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Paraoxonase 2 (PON2) is a ubiquitously expressed intracellular enzyme that is known to have a protective role
from oxidative stress. Clinical studies have also demonstrated the significance of PON2 in the manifestation of
cardiovascular and several other diseases, and hence, it is considered an important biomarker. Recent findings
of its expression in brain tissue suggest its potential protective effect on oxidative stress and neuroinflam-
mation. Polymorphisms of PON2 in humans are a risk factor in many pathological conditions, suggesting a
possible mechanism of its anti-oxidative property probably through lactonase activity. However, exogenous
factors may also modulate the expression and activity of PON2. Hence, this review aims to report the
mechanism by which PON2 expression is regulated and its role in oxidative stress disorders such as neu-
rodegeneration and tumor formation. The role of PON2 owing to its lactonase activity in bacterial infectious
diseases and association of PON2 polymorphism with pathological conditions are also highlighted.
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Abbreviations: AD, Alzheimer’s disease; Akt, Protein kinase B; AP-1, Activator protein 1; AMPK, AMP-
activated protein kinase; ATF4, Activating transcription factor 4; ATF6, Activating transcription factor 6; BiP,
Binding immunoglobulin protein; CHOP, C/EBP homologous protein; CVD, Cardiovascular disease; Cyt C,
Cytochrome C; eIF2a, Eukaryotic translation initiation factor 2a; FOXO3a, Forkhead transcription factor;
GLUT1, Glucose transporter 1; GSK3b, Glycogen synthase kinase 3beta; HS, Homoserine; HSL, Homoserine
lactone; IM, Inner membrane; IRE, Iron responsive element; JNK, C-Jun N-terminal kinase; mPTP,
Mitochondria permeability transition pore; OM, Outer membrane; PERK, Protein kinase RNA-like
endoplasmic reticulum kinase; PI3K, Phosphoionositide 3-kinase; PUMA, P53 upregulated modulator of
apoptosis; RISK, Reperfusion injury salvage kinase; STOM, Stomatin; XBP1, X-box binding protein 1.

1. Introduction

The paraoxonases PON1, PON2, and PON3 are
members of esterase family enzymes and are highly
conserved within and between species (figure 1)
(Teiber et al. 2018). Phylogenetic analysis has
revealed that PON2 is the oldest member of the PON
family and that PON1 and PON3 have evolved from
it (figure 2) (Draganov and La Du 2004). The genes
of all the three paraoxonases are located next to each
other on the long arm of chromosome 7 in the case

of humans, and on chromosome 6 in mice (She et al.
2012). PON1 and PON3 are primarily expressed in
the liver, and get associated with high density
lipoprotein (HDL), whereas PON2 is ubiquitously
expressed and is not present in the blood plasma (Ng
et al. 2001; Kulka 2016). PON2 has been detected in
several tissues at mRNA level, protein level, or both,
including the brain where the other two PONs are
not expressed (Costa et al 2014; Ng et al. 2001;
Giordano et al. 2011). The highest levels of PON2
are expressed in the lungs and small intestine, fol-
lowed by the heart and liver, whereas lower levels
are reported in testis, kidney, and brain (Marsillach
et al. 2008). Although the name ‘PON’ suggests
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Figure 1. Comparative in silico analysis of human paraoxonases. (A) Sequence alignment of HuPON2 and HuPON3 with
Chi-PON1 (PDB:1V04) shows 52.4% sequence identity and 76.3% sequence similarity. (B) Crystal structure of HuPON1
(PDB:1V04); magenta color-coded. (C) Homology model of HuPON2, prepared from HuPON1 template (PDB:1V04); blue
color-coded. (D) Homology model of HuPON3, prepared from HuPON1 template (PDB:1V04); cyan color-coded.
(E) Superimposition of HuPON1 (magenta), HuPON2 (blue), and HuPON3 (cyan), shows the close similarity of all the
structures, RMSD values are mentioned in the table. The analysis was performed in Discovery Studio 4.0.

Figure 2. Phylogenetic tree showing the evolutionary origin of human paraoxonases. Four mammals were selected
randomly, and their sequences were retrieved from NCBI. Sequence alignment and phylogenetic tree construction were done
by using Clustal Omega. The scores on the tree correspond to the evolutionary distance between the sequences.
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Table 1. Comparison of human PON family members

PON1 PON2 PON3 References

Gene ID 5444 5445 5446 Primo-Parmo et al. (1996)
Location 7q21.3
Number of amino
acids

355 354 354 Taler-Verčič et al. (2020)

Subcellular
expression

Mainly bound to
HDLs in blood
plasma

Present on the
membrane of
mitochondria, on the
ER and on the
plasma membrane

Mainly bound to
HDLs in blood
plasma and
mitochondria

Horke et al. (2008), Devarajan
et al. (2011), Schweikert et al.
(2012a), Hagmann et al.
(2014)

Tissue specific expression
mRNA level Mostly enriched in

liver with some
small amount in
thymus and adrenal
gland

Enhanced in liver and
distributed in almost
all other tissues

Enriched in liver and
detected in small
amount in many
other tissues

‘‘Tissue expression of PON1 -
Summary - The Human Protein
Atlas’’; ‘‘Tissue expression of
PON2 - Summary - The
Human Protein Atlas’’; ‘‘Tissue
expression of PON3 -
Summary - The Human Protein
Atlas’’)

Protein level Present in plasma Ubiquitous in
occurrence except in
blood

Present in hepatocytes
mainly

Enzyme
classification

EC 3.1.1.2
EC 3.1.1.81
EC 3.1.8.1

EC 3.1.1.2
EC 3.1.1.81

EC 3.1.1.2
EC 3.1.1.81
EC 3.1.8.1

(‘‘PON1 paraoxonase 1 [Homo
sapiens (human)] - Gene -
NCBI’’; ‘‘PON2 paraoxonase 2
[Homo sapiens (human)] -
Gene - NCBI’’; ‘‘PON3
paraoxonase 3 [Homo sapiens
(human)] - Gene - NCBI’’)

