does not imply that H3K27 methylation is
not important for transcriptomic changes during the DP-SP
transition, as the lack of an effect in DP thymocytes may reflect
the potential functional overlap with Ezh1, highlighted in other
developmental studies (64, 109–111) or the extended half-life of
Ezh2 or H3K27Me3 molecules. A recent report pointed out to
mechanisms controlling the stability of Ezh2 in activated T cells
(112); future studies will address if it is controlled in developing
thymocytes as well.

The reciprocal experiment, namely deletion of Jmjd3 or
Utx targeted to DP thymocytes, showed at first glance similar
results as mice lacking either or both enzymes had CD4 and
CD8 SP thymocytes and T cells (44, 101, 105). However,

a detailed analysis showed that both enzymes are important
for late T cell differentiation (44): Jmjd3 and Utx double-
deficient mice had increased numbers of mature CD4 and
CD8 SP thymocytes but reduced numbers of peripheral T cells;
inactivation of either enzyme resulted in more limited effects,
more pronounced for Jmjd3 than for Utx, consistent with
functional overlap. Gene expression analyses and reconstitution
experiments showed that these enzymes were needed for the
expression of S1pr1, the sphingosine receptor required for thymic
egress (40), and that this requirement accounted at least in
part for their impact on late T cell differentiation (Figure 3)
(44). Although the impact of Jmjd3 and Utx double-disruption
on S1pr1 expression and T cell development was limited in
animals expressing a diverse endogenous TCR repertoire, it
resulted in an almost complete developmental block at the SP
thymocyte stage in transgenic mice in which thymocytes all
expressed a single TCR specificity, or when the development
of mutant thymocytes was assessed in mixed bone marrow
chimera, where they developed in competition with wild-type
control cells. These findings indicated that loss of Jmjd3 and
Utx activities can be compensated, in part, by changes in the
repertoire of thymocytes completing their differentiation, and
therefore suggested that H3K27Me3 demethylases contribute
to gene expression in coordination with signals coming from
TCR engagement.

Analyzing the impact of these enzymes onH3K27methylation
status and the transcriptome gave unexpected results. Even
though DP and SP thymocytes are non-dividing cells, the
inactivation of Jmjd3 and Utx had a highly specific impact
on H3K27Me3 distribution (44). Unlike in a study of Jmjd3-
deficient effector T cell differentiation (105), double-deficient
thymocytes showed no general trend toward increased H3
K27 tri-methylation, whether at promoters or in non-promoter
regions. Rather, H3K27Me3 density was significantly enhanced
at fewer than 1% of loci (44), many of which were genes at
which H3K27Me3 was normally removed during the DP to the
CD4 SP transition, including S1pr1 (Figure 3). This indicated
a role of Jmjd3 and Utx in the dynamics of differentiation-
induced H3K27Me3 erasing, rather than in its steady-state
homeostasis. Intriguingly, deletion of Jmjd3 and Utx failed to
affect H3K27Me3 erasing at a subset of promoters induced in
differentiating αβ lineage thymocytes and at which H3K27Me3
is normally removed, including that of the gene encoding Thpok
(44). The latter was in line with the lack of an effect of Jmjd3
and Utx on the differentiation of CD4 SP thymocytes and Thpok
expression, and suggested that additional mechanisms contribute
to H3K27Me3 removal. Similarly, the differentiation of MHC
I-signaled thymocytes into the CD8+ was not affected by the
double disruption of Jmjd3 and Utx (although the terminal
maturation of CD8 SP cells was impaired to an extent similar to
that of their CD4 SP counterparts).

