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Abstract
A common symptom of obstructive sleep apnea (OSA) is excessive daytime sleepiness (EDS). The gold standard test for EDS is the multiple sleep latency test (MSLT). 

However, due to its high cost, MSLT is not routinely conducted for OSA patients and EDS is instead evaluated using sleep questionnaires. This is problematic however, 

since sleep questionnaires are subjective and correlate poorly with the MSLT. Therefore, new objective tools are needed for reliable evaluation of EDS. The aim of this 

study was to test our hypothesis that EDS can be estimated with neural network analysis of previous night polysomnographic signals. We trained a convolutional 

neural network (CNN) classifier using electroencephalography, electrooculography, and chin electromyography signals from 2,014 patients with suspected OSA. The 

CNN was trained to classify the patients into four sleepiness categories based on their mean sleep latency (MSL); severe (MSL < 5min), moderate (5 ≤ MSL < 10), mild 

(10 ≤ MSL < 15), and normal (MSL ≥ 15). The CNN classified patients to the four sleepiness categories with an overall accuracy of 60.6% and Cohen’s kappa value of 

0.464. In two-group classification scheme with sleepy (MSL < 10 min) and non-sleepy (MSL ≥ 10) patients, the CNN achieved an accuracy of 77.2%, with sensitivity of 

76.5%, and specificity of 77.9%. Our results show that previous night’s polysomnographic signals can be used for objective estimation of EDS with at least moderate 

accuracy. Since the diagnosis of OSA is currently confirmed by polysomnography, the classifier could be used simultaneously to get an objective estimate of the 

daytime sleepiness with minimal extra workload.
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Statement of Significance

Daytime sleepiness is a common symptom of obstructive sleep apnea (OSA), but it is somewhat ignored in sleep apnea diagnostics and 
treatment planning since the multiple sleep latency test is not routinely conducted for sleep apnea patients. The convolutional neural 
network classifier developed in this study enables the estimation of objective daytime sleepiness for OSA patients using signals recorded 
during polysomnography. Therefore, a reasonably accurate sleepiness estimation can be acquired without the need to conduct any add-
itional tests. The only currently available alternatives are subjective sleep questionnaires, such as Epworth Sleepiness Scale, which the de-

veloped classifier slightly outperforms. The accuracy of the classifier could be further improved in the future with broader training material.
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Introduction

Obstructive sleep apnea (OSA) is a common sleep disorder af-
fecting approximately half of the adult population [1, 2]. A major 
symptom of OSA is excessive daytime sleepiness (EDS). Although 
EDS is not directly lethal, it has a significant deteriorating im-
pact on the quality of life causing depression and cognitive 
impairment [3–5]. In addition, EDS is a major cause of motor ve-
hicle accidents and sick leaves making it a substantial economic 
burden [6].

The gold-standard test for EDS is the multiple sleep la-
tency test (MSLT) [7]. The MSLT is an objective, full-day 
trial performed in a sleep laboratory where sleep latency 
is measured multiple times and the average of these laten-
cies, that is, mean sleep latency (MSL) is used to assess EDS 
[7]. The subjects are clinically classified into four sleepiness 
categories based on their MSL: severe (MSL < 5  min), mod-
erate (5 ≤ MSL < 10), mild (10 ≤ MSL < 15), and normal (MSL ≥ 
15) [8, 9]. Alternatively, a single MSL threshold of 8 or 10 min 
is often used to differentiate between normal patients and 
patients suffering from EDS [10, 11]. However, as MSLT is 
time-consuming and expensive, it is not routinely performed 
for OSA patients and EDS is instead evaluated using simpler 
tests, such as sleep questionnaires [12, 13]. Sleep question-
naires are problematic however, since they are dependent on 
the patients’ interpretation of the rating system and there-
fore only offer an estimation on subjective sleepiness. For ex-
ample, the results of the most common subjective test, the 
Epworth Sleepiness Scale (ESS), do not correlate well with 
MSLT and have been proven to be insufficient in estimating 
daytime sleepiness [12, 14–16]. Due to these shortcomings, 
simpler and easier objective tools are needed for evaluation 
of EDS especially for OSA patients.