Functions/enzyme activity
Paraoxonase Significant Not detected Not detected Draganov et al. (2005), Costa

et al. (2014)
Arylesterase Higher than PON2

and PON3
Present Present

Lactonase Present Higher than PON1
and PON3

Present

Statinase Not detected Not detected Significant
Pathophysiological association
Atherosclerosis Prevention of HDL

and LDL oxidation
PON2 can inhibit
HDL and LDL
oxidation mainly by
reducing ROS
production

PON3 can also inhibit
HDL and LDL
oxidation mainly by
reducing ROS
produced

Witte et al. (2012), Mackness
and Mackness (2015)

Reduction of
macrophage,
oxidative stress and
inflammatory
response

Associated with
mitochondrial ETC
helping in
sequestering ROS

Associated with
mitochondrial ETC
helps in sequestering
ROS

Inflammatory
diseases

Anti-inflammatory
properties

Antagonizes
inflammatory
processes

Anti-inflammatory
function

Devarajan et al. (2014)

Organophosphate
toxicity

Organophosphatase
activity

No
organophosphatase
activity

Only against
paraoxon

Draganov et al. (2005), Gupta
et al. (2011)

Cancer Lower activity of
serum PON1 in
cancer patients

Overexpression in
cancer cells

Overexpression in
cancer cells

Bacchetti et al. (2017)
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paraoxonase but PON2 and PON3 have almost no
paraoxonase activity (Draganov et al. 2005). Only
PON1 has a weak paraoxonase activity, but all the
three PONs exhibit anti-oxidant and anti-inflamma-
tory activities. Their physiological function(s) and
native substrates, however, remain ambiguous
(Richter et al. 2009; Grdic Rajkovic et al. 2011). The
native enzyme activity of paraoxonases was found to
be lactonase, suggesting that despite its promiscuous
nature the endogenous substrates of paraoxonases are
lactones (Draganov et al. 2005).
Subcellular localization studies of PON2 show that

it is particularly present at the perinuclear region,
endoplasmic reticulum (ER), and mitochondria (Horke
et al. 2007). At the plasma membrane level, PON2 is
a transmembrane protein with its enzymatic domain
facing the extracellular compartment, and thus plays
an important role in rescuing peroxidation of mem-
brane components (Hagmann et al. 2014). Mito-
chondria are cytoplasmic organelles whose integrity is
essential for maintaining specific physiological, bio-
chemical, and morphological features of cells. They,
therefore, play an essential role in the life and death
of the cells (Rasheed et al. 2017). The fact that PON2
is located in mitochondria suggests its anti-oxidative
nature, and thus its cytoprotective role. Therefore,
PON2 deficiency causes mitochondrial dysfunction in
these cells (Devarajan et al. 2011). In addition to its
antioxidant activity, PON2 has a remarkably high
lactonase activity as compared to PON1 and PON3
(Teiber et al. 2008). The lactonase activity of PON2
may be responsible for its anti-inflammatory role. It
was reported in the intestinal epithelial cells that
PON2 silencing exacerbated inflammatory processes
thereby disturbing the mucosal integrity (Précourt
et al. 2012). However, a mutant PON2 (PON2-As-
n254Ala/Asn323Ala) lacking lactonase activity does
not affect the anti-inflammatory functions (Stoltz et al.
2009). In vivo studies also suggest that PON2
knocked out mice has exacerbated macrophage
inflammatory response (Ng et al. 2006). The

mechanism by which PON2 accomplishes anti-in-
flammatory function is poorly understood mainly due
to the lack of its targets or substrates in physiological
conditions.
Association of PON2 with coenzyme Q and pre-

venting reactive oxygen species (ROS) generation in
mitochondria is irrespective of its lactonase activity
(Altenhöfer et al. 2010; Devarajan et al. 2014).
These observations suggest that the antioxidative
nature of PON2 might be independent of its lac-
tonase activity. PON1 has been well studied as
compared to PON2 and PON3, and recently evolved
for the stereospecific hydrolysis of G-type of nerve
agents (Gupta et al. 2011). However, PON2 is
emerging as an important defense system owing to
its location, expression, and significant lactonase
activity. The protective role of PON2 has been well
documented in vascular, neuronal, macrophage, and
other cells against oxidative stress as the downregu-
lation of PON2 was found to be antagonizing its
protective effect (Schweikert et al. 2012b). Report-
edly, PON2 overexpression prevents ER and/or
oxidative stress (Horke et al. 2007). Several chronic
diseases develop due to elevated levels of ROS.
Therefore, understanding the role of PON2 in scav-
enging cellular ROS can be an important finding.
Although, the cytoprotective role of PON2 is well
established, the mechanism by which it reduces ROS
and thereby apoptosis, is not well understood (Witte
et al. 2012). Therefore, efforts are being made to
understand the associated signaling pathways and
their pathophysiological relevance (Devarajan et al.
2018).
It would be of many benefits to studying PON2

overexpression and its contribution to cancer as it
confers apoptosis resistance (Horke et al. 2008; Witte
et al. 2011). Moreover, PON2 is attracting significant
interest due to its expression in the nervous system and
its role in preventing neurodegeneration (Giordano
et al. 2011). Here, we have described the enigmatic role
of PON2 in molecular physiology and redox

Table 1. (continued)

PON1 PON2 PON3 References

Quorum quenching
(infectious disease)

Lactonase activity helps in
quorum quenching

Highest lactonase activity Inactivate acyl-homoserine
lactones

Camps
et al.
(2011)

Ageing Antioxidant, lower level of
expression in elderly

Antioxidant, lower level of
expression in elderly

Antioxidant, lower level of
expression in elderly

Levy et al.
(2019)
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homeostasis, and how the modulation of its expression
could be a therapy for several diseases.