Aside from S1pr1, the impact on the transcriptome of
differentiating SP thymocytes was limited to a small number of
genes, many of which were normally up-regulated during the
terminal differentiation of SP thymocytes, including Klf2 (44).
Expression of most of these genes was reduced by the double
disruption, suggesting that the impact of Jmjd3 and Utx on gene
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FIGURE 3 | Impact of H3K27Me3 demethylation on late thymocyte differentiation Immature SP thymocytes (characterized by their expression of surface markers

CD69 and CD24, as indicated) have low expression of the surface receptor S1pr1 (needed for thymic egress) and of the transcription factor Klf2 (needed for S1pr1

expression). Expression of both genes increases in mature SP thymocytes, allowing their export to the bloodstream and secondary lymphoid organs. In immature SP

cells, the promoters of S1pr1 and Klf2 are enriched in the repressive H3K27Me3 mark, whereas the “active” H3K4Me3 mark is absent (left, depicted here for S1pr1).

Thymocyte maturation is accompanied by an inversion of this pattern at both genes (right). The H3K27Me3 demethylase Jmjd3 (with functional overlap with the

related protein Utx, not depicted) is needed to “erase” the H3K27Me3 mark at S1pr1, for S1pr1 expression and for thymic egress. Note that Jmjd3 is expressed at

similar levels in both mature and immature SP cells (not shown in the latter for simplicity), suggesting that it is recruited to target genes through interactions with

sequence-specific transcription factors.

expression wasmostly stimulating (in line with their “erasing” the
repressive H3K27Me3 mark) (44).

H3 K27 Methylation and iNK T Cell
Development
Although the development of iNK and conventional T cells
differs in important respects, both subsets differentiate from
DP thymocytes upon engagement of their TCR by intrathymic
ligands. Nonetheless, because of developmental steps unique to
iNK T cells, disruption of H3 K27 methylation or demethylation
has specific effects on their differentiation (summarized in
Supplementary Table 1). Initial hints came from analyses of
Ezh2-deficient thymocytes (70). Although it has no detectable
effect on the development of conventional T cells, Ezh2
disruption in DP thymocytes results in increased numbers of
iNK T cells, an effect particularly pronounced on IL-4-producing
NKT2 cells and associated with increased PLZF expression.

Most remarkably, Ezh2 disruption “uncouples” iNK T cell
differentiation from TCR specificity. Normally, PZLF expression
and the acquisition of effector functions are characteristic of
CD1d-restricted NK T cells, and of related “innate” T cells
subsets restricted by non-classical MHC or MHC-like molecules,
including mucosal-associated invariant T (MAIT) cells (113).

Unexpectedly, Ezh2 deletion resulted in the appearance of large
populations of T cells expressing PLZF, producing effector
cytokines (including IL-4 and IFNγ), but without detectable
binding to αGalCer-CD1d complexes and therefore distinct from
type I iNK T cells (70). Additional lines of evidence supported
the conclusions that these “NK T wannabe” are not type II
NK T cells. Unlike type II NK T cells (50), they express a
diverse TCR repertoire characteristic of conventional T cells,
and they could develop in mice expressing an MHC II-restricted
transgenic TCR specific for ovalbumin, which normally directs
the differentiation of conventional CD4+ T cells. In line with
their expression of PLZF, Ezh2-deficient NK T cell “wannabes”
had no H3K27Me3 accumulation at the promoter of the gene
encoding this factor, unlike conventional T cells (70). Thus, these
experiments indicated that H3K27Me3 methylation restrains
PLZF expression and effector differentiation to CD1d-restricted
T cells and other subsets of innate T cells.

Studies of histone demethylase functions provided a mirror
image of these findings. In contrast to their selective impact on
late thymic maturation in conventional thymocytes, Utx and to
a lesser extent Jmjd3 were found to be important for multiple
aspects of iNK T cell development (13, 70, 114). Inactivation
of both enzymes causes a broad block in the development of
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iNK T cells in the thymus, with a similar impact on liver iNK
T populations. The block is contemporary with the up-regulation
of PLZF and the acquisition of effector functions. However, there
is no evidence that Utx is needed for PLZF up-regulation. Rather,
it seems important to enforce the PLZF-mediated transcriptomic
program characteristic of iNK T cell differentiation; consistent
with this idea, Utx binds to PLZF molecules in iNK T cells (13).
Of note, it is possible that additional mechanisms mediate the
impact of Utx and Jmjd3 on iNK T cells, as the developmental
block in Utx-deficient iNK T cells was more marked for T-bet-
expressing and IFNγ-producing NKT1 cells than for the NKT2
and NKT17 subsets. Future studies will address these questions.