Machine learning has been proven to be a powerful tool 
in medical signal analysis and has also shown promise in 
automatic diagnostics of OSA [17–19]. For example, artificial 
neural networks have been used for automated sleep staging 
using electroencephalography (EEG) [20, 21]. Based on the 
promising previous research, we hypothesized that previous 
night EEG could be used to estimate the daytime sleepiness 
of an OSA patient. Therefore, the aim of this study was to de-
velop an objective, neural network method for estimation of 
EDS in patients with suspected OSA. We test our hypothesis 
by training a convolutional neural network (CNN) that esti-
mates the results of the MSLT based on the previous night’s 
EEG, electrooculography (EOG), and electromyography (EMG) 
signals.

We chose to use a convolutional neural network, which is 
a type of deep neural network inspired by the human visual 
cortex and developed specifically for visual machine learning 
tasks [22]. CNNs also have less parameters and are faster to train 
than equally sized multilayer perceptron networks which is im-
portant with large inputs such as high resolution images. Like 
in regular multilayer perceptron networks, layers of a CNN have 
neurons, which receive inputs, calculate a weighed sum from 
them according to the learnable weights, pass them through an 
activation function and generate an output. However, in CNNs, 
the layers are not fully connected and instead only a small part 
of the input layer is being operated on by the convolution kernel 
at a time. This kernel is then moved over the whole input layer 
generating the full output.

Methods
We developed a convolutional neural network (CNN) classifier to 
automatically estimate the MSLT result using EEG, EOG, and chin 
EMG signals recorded during in-lab polysomnography (PSG) the 
previous night. The CNN classifier was trained to classify the pa-
tients with suspected OSA into four sleepiness categories based 
on their MSL; severe (MSL < 5 min), moderate (5 ≤ MSL < 10), mild 
(10 ≤ MSL < 15), and normal (MSL ≥ 15). Additionally, we classified 
patients to EDS and normal groups using an MSL < 10 min as the 
threshold for EDS.

Dataset

The patient population consisted of 2,014 patients with sus-
pected OSA who had undergone in-lab PSG and a next day MSLT 
(Table  1). The recordings were conducted during 2001–2011 in 
the Sleep Disorders Unit, Loewenstein Hospital—Rehabilitation 
Center, Raanana, Israel and analyzed using the prevailing 
American Academy of Sleep Medicine (AASM) guidelines 
[23, 24]. According to the clinical protocol at the Loewenstein 
Hospital, patients were referred to the MSLT because they had 
complained of daytime sleepiness during the clinical inter-
view. No preliminary sleep questionnaires were performed. 
Ethical permission was obtained from the Ethical Committee 
of Loewenstein Hospital (Permission number: 0006-17-LOE). The 
MSLTs were conducted using four-nap protocol in uninterrupted 
conditions with 2  h intervals between each nap attempt [25]. 
The sleep onset was determined from the first stage of sleep. 
If no sleep occurred, the nap attempt was terminated at 20 min 
and the sleep latency was determined to be 20 min for that nap 
attempt. A total of four nap attempts were conducted and the 
MSL was calculated as the mean of these four readings.

The EEG electrodes were placed according to the inter-
national 10–20 system [26]. Two EEG channels, C4-A1 and PZ-A1, 
EOG channel (ROC-A1), and chin EMG were used as an input to 
the CNN. AASM recommends C4-A1, F4-A1, and O2-A1 EEG chan-
nels together with EOG and EMG channels for sleep staging [24]. 
However, as our dataset included frontal and occipital EEG chan-
nels only for a very limited number of patients, we chose to use 
C4 and PZ channels because they were most frequently recorded 
among the patients and thus the highest possible number of pa-
tients could be included in the study. We also chose to include 
the EOG and chin EMG channels since according to our prelim-
inary testing, slightly better results were obtained with all four 
channels compared to using EEG only.