2. Regulation of PON2 expression

Owing to the pathophysiological role of PON2 in
several diseases, strategies attempting to modulate its
level of expression could have important health
implications. In this regard, several bioactive molecules
are known to regulate PON2 expression and activity,
which are discussed below in details.

2.1 Transcription factors

PON2 gene transcription is regulated in an integrated
multistep pathway. PON2 expression is under genetic
control and regulated by cellular oxidative stress as
well as by cholesterol content (Rosenblat et al. 2004;
Shiner et al. 2006). Low transcriptional activity of
PON2 has been recognized as one of the major cul-
prits in recurrent abortion due to its inadequate
antioxidative defense (Dikbas et al. 2018). Several
transcription factors such as peroxisome proliferator-
activated receptor c (PPARc), sterol regulatory ele-
ment-binding protein 2(SREBP-2), and activator pro-
tein-1 (AP-1) activation are known to upregulate
PON2 expression. Reportedly, stimulating macro-
phages with urokinase activates phosphoinositide
3-kinase (PI3K) through platelet-derived growth factor
ß which further activates NADPH oxidase resulting in
the production of ROS, which is ultimately involved
in the regulation of PON2 expression (Shiner et al.
2007a, b; Fuhrman et al. 2009). More recently, two
new transcription factors, Wilms tumor 1 associated
protein (WTAP) and the baculoviral IAP repeat-con-
taining 3 (BIRC3) are shown to modulate PON2
expression and activity (Carusone et al. 2020). Fur-
thermore, it was demonstrated that the glucocorticoid-
glucocorticoid receptor complexes are directly
involved in the transactivation of AP-1 which is
responsible for transcriptional activation of the PON2
gene (Shiner et al. 2004, 2007a). Contradictorily,
some findings suggest the role of the glucocorticoid
receptor in directly regulating PON2 expression irre-
spective of AP-1 (Lim and Kim 2009). These findings
indicate that cellular PON2 expression has a direct or
indirect role in signaling pathways associated with
ROS production and cholesterol biosynthesis (Fuhr-
man et al. 2009).

Epigenetic regulation of PON1 has also been
established (Huen et al. 2015; Mahrooz et al. 2019);
however, the epigenetic regulation of PON2 and
PON3 are not studied well (Holland et al. 2015;
Mahrooz and Mackness 2020). Xiao et al. showed
that PON2 had very little methylation as compared to
PON1 and PON3 in case of patients with cerebral
infarction and control (Xiao et al. 2019).

2.2 Hormones

Hormonal regulation of PON2 has been very-well
investigated, where sex steroids have gained much
attention (Giordano et al. 2011; Siddiqui et al. 2016).
This could be useful to understand the etiology of
various neurodegenerative disorders as PON2 levels
are higher in central nervous system tissues that is
the brain and peripheral region of female mice than
male mice (Costa et al. 2014). The lower expression
of PON2 in males as compared to females may have
wider consequences for the predisposition to oxida-
tive stress diseases. This includes neurodegenerative
diseases such as Alzheimer’s, Parkinson’s, cardio-
vascular diseases as well as Covid-19, where males
are more susceptible to the disease than females
(Liguori et al. 2018; Levy et al. 2019; Jin et al.
2020). For example, the incidence of Parkinson’s
disease is 90% higher in males as compared to
female (Wirdefeldt et al. 2011; Costa et al. 2014),
suggesting that the higher PON2 levels in dopamin-
ergic neurons of females may provide better protec-
tion against oxidative stress (Giordano et al. 2011,
2013). The gender difference in PON2 expression
levels may be attributed to the positive modulatory
effect of estrogens in female mice (Leranth et al.
2000; Kitamura et al. 2009; Bwire 2020). Estradiol-
induced increase in PON2 mRNA, as well as protein
levels, in a time- and concentration-dependent man-
ner, in both male and female striatal astrocytes, is
probably due to the activation of estrogen receptor-
alpha. Similarly, in ovariectomized female mice, it
was observed that PON2 mRNA and protein levels
decreased as compared to that in a male in brain
regions and liver (Cheng and Klaassen 2012; Gior-
dano et al. 2013).
Interestingly, some plant hormones also have a

modulatory effect on PON2 expression. Glabridin, the
licorice phytoestrogen, has been found to increase
PON2 expression, and protects its activity. Glabridin
interacts with PON2, and prevents its oxidation, thus
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preserving its activity, in hyperglycemic patients (Ye-
huda et al. 2011). Furthermore, as PON2 is expressed
ubiquitously in all tissues, and the levels of expression
is more or less higher in females in each tissues
examined, the reported higher sensitivity of males to
oxidative stress in the brain, the heart, the kidney, or
the liver may be related to the similar mechanism
(Klein 2000; Valle et al. 2007).

2.3 Post-translational modifications (PTMs)

PTMs take place either on the amino acid side chains
or at the C- or N- termini of PON2 protein, thereby
regulating its catalytic activity. There are contradic-
tory studies on the dependence of PON2 enzyme
activity on N-glycosylation. Ser311Cys polymor-
phism or ubiquitination at Lys168 have been found
to modulate PON2 activity (Mandrich et al. 2015).
Amino acid substitution at position 311 from serine
to cysteine in recombinant PON2 altered glycosyla-
tion, and decreased lactonase activity but protein
production and localization are normal (Stoltz et al.
2009). Likewise, studies are pointing to side-chain
modification of amino acid residues regulating the
catalytic activity of PON2. Carusone et. al. found
that N-(3-oxododecanoyl)-L-homoserine lactone
(3OC12-HSL) induced post-translational modification
at multiple positions in PON2. For instance, post-
translational modification at position 144, nearby two
SNPs (A148G and S311C) has been shown to affect
PON2 activity (Carusone et al. 2020).