Mechanistic Considerations
An important question raised by these observations is whether
the impact of Jmjd3 and Utx on T cell development is mediated
by their catalytic demethylase activity, since it is dispensable
in embryonic development (97–100, 103). Multiple lines of
evidence point to the importance of catalytic demethylation
in developing T cells. Initial insight came from comparisons
of female and male mice, because the gene encoding Utx
(Kdm6a) is located on chromosome X. Accordingly, female
cells carry (and express) two Kdm6a alleles; in contrast male
cells express Utx from their single Kdm6a allele and the Y
chromosome-located Uty gene, encoding the Utx-related protein
Uty. Although lacking demethylase activity, Uty is functionally
redundant with Utx during the development of male mice
(103). In contrast, the impact of Jmjd3 and Utx disruption
on conventional CD4 SP thymocyte maturation is the same in
female and male cells (44). This indicates that demethylase-
dead Uty is insufficient to promote thymocyte development, and
therefore supports the idea that H3K27Me3 demethylase activity
is required.

Three results from analyses in iNK T cells corroborate this
conclusion. First, as in conventional thymocytes, Uty failed
to rescue the defect caused by Utx disruption (114). Second,
the combined deletion of Utx and Ezh2 resulted in a milder
defect in iNK T differentiation, suggesting that the two proteins
have opposite effects on a common target (114). Last, retroviral
transduction “rescue” experiments directly demonstrated that a
mutant of Utx lacking catalytic activity failed to restore iNK T cell
differentiation from Utx-deficient thymocytes, unlike wild-type
Utx (13).

Studies in thymocytes also raised the intriguing possibility that
demethylase and demethylase-independent functions synergize
for optimal gene expression. In mature conventional thymocytes,
S1pr1 gene expression depends both on H3K27Me3 demethylase
activity (44) and on Ptip1 (115) an Utx-associated component
of KTM2 complexes (87), suggesting that Utx could contribute
to both functions. In differentiating iNK T cells, it was reported
that Utx affects the chromatin accessibility of super-enhancers
(chromosomal regions associating multiple enhancer elements
and operationally defined by continuous high density stretches
of H3K27Ac in ChIPseq experiments) and therefore presumably
their activation (13). Indeed, Utx promoted expression of
genes located near Utx-dependent super-enhancers. These results
support the idea that Utx, through recruitment to gene regulatory

regions by sequence-specific transcription factors (including
PLZF in iNK T cells) contributes to enhancer activation.

CONCLUDING REMARKS AND
PERSPECTIVES

The work summarized in this review highlights the importance of
H3 K27 methylation in the development and function of T cells.
Analyses of its function during cell differentiation face numerous
challenges, including (i) the genome-wide deposition of the mark
and its implied pleiotropic impact, (ii) the multiplicity of protein
and protein complexes involved in the “writing,” “reading,” and
“erasing” of the mark, with various degree of functional overlap,
and (iii) the multifunctional nature of many components, and
specifically H3K27Me3 demethylases. Nevertheless, studies over
the past few years have brought important clarifications on the
function of this mark in T cell development, both on its impact
on the transcriptome of differentiating cells and its biological
consequences, and on the mechanisms that underpin this impact.