Signal processing

The raw signals sampled at 256 Hz frequency were exported 
from REMbrandt Manager System (MedCare Co, Amsterdam, 
the Netherlands) and imported to MATLAB 2018b (MathWorks 
Inc., Natick, Massachusetts, USA), which was used to conduct 
all preprocessing tasks. The signals were truncated so that 
only the time between the lights off mark and lights on mark 
was included and normalized using z-score normalization, 
that is, subtracting the signal mean and dividing by standard 
deviation resulting in a signal with zero mean and a standard 
deviation of one. The normalization was done to unify the 
greatly varying signal amplitudes between different patients. 
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The signals were divided into 512 epochs with 50% overlap. No 
padding at the start or end was used. As a result, each epoch 
length was 2/513rds of the time between lights off and lights 
on marks. Welch’s power spectral density (PSD) estimate [27] 
was then calculated for each epoch using 8 windows with 50% 
overlap. The PSD estimate was calculated for a frequency range 
of 0.3–30.3Hz using 512 data points. This frequency range was 
chosen since it contains the common diagnostic bands (Delta, 
Theta, Alpha, and Beta) and, for example, AASM recommends 
filtering out frequencies outside 0.3–35Hz when scoring sleep 
[28, 29]. The PSD estimates were converted to dB scale (xdb =10 
log10x) and arranged into a 512 × 512 spectrogram image where 
one column corresponds to one epoch. The same procedure was 
repeated for all four channels and for each patient. Finally, all 
spectrograms were arranged into a 2,014 × 512 × 512 × 4 matrix 
where the first dimension represents patients, the second and 
third dimensions represent the spectrograms, and the fourth di-
mension represents the four signal channels. Example figure of 
the spectrograms are presented in Figure 1.

Neural network

The CNN was trained in Python 3.7.3 with Tensorflow 1.14.0 
using Keras 2.2.4. The CNN consisted of four convolutional 
blocks and one fully connected block (Figure 2). Each convolu-
tional block consisted of two 2D-convolution layers followed by 
a max pooling layer with a pool size of 2 × 2 and a stride of 2–2. 
All convolution layers used 3 × 3 convolution kernels, stride of 
1–1 and a tanh activation function. The number of output filters 
of the convolutional layers was 12 in the first block, 18 in the 
second block, 24 in the third block, and 30 in the fourth block. 
The last block consisted of a dropout layer with a 0.3 dropout 

followed by a flattening layer and two fully connected layers 
with layer sizes of 4 and 12 and a ReLU activation. The last layer, 
that is, the output layer, was a fully connected layer with a size 
of 4 and a softmax activation. The network was trained with the 
Adam optimizer using a learning rate of 0.0001. Different neural 
network structures were also tested but they resulted in worse 
performance (see Table S2). The network with the lowest mean 
validation set loss was selected from the tested networks. We 
used class weighting during training to mitigate the effect of 

Table 1. Subject characteristics

Mean Range SD

Age (years) 50.9 18.0–88.0 13.8
BMI (kg/m2) 30.8 13.8–63.7 6.4
AHI 1/h 30.0 0.3–148.1 28.9
MSL (min) 10.2 0.5–20.0 5.1
Recording  

duration (h)
7.2 6.0–8.7 0.4

 Number Percentage
Total number  

of patients
2,014  

 Male patients 1,492 74.1
 Female patients 522 25.9
EDS category   
 Normal 368 18.3
 Mild 649 32.2
 Moderate 580 28.8
 Severe 417 20.7
OSA category   
 Normal 401 19.9
 Mild 438 21.8
 Moderate 422 21.0
 Severe 753 37.4

Number and percentage for categorical variables and mean, range and 

standard deviation for continuous variables.

EDS, excessive daytime sleepiness; OSA, obstructive sleep apnea; BMI, body 

mass index; AHI, apnea–hypopnea index; MSL, mean sleep latency; SD, 

standard deviation.
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Figure 1. Example of the spectrograms given to the convolutional neural net-

work as an input.