2.4 Non-steroidal anti-inflammatory drugs
(NSAIDs)

Commonly used NSAIDs are reported to affect PON2
specific lactonase and arylesterase activity. NSAIDs,
like diclofenac sodium and tenoxicam, have been tes-
ted in vitro, causing a significant decline in lactonase
activity (Solmaz Avcıkurt and Korkut 2018). On the
other hand, antenatal steroid therapy did not affect
PON2 mRNA expression in placentae of unexplained
intrauterine growth restricted pregnancies as compared
to the non-treated group (Dikbas et al. 2017). It is also
hypothesized that increased cholesterol content may be
the cause of decreased PON2 expression (Rosenblat
et al. 2004). Therefore, hypocholesterolemic drugs may
prove to be positive modulators of PON2. One such
drug, atorvastatin, has been reported to upregulate

PON2 expression in various cell types (Shiner et al.
2007b).

2.5 Nutraceuticals

Dietary factors including flavonoids and polyphenols
have long been known to possess antioxidant prop-
erties, and modulate intracellular antioxidant enzymes.
The underlying molecular mechanisms by which fla-
vonoids may induce PON2 gene expression have not
been fully elucidated (Pandey and Rizvi 2009; Costa
et al. 2016). Flavonoids from pomegranate are
reported to affect the DNA binding activity of the
transcription factor AP-1, which is present in the
promoter region of the PON2 gene (Shiner et al.
2007a). It is also proposed that increasing concentra-
tions of plant polyphenol, quercetin, in murine mac-
rophages resulted in upregulated PON2 at mRNA as
well as protein levels (Boesch-Saadatmandi et al.
2009). PON2 gene is partly regulated by NADPH
oxidase, which is a molecular target of quercetin
(Shiner et al. 2004).
Chlorogenic acid, a major phenolic compound of

Yerba mate, a plant species consumed as traditional tea,
could increase the relative expression of PON2 mRNA
as well as enzyme activity in vitro in macrophages. On
the other hand caffeic acid, a metabolite of chlorogenic
acid in the plasma, did not affect PON2 gene expres-
sion, but increased its enzyme activity at an appropriate
concentration (Monteiro et al. 2007; Fernandes et al.
2012).
Eicosapentaenoic acid (EPA) is a long-chain omega-

3 polyunsaturated fatty acid that was investigated for
its cardioprotective property. EPA administration
increased HDL cholesterol, decreased fasting blood
sugar, and upregulated PON2 gene expression in
patients with type 2 diabetes mellitus (Endo and Arita
2016; Golzari et al. 2019). More recently, higher glu-
cose concentration as compared to physiological levels
was found to downregulate PON2. The formation of
advanced glycation end products is induced by ele-
vated glucose levels. In human umbilical vein
endothelial cells (HUVECs), overexpression of PON2
reduced both the early and the late glycation end
products, induced ROS, ER stress, and inflammation
(Morresi et al. 2019; Ravi et al. 2020).
Negative modulation of PONs, especially PON1, is

also reported for several metals, and vice-versa sus-
ceptibility to toxicity and neurotoxicity of metals is
affected by different levels of PONs (Costa et al.
2017). Therefore, pharmacological, dietary, lifestyle,
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and environmental factors modulating PON2 could be
considered as important factors for the prevention and
cure of several diseases. Certain modulators of PON2
are broadly classified and summarized in table 2.

3. Role of PON2 in cancer

Several studies in the recent years have confirmed the
overexpression of PON2 in cancerous cells. Report-
edly, PON2 could be involved in tumor survival and
stress resistance. An elaborate clinical study, conducted
on tumor samples taken from more than 10,000
patients with different types of cancer, showed a high
expression of PON2 in multiple types of solid tumors,
suggesting that overexpression of PON2 in cancer cells
causes resistant to chemotherapy and other unfavorable

conditions causing malignancy (Shakhparonov et al.
2018). Similarly, overexpression of PON2 in bladder
cancer cell lines led to a significant increase in cell
proliferation and resistance to oxidative stress (Bac-
chetti et al. 2017). More recently, a study reported
PON2 as an oncogene in gastric cancer, overexpression
of which was correlated to tumor diffusion and inva-
sion (Wang et al. 2019). Therefore, it is suggested that
PON2 can be used as molecular biomarker for the
prognosis of multiple types of cancer (Bacchetti et al.
2021; Campagna et al. 2020).
The fact that PON2 helps in apoptotic escape rep-

resents a major clinical complication in cancer biology.
However, the distinct regulatory pathways are poorly
understood. Both PON2 and PON3 are involved in
modulating mitochondrial superoxide anion production
and ER stress-induced apoptosis (Bacchetti et al.

Table 2. Summary of some recently studied modulators of PON2

Modulators Regulation Mode of action References

Synthetic drugs
Atorvastatin Upregulates PON2 mRNA and activity in human

monocyte derived macrophages
Anti-atherogenic
role

Rosenblat et al. (2004),
Ninic et al. (2018)

Pioglitazone Upregulates PON2 protein expression in brain striatum of
mice

Stimulating
effect on
PPARc

Blackburn et al. (2020)

NSAID-
Tenoxicam

Downregulates lactonase as well as arylesterase activity
in-vitro in human monocytic cell line

Inhibitory effect
on PON

Solmaz Avcıkurt and
Korkut (2018)

NSAID-
Diclofenac
sodium

Downregulates lactonase activity in-vitro in human
monocytic cell line

– Solmaz Avcıkurt and
Korkut (2018)