Several important questions remain to be addressed. In
particular, while it is clear that complete disruption of PRC1
activity (through inactivation of both Ezh1 and Ezh2, or
of the non-redundant component Suz12) abrogates H3 K27
methylation and results in a major disruption of cell homeostasis
and differentiation, the consequences of the double Jmjd3-
Utx disruption are less striking, both on H3K27Me3 and
developmental fates. At the gene level, evidence in non-dividing
thymocytes that H3K27Me3 is “erased” despite Jmjd3 and Utx
disruption (e.g., at the gene encoding Thpok) (44) indicates the
involvement of additional mechanisms. While the involvement
of other JmjC-family enzymes in H3K27Me3 demethylation
cannot be excluded, there is little supporting evidence at present
(74). Only Kdm4 family members have been reported to act on
H3K27Me3 (116), and their actual activity remains to be clarified
(117). Of note, the fact that Jmjd3 and Utx are required for
H3K27Me3 clearance at other promoters (e.g., S1pr1) indicates
that such effects would be gene specific. A distinct and tantalizing
possibility is that, even in non-dividing cells, H3K27Me3 is
functionally erased by nucleosome replacement rather than (or in
addition to) catalytic demethylation. Replacement mechanisms
(118) deposit nucleosomes containing the H3 variant H3.3 at
actively transcribed genes (119–121) and could therefore “erase”
the H3K27Me3 mark if such newly deposited nucleosomes
contained un-methylated H3.3.

It will be important to integrate the dynamics of H3 K27
methylation in the broader context of epigenetic control of
gene expression. Much progress has been made understanding
the mutual relationships of activating and repressive histone
marks. H3 K27 methylation and acetylation are biochemically
mutually exclusive, and accordingly exert opposite effects on gene
expression. More strikingly, evidence is accumulating that H3
K4 and K27 methylations, which are typically found in active vs.
silent genes or enhancers, respectively, are the end products of
enzymatic complexes that coordinate writing of one mark with
erasure of the functionally opposite mark. That is, Ktm2/MLL
complexes associate both an H3 K4 methyl transferase and
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H3K27Me3 demethylases, whereas PRC2 complexes associate H3
K27 methyl transferase activity and H3K4Me3 demethylases of
the Jarid1-RBP2-Kdm5 family (62, 122, 123).

How these activities integrate with the other key histone
repressive mark, H3 K9 methylation, has been addressed in
various experimental systems (124) but remains to be explored
in T cells. While H3K9Me3 has been traditionally associated with
constitutive heterochromatin, there is ample evidence that H3 K9
methyl transferases contribute to the control of lineage-specific
gene expression, including those involved in T cell development
and function (125–128). Additional data suggest that PRC2 and
H3 K9 methyl transferase complexes could share components,
including Jarid2 (or Jumonji, the founding member of the JmjC
family), which was shown to restrain PLZF expression in and
iNK T differentiation of thymocytes and to promote H3 K9 but
not K27 trimethylation at the promoter of the gene encoding
PLZF (129).

Last, histone modifications are super-imposed on the
dynamics of DNA methylation, which was the first epigenetic
modifications identified in developing T cells at the Cd4 and Cd8
loci. T cell development is accompanied by reduced methylation
at CpG islands in both loci following commitment to the αβ

lineage and onset of CD4 and CD8 expression, followed by
partial, lineage specific, remethylation of the silenced coreceptor
gene (130). More recent studies have pointed to the importance
of DNA methylation in the maintenance of Cd4 silencing in
mature CD8+ T cells, suggesting a yet to be determined coupling
between the mechanisms writing the methyl mark (presumably
involving DNA methyl transferases Dnmt3 isoforms) and those
ensuring the active repression of Cd4 in CD8-differentiating
thymocytes (131).

Conversely, work in the past few years has identified a
complex mechanism erasing cytosine methylation, without
actual catalytic demethylation, initiated by oxidization of

methyl cytosine catalyzed by Tet1, Tet2, and Tet3 enzymes (of
the ten-eleven-translocation family) (132, 133). Although
the full impact of Tet enzymes on the development of
conventional αβ T cells remains to be elucidated, they are
essential to restrain the activation of iNK T cells (134, 135).
While the current evidence indicates an impact on cell
proliferation, deletion of Tet enzymes also impaired the
differentiation of NKT1 cells, suggesting an additional
impact on cell differentiation. Thus, it will be important to
understand the respective contributions of DNA methylation
and H3 K27 trimethylation in the control of T cell
homeostasis and function, especially in the light of studies
suggesting that DNA methylation antagonizes H3K27Me3
deposition (124).
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