LLaayyeerr ttyyppee OOuuttppuutt ssiizzee

Input 512x512x4

Conv2D 510x510x12
Conv2D 508x508x12
MaxPooling2D 254x254x12

Conv2D 252x252x18
Conv2D 250x250x18
MaxPooling2D 125x125x18

Conv2D 123x123x24
Conv2D 121x121x24
MaxPooling2D 60x60x24

Conv2D 58x58x30
Conv2D 56x56x30
MaxPooling2D 28x28x30

Dropout 30%
Flatten 23520x1
Dense 4x1
Dense 12x1
Output 4x1

Figure 2. Structure of the convolutional neural network.

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsaa106#supplementary-data
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imbalanced classes. Each class weight was set to be inversely 
proportional to the number of patients in the class.

We used 10-fold cross-validation to test the performance of 
the classifier. The patient population was randomly divided into 
10 subpopulations, each consisting of 201 or 202 patients. The 
CNN was trained 10 times such that each subpopulation was 
used once as a test set, and 9 times in the training set. During 
each fold, 10% of the training set was further used as the val-
idation set to assess the performance during training and to 
avoid overfitting. The training accuracy was monitored during 
training using sparse categorical cross-entropy as the loss func-
tion. The training was stopped after the validation set loss did 
not decrease for 100 continuous epochs after which the model 
with the lowest validation loss was selected as the model for 
that fold.

To further interpret the model, we performed an occlusion 
test to estimate the relative importance of different parts of the 
spectrogram. A 32 × 32 mask, that sets the spectrogram values 
under the mask to zero, was used to occlude part of the spectro-
gram and these occluded spectrograms were given as an input 
to the trained classifier. The process was repeated by moving the 
mask over the whole spectrogram with no overlap resulting in 
a total of 256 occlusions. The accuracy of the classifier was then 
calculated for each occlusion.

Results
By using a single, 10-min, threshold for EDS classification, the 
classifier achieved an accuracy of 77.2% in differentiating sleepy 
and non-sleepy patients with suspected OSA. Sensitivity and 
specificity of the classifier were 76.5% and 77.9%, respectively. 
The receiver operating characteristic (ROC) curves for the clas-
sifier in each fold and across all folds are presented in Figure 3. 
The area under ROC curve (AUC) for the classifier across all folds 
was 0.853. The classifier achieved a positive predictive value of 
78.0% and negative predictive value of 76.5%. Cohen’s kappa 
[30] value for the binary classification was 0.544 and F1-score 
was 0.772.

When classifying patients to the four sleepiness categories, 
the CNN achieved an overall accuracy of 60.6%. Cohen’s kappa 

[30] value for the classifier was 0.464. The training, validation, 
and test set accuracies varied slightly between the folds. Mean 
training, validation, and test accuracies were 70.7%, 61.1%, and 
60.6% with standard deviations of 4.5%, 7.3%, and 8.3%, respect-
ively (see Table S1 for full cross-validation statistics). Confusion 
matrix showing the patient classification across all folds is pre-
sented in Figure  4. The CNN performed best in the moderate 
sleepiness category with an accuracy of 66.9% and worst in the 
normal category with an accuracy of 52.0%.

To assess which group of patients is most likely to be clas-
sified correctly, the classification accuracy was compared in 
age, sex, BMI, and AHI subgroups (Table 1). The classification ac-
curacy varied slightly between the subgroups. Patients with se-
vere OSA were slightly more likely to be classified correctly than 
patients with lesser severity of OSA. Patients with higher BMI or 
age were also classified slightly more accurately than patients 
with low BMI or age.

The results of the occlusion test when classifying the pa-
tients to the four sleepiness categories are presented in Figure 5. 
The accuracy varied greatly between the occlusions. Occluding 
the lower frequencies (0–15Hz) had slightly more detrimental 
effect on the accuracy of the classifier than occluding the higher 
frequencies.