Nutraceuticals
Quercetin Upregulates PON2 mRNA, protein and lactonase activity

in mouse striatal astrocytes
Activates JNK/
AP-1 pathway

Boesch-Saadatmandi
et al. (2009), Costa
et al. (2016)

Yerba mate
extracts

Upregulates PON2 mRNA and activity in macrophage
and monocyte

– Fernandes et al. (2012)

Hormones
Estrogen Upregulates PON2 mRNA and protein in mice astrocytes Estrogen

receptor -a
Giordano et al. (2013)

Human chorionic
gonadotropin

Upregulates PON2 mRNA and protein in human lung
carcinoma cell line

Pro-tumorigenic
role

Sahoo et al. (2015)

Phytohormone
(Glabridin)

Upregulates PON2 mRNA, protein and activity in-vitro in
monocytes and in-vivo in hyperglycemic mouse liver
and heart

Anti-atherogenic
effect

Yehuda et al. (2011)

Dietary compounds
Pomegranate
juice

Upregulates PON2 mRNA, protein and activity in mouse
macrophage cell line

Activation of
TFs PPARc and
AP-1

Shiner et al. (2007a)

Eicosapentaenoic
acid (EPA)[fish
oil]

Upregulates PON2 mRNA – Golzari et al. (2019)

Glycation end
products

Downregulates PON2 mRNA, protein expression and
activity in HUVECs

– Ravi et al. (2020)
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2019). Unfolded protein response (UPR) pathway is a
pathway that is activated in response to ER stress, and
aims at limiting misfolded proteins accumulation
(Walczak et al. 2019). It is hypothesized that ER stress
causes protein misfolding leading to the expression of
molecular chaperon HSP70 (Bip) in the ER lumen. Bip
helps in the dimerization of Protein kinase RNA like
Endoplasmic Reticulum Kinase (PERK) leading to
C/EBP Homologous Protein (CHOP)-mediated apop-
tosis (figure 3) (Sato et al. 2000). The antioxidant
nature of PON2, and its involvement in the UPR
pathway, suggests an endogenous defense mechanism
that PON2 may contribute towards the prevention of
various diseases (Horke et al. 2008). Overexpression of
antioxidant enzymes is not always beneficial. Witte et.
al. suggested that PON2 overexpression reduced
CHOP expression, and thus apoptosis via the c-Jun
N-terminal Kinase (JNK) pathway (Witte et al. 2011).
Another theory put forward for the anti-apoptotic

role of PON2 is that p53 transcriptionally represses

PON2, and in case of any mutation in p53, there is
overexpression of PON2 (figure 3). PON2 was shown
to be overexpressed in pancreatic cancer tissues i.e.
pancreatic ductal adenocarcinoma where mutations in
TP53 are present which facilitate the metastatic pro-
gression (Nagarajan et al. 2017). Along with PON2,
other factors like Hypoxia-Inducible Factor-1 (HIF 1)
may also come into play, and support tumor progres-
sion through multiple pathways (Amelio et al. 2018). It
is also reported that PON2 positively modulates the
expression of Glucose Transporter 1 (GLUT 1), and
thus inhibits the AMP-activated protein kinase
(AMPK) pathway (Nagarajan et al. 2017; Pan et al.
2019). AMPK pathway of apoptosis functions in
response to cellular starvation in normal cells, and
serves as a possible metabolic tumor suppressor (Li
et al. 2015). As PON2 overexpression causes an
increase in GLUT 1 expression, there is more and more
glucose intake, which shuts down the AMPK pathway.
Therefore, by inhibiting the AMPK pathway PON2

Figure 3. Overview of PON2 and its regulation of different key cell signaling pathways involved in cancer. (A) PON2
expression is transcriptionally regulated by p53. This in turn regulates glucose uptake by GLUT1 and thus inhibit the AMPK
pathway of cell death. (B) Similarly, PON2 inhibits ER stress induced CHOP expression as well as cardiolipin peroxidation
and cytochrome C release in mitochondria, thereby preventing apoptosis. (C) PON2 activates RISK pathway and helps in
reducing mitochondrial dysfunction.
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stabilizes the tumor. This is very similar to Warburg’s
phenomenon suggesting aerobic glycolysis where glu-
cose is used for various biosynthetic pathways that
promote cell proliferation (Faubert et al. 2013; Hu
et al. 2019). Moreover, PON2 counteracts lipid per-
oxidation, which may add to stabilizing tumor cells.
For example, PON2 attenuates cardiolipin peroxidation
in the mitochondrial membrane to prevent intrinsic
apoptosis (Witte et al. 2011). In yet another study,
regulation of PON2 protein expression through the
Wnt/GSK3b/b-catenin pathway in leukemia and oral
squamous cell cancer (OSCC) was demonstrated
(Krüger et al. 2016). In OSCC, the anti-apoptotic nat-
ure of PON2 was correlated with resistance to radio-
therapy (Krüger et al. 2015). PON2 overexpression in
bladder cancer cells is also shown to resist
chemotherapy by counteracting the induced ROS due
to its antioxidative property (Fumarola et al. 2020). In
the case of ovarian cancer, it was noticed that PON2
expression was enhanced in the early stages of cancer
but at later stages, there was no change in the expres-
sion. This might be because PON2 regulates tumori-
genesis in a Spatio-temporal manner (Devarajan et al.
2018).
On the other hand, PON2 may also be indirectly

involved in tumorigenesis via Reperfusion Injury

Salvage Kinase (RISK) pathway. PON2 reduces car-
diolipin peroxidation, cytochrome C release, and acti-
vation of caspase (figure 3) (Sulaiman et al. 2019a, b).
Downregulation of PON2 may be important in target-
ing cancer. According to a report, valproic acid stim-
ulation led to a decrease in PON2 expression in
glioblastoma multiforme cells. This in turn inhibited
cancer progression by increasing ROS production
which ultimately promoted apoptosis via the Bim
cascade (Tseng et al. 2017).

4. Role of PON2 in cardiovascular diseases

Unlike PON1 and PON3 that remain associated with
HDL, and perform an anti-oxidative function, PON2
appears to be present in endothelial cells, smooth
muscle cells, and macrophages where it remains
associated with membranes of ER and nucleus (Shih
and Lusis 2009; She et al. 2012). The cardiopro-
tective role of PON2 is shown in both experimental
and human heart failure. This may be attributed to
significantly increased PON2 activity, its ability to
improve mitochondrial function, and diminish ROS
generation (Li et al. 2018). Recent studies have
shown that in endothelial cells, PON2 prevents

Figure 4. Schematic diagram showing 3OC12-HSL as quorum sensing (QS) molecule which when hydrolyzed by PON2
inhibits biofilm formation.
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systemic coagulation and inflammation by regulating
the activity of tissue factors by a redox-dependent
mechanism (Ebert et al. 2018). In rats with hemor-
rhagic shock, it was found that under hypoxic and
ischaemic conditions, PON2 regulates the expression
of endothelial tissue-related genes such as plasma
thrombomodulin transcription factors and endothelial
tissue factor activating the mechanism of coagulation
(Xu et al. 2020).
Oxidative stress is one of the main causes of

atherosclerosis. Hydrolysis of peroxidized lipid is one
of the important functions that may contribute to the
cardio-protective nature of PON2 (Hagmann et al.
2014). An in vivo study demonstrated that PON2
prevents the oxidation of lipoprotein, thus enhancing
the protective capacity of HDL and reducing the
intracellular oxidative stress levels of macrophages
(Chen et al. 2016). The RISK pathway, PI3K/Akt/
GSK-3b (figure 3C), is cardioprotective against
Ischemia-Reperfusion Injury (IRI), PON2 reportedly
activates the pathway and therefore prevents mito-
chondrial dysfunction, and hence oxidative stress in
cardiomyocytes (Sulaiman et al. 2019a, b). Apart
from cholesterol, triglycerides are also independent
risk factors for atherosclerosis, and diacylglycerol
acyltransferase 1 (DGAT1) is a rate-limiting enzyme
in the triglyceride biosynthetic pathway (Lundberg
1985; Farese et al. 2000). Rosenblat et. al. found
that PON2 increases DGAT1 activity, and thus the
rate of triglyceride formation. Therefore, one of the
mechanisms of the protective role of PON2 in
atherosclerosis may be attributed to its regulatory
effect on DGAT1 activity which is sensitive to
oxidative stress (Rosenblat et al. 2009). But in the
case of pro-atherogenic infection, the anti-atherogenic
activity of PON2 was attributed to its ability to
destroy quorum sensing molecule which is due to the
lactonase activity of the enzyme (Kim et al. 2011).
The pro-atherogenic infection is contributed by quo-
rum sensing molecules, such as N-(3-oxodode-
canoyl)-L-homoserine lactone (3OC12-HSL) of
Pseudomonas aeruginosa (Turkay et al. 2004).
The role of PON2 was also pointed out in obesity.

It was found that PON2 deficient mice had altered
mitochondrial function in white adipose tissue which
further prevented its conversion to brown adipose
tissue, and hence contributed to diet-induced obesity
(Shih et al. 2019). A comparative in vivo and
in vitro study in type 2 diabetes patients showed a
significant decrease in PON2 enzyme activity in

monocyte/macrophage cells (Lixandru et al. 2017). It
was correlated to abdominal obesity and insulin
resistance (Qujeq et al. 2018). However, the under-
lying molecular mechanisms remain unrecognized.

5. PON2 and infectious diseases

Owing to the hydrolytic activity of PON2, it has a
crucial role in infectious diseases and associated
anomalies such as oxidative stress, inflammation, and
changes in the serum proteins (Camps et al. 2017).
Studies show that PON2-deficient mice are more
prone to bacterial infections than wild-type mice
(Stoltz et al. 2007). The role of PON2 in cutaneous
defense against bacterial infections due to its high
level of expression and activity in human ker-
atinocytes is also reported (Simanski et al. 2012).
Most gram-negative bacteria use lactones as quorum
sensing (QS) molecules (Rutherford and Bassler
2012). Hydrolytic activity, mainly lactonase activity
of PON2, is responsible for the control of QS in
gram-negative bacteria such as P. aeruginosa, there-
fore offering an important defense mechanism against
bacterial infections (figure 4) (Farid and Horii 2012).
PON2 hydrolyzes and inactivates certain homoserine
lactones (HSL), and therefore attenuates HSL medi-
ated immune responses (Teiber et al. 2008; Devara-
jan et al. 2013). Thus, PON2 plays a pivotal role in
regulating host cell responses to QS molecules by
decreasing their availability for receptor-mediated
effects such as calcium release and stress signaling
(Horke et al. 2015). The quorum quenching ability
of PON2 is also associated with lung pathophysiol-
ogy of cystic fibrosis (CF) patients. PPARc is a
mammalian anti-inflammatory transcription factor that
is inhibited by 3OC12-HSL (Jahoor et al. 2008).
Studies suggest that P. aeruginosa infected CF
patients have reduced expression of PPARc and
PON2 genes (Griffin et al. 2012). Therefore, PON2
has been found to play a crucial role in defense
against infectious diseases.
Moreover, the role of PON2 in the case of innate

immune response to viral infection is also elucidated.
In vitro and in vivo studies have shown an increase in
PON2 gene expression, protein levels, and activity in
response to HIV-1 infection which may be attributed to
dephosphorylation of Signal transducer and activator of
transcription 5 (STAT5) (Yuan et al., 2010).
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6. Role of PON2 in neurodegenerative diseases

PON2 has been identified as a novel and major intra-
cellular factor with an antagonizing role in oxidative
stress in the central nervous system (Costa et al. 2014).
It is an intracellular protein, localized on the inner
mitochondrial membrane and bound to Coenzyme Q10,
a major site for the generation of ROS. PON2
sequesters unstable coenzyme Q during the Q cycle and
prevents it from passing electrons to oxygen molecules
instead of cytochrome C. Its absence or deficiency
causes redox imbalance and reduced electron transport
activity. It may thus contribute to mitochondrial dys-
function and various oxidative stress disorders
(figure 5A) (Devarajan et al. 2011; Enriquez and Lenaz
2014).

Dopaminergic regions of the brain have the highest
levels of PON2. There is also evidence that suggests
the expression of PON2 is higher in astrocytes than in
neurons (Giordano et al. 2011). In an experiment on the
study of PON2 levels in the brain during development,
the highest expression levels were detected in prema-
ture mice with a gradual decline in aged mice. The
authors attributed significantly high levels of PON2 in
early brain development to its role in protecting brain
cells from oxidative stress during the developmental
stages (Giordano et al. 2011; Hayashi et al. 2012).
Garrick et.al. suggested that lower expression levels of
PON2 during the developmental stages, in the brain of
neonatal and young adult animals, make them more
susceptible to neurological insult by oxidants (Garrick
et al. 2016).

Figure 5. Function of PON2 in mitochondria. (A) Model diagram shows the presence of PON2 protein in the inner
mitochondrial membrane. It’s association with complex III and coenzyme Q suggests its major role in anti-oxidative function.
(B) Flowchart showing the formation of lactone by ROS in the fatty acid chain of plasma membrane and its reversal back to
normal by the lactonase activity of PON2.
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As higher PON2 levels are associated with increased
resistance to oxidative stress-induced toxicity and
neuroinflammation in brain cells, the possibility of
modulating PON2 levels in neuronal cells may repre-
sent a much beneficial neuroprotective strategy (Costa
et al. 2013). Reportedly, quercetin, a plant flavonoid,
helps in mitigating ROS in PON2?/? mice better than
in PON2-/- mice and thus has an ameliorating effect on
Alzheimer’s disease (AD) (Khan et al. 2020). Though,
several hypotheses for the neuroprotective mechanism
of quercetin have been put forward yet the exact
mechanism is elusive. Either the quercetin induces a
low level of oxidative stress and induces PON2
expression through JNK/AP-1 pathway or due to its
phytoestrogen activity, PON2 expression is induced
(Ruotolo et al. 2014; Costa et al. 2016).
The role of PON2 in Parkinson’s disease (PD) was

speculated recently. A study reports that DJ 1, a gene
responsible for PD, interacts with PON2 and is neu-
roprotective in the PD model (Parsanejad et al. 2014).
However, in the case of MPP? (1-methyl-4-
phenylpyridinium) induced PD model, lovastatin has a
neuroprotective function irrespective of PON2
(Aguirre-Vidal et al. 2015). Apparently, the overex-
pression of PON2 is cytoprotective, however, its
implications can be different depending on the type of
cells, for instance, PON2 overexpression is neuropro-
tective, however, in case of tumor cells the cytopro-
tective nature of PON2 may inhibit apoptosis and help
in cancer progression.

7. PON2 polymorphism and its association
with human pathophysiology

Two common polymorphisms of PON2 are found, Ala/
Gly at position 148 and Ser/Cys at position 311
(Mochizuki et al. 1998). A few studies are present
which demonstrate the relationships of these two PON2
polymorphisms with different pathophysiological con-
ditions (table 3) (Shin 2009; Elnoamany et al. 2014).
PON2 Ser311Cys polymorphism has been associated
with cardiovascular disease (CVD) but there are still
controversies regarding it. Some findings claim that Ser
at 311 is more at risk of developing CVD, whereas Cys
at 311 prevents premature development of CVD
(Martinelli et al. 2004; Chen et al. 2016). On the other
hand, few studies report that there is not much signif-
icant change between these two polymorphic forms
(Sanghera et al. 1998). Therefore, more functional
studies need to be carried out for PON2 Ser311Cys
polymorphism and its relationship with CVD. More

recently, it has been reported that polymorphism at
Ser311Cys is responsible for interaction with another
gene PPAR!, and polymorphic forms of both the gene
can serve as biomarkers of risk for coronary heart
disease (González-Castro et al. 2018).
PON2 Cys311Ser polymorphism is also linked with

AD. PON2 311Ser along with another gene apoE4
allele helps in the development of AD and vascular
dementia (Janka et al. 2002; Nie et al. 2017). The Cys
allele of Cys311Ser polymorphism is associated with
sporadic Amyotrophic Lateral Sclerosis (ALS) (Saeed
et al. 2006; Slowik et al. 2006). Valdmanis et. al.
conducted a study on French, Canadian and Swedish
population, and found that Cys311Ser polymorphism
in PON2 was relevant risk factor for the development
of ALS irrespective of patients’ nationality (Valdmanis
et al. 2008). On the other hand Cys311Ser PON2
polymorphism was not associated with ALS in Italian
population (Ricci et al. 2011).
Although PON1/3 are not expressed in the brain,

polymorphisms in these are associated with

Table 3. PON2 polymorphism and association with human
pathophysiology

PON2
Polymorphism Pathophysiology References

Ala/Gly polymorphism at position 148
Gly at
position 148

Diabetic
nephropathy in
type II diabetes

Calle et al. (2006)

Risk of preterm
delivery

Chen et al. (2004)

Cataract Baig et al. (2019)
Ser/Cys polymorphism at position 311
Cys at
position 311

Coronary heart
disease

Robertson et al.
(2003)

Diabetic
nephropathy in
type II diabetes

Wang et al. (2013)

Noise induced
hearing loss

Fortunato et al.
(2004)

Risk of preterm
delivery

Chen et al. (2004)

Ser at position
311

Alzheimer’s
disease

Janka et al. (2002)

Sporadic
Amyotrophic
Lateral Sclerosis

Slowik et al. (2006),
Valdmanis et al.
(2008)

Coronary heart
disease

Sanghera et al. (1998)

Gly 148 and
Ser 311

Cataract Baig et al. (2019)
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neurodegenerative conditions, possibly via regulatory
aspects of lipid metabolism (apolipoproteins) (Reichert
et al. 2021). Activity and expression level may be
associated with PON polymorphism and neurodegen-
eration. All the PONs can hydrolyze oxidized form of
lipids whereas PON1 has in addition organophos-
phatase activity (Levy et al. 2019). Gene to gene
interaction with other polymorphisms across the PON
gene family may also be responsible for their neuro-
protective nature (Dardiotis et al. 2018). Moreover,
ROS may cause the formation of lactone in the fatty
acid chain of the plasma membrane. The lactonase
activity of PON2 may help in mitigating this change
(figure 5b) (Draganov et al. 2005; Hong et al. 2012).
Recently, the association of PON2 polymorphism

has been demonstrated in the metabolism of acetyl-
cholinesterase inhibiting drugs (AChEI) such as
donepezil hydrochloride and pyridostigmine bromide.
The polymorphic forms of PON2, Ala/Gly at position
148 and Ser/Cys at position 311, showed different

arylesterase activity, and thus responded differently to
these drugs. PON2 with Gly148 and Cys311 allele had
increased arylesterase activity, and also the enzyme
became more efficient in inhibiting the drug in these
cases. The arylesterase activity of PON2 could be
responsible for the hydrolysis of AChEI used against
AD and thus attenuating the efficacy of these drugs
(Parween et al. 2021).

8. Conclusions and future perspectives

PON2 has emerged as an important cellular
antioxidant against oxidative stress, mainly due to
its expression in several tissues and additionally
mitochondrial localization. This lactonase enzyme
has shown the potential of being an important
biomarker as it plays a relevant role in determining
susceptibility to oxidative stress and neuroinflam-
mation. Its overexpression may provide a novel

Figure 6. Multifaceted role of PON2. (A) PON2 overexpression is linked to cancer and cell survival, (B) positive
modulation of PON2 in brain causing neuroprotection, (C) PON2 deficiency leads to mitochondrial dysfunction, leading to
increase in mitochondrial oxidative stress, and (D) highly efficient lactonase activity of PON2 helps in quenching quorum
sensing and thus controlling a vast majority of infectious diseases.
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strategy for neuroprotection, whereas in tumor cells
a useful therapeutic strategy would be helpful in
lowering the expression of PON2. A lower rate of
occurrence of a wide variety of diseases such as
Alzheimer’s, Parkinson’s, and CVD in females as
compared to males suggests that attempts aimed at
increasing the PON2 level of expression in males
might be useful.
Deciphering the mechanism of PON2 upregulation

will also provide useful insights into the pathophys-
iology of several diseases and thus a therapeutic lead
due to its multifaceted role (figure 6). In general, the
increase of PON2 activity was associated with gene
transcription. The upregulation of PON2 might
therefore occur through the stabilization of the PON2
protein or due to its overexpression through an
increased translation rate. The kind of cellular sig-
naling pathways that distinct phenolic compounds
activate, and the structure and concentration of phe-
nolic compounds themselves also determine the reg-
ulation of PON2 activity. Further, understanding the
associations of PON2 polymorphism with patho-
physiological conditions and drug metabolism would
be advantageous for the development of future pre-
cision medicines. However, additional studies need to
be performed to explain the mechanisms of action of
these modulators in the regulation of gene expression
and activity.
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Mechanisms of neuroprotection by quercetin: counteract-
ing oxidative stress and more. Oxid. Med. Cell. Long.
2016 2986796

Costa LG, de Laat R, Dao K, Pellacani C, Cole TB and
Furlong CE 2014 Paraoxonase-2 (PON2) in brain and its
potential role in neuroprotection. Neurotoxicology 1 3–9

Costa LG, Tait L, de Laat R, Dao K, Giordano G, Pellacani
C, Cole TB and Furlong CE 2013 Modulation of
paraoxonase 2 (PON2) in mouse brain by the polyphenol
quercetin: a mechanism of neuroprotection? Neurochem.
Res. 38 1809–1818

Dardiotis E, Siokas V, Sokratous M, Tsouris Z, Michalopou-
lou A, Andravizou A, Dastamani M, Ralli S, et al. 2018
Genetic polymorphisms in amyotrophic lateral sclerosis:
evidence for implication in detoxification pathways of
environmental toxicants. Environ. Int. 116 122–135

Devarajan A, Bourquard N, Hama S, Navab M, Grijalva VR,
Morvardi S, Clarke CF, Vergnes L, et al. 2011 Paraox-
onase 2 deficiency alters mitochondrial function and
exacerbates the development of atherosclerosis. Antioxid.
Redox Signal. 14 341–351

Devarajan A, Su F, Grijalva V, Yalamanchi M, Yalamanchi
A, Gao F, Trost H, Nwokedi J, et al. 2018 Paraoxonase 2
overexpression inhibits tumor development in a mouse
model of ovarian cancer. Cell Death Dis. 9 1–6

Devarajan A, Bourquard N, Grijalva VR, Gao F, Ganapathy
E, Verma J and Reddy ST 2013 Role of PON2 in innate
immune response in an acute infection model. Mol.
Genet. Metab. 110 362–370

Devarajan A, Shih D and Reddy ST 2014 Inflammation,
infection, cancer and all that the role of paraoxonases.
Adv. Exp. Med. Biol. 824 33–41
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