Discussion
We developed a CNN classifier that estimates daytime sleepi-
ness based on polysomnographic (EEG, EOG, and chin EMG) sig-
nals recorded the night before MSLT. We found that the classifier 
was able to estimate sleepiness with moderate accuracy. The 
classifier classified patients to all sleepiness categories rela-
tively evenly with no apparent bias for any sleepiness category 
(Figure 3).

In detecting EDS, the sensitivity (76.5%) and specificity 
(77.9%) were good with reasonably high positive predictive value 
(78.0%) and negative predictive value (76.5%). In comparison, 
similar sensitivities (70% and 80%) and negative predictive 
values (75% and 76%) have been reported with ESS using cohort-
optimized cutoff values (16 and 12 points) [31, 32]. However, the 
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specificities (55% and 69%) were considerably lower compared 
to our classifier along with lower positive predictive values (61% 
and 74%) [31, 32]. High specificity (76%) has also been reported 
using ESS, but with low sensitivity (64%) [33]. Simultaneous high 
sensitivity and specificity has been difficult to achieve with ESS 
even when using cohort-optimized cutoff values [31–33].

Based on the present results, the CNN classifier developed 
in this study seems to be able to estimate sleepiness slightly 
better than ESS [31–33]. However, it is important to note that ESS 
is better suited as a measure of chronic, long-time sleepiness 
rather than the acute sleepiness. Therefore, ESS is still a valu-
able tool in sleepiness estimation. The classifier could be used 
as a simple estimator of the patients’ sleepiness since it is easy 
to implement and does not require long and laborious full-day 
test (i.e. MSLT) while still providing an objective estimate of the 
patient’s acute daytime sleepiness. In addition, ESS could be 
used in conjunction with the classifier to provide information 
on the chronic situation.

In the subgroup analysis, older patients, patients with severe 
OSA or patients with high BMI were classified slightly more ac-
curately than younger patients, patients with lower severity of 
OSA or patients with low BMI (Table 2). Since OSA severity gen-
erally increases with age and obesity [34], it could be that the 
sleepiness of these patients is mainly caused by the sleep apnea, 
which might be more clearly detectable from the spectrograms.

The occlusion test showed that there does not seem to be 
a well-defined, specific region in the spectrogram image that 
is most important for sleepiness classification (Figure  5, A). 
However, occluding the frequencies less than 15Hz seemed to 
have a more detrimental effect on the accuracy of the classi-
fier (Figure 5, B). This makes sense since most of the power in 
the spectrogram is at the lower frequencies. In addition, delta 
waves, associated with deep sleep are at this low frequency 
range (0.5–4Hz) [28]. As the amount of slow wave sleep is im-
portant in recovery during the night and greatly affects sleepi-
ness, it could be that the amount of slow wave sleep detected 
from the spectrogram is a major component of the classifier 
function. However, since the accuracy suffered at least slightly 
when any part of the image was occluded, it seems that the 
whole night and all frequencies are at least somewhat im-
portant for the classifier.

This study has certain limitations. The use of Pz electrode 
might limit generalizability of the classifier since it is not a 
commonly used electrode placement in PSG montage. However 
omitting this electrode would have lowered classifier accuracy 
(see supplement). Although the accuracy of the classifier was 
moderate, it still leaves room for improvement. One compli-
cating factor in estimating the MSLT result is that the patient’s 
sleepiness is not entirely dependent on the previous night. 
Some of the patients might have been sleep deprived for a long 
time while others might only be sleepy because of poor sleep 
during the previous night polysomnography. While they both 
might be classified to the severe sleepiness category, their EEG 
and EMG spectrograms are likely significantly different. That 
is, all information on the patient’s sleepiness is not available 
in the single night polysomnographic recording, which limits 
the performance of the classifier. Another limiting factor is the 
patient population. Although the patient population was rela-
tively large, using even larger population would have likely 
improved the results. Larger population would also have al-
lowed a larger test set and thus enabled a more robust valid-
ation of the developed classifier. Another limiting factor of the 
patient population is that the baseline ESS test was not con-
ducted and therefore we could not compare classifier accuracy 
to ESS or assess the subjective and objective sleepiness in the 

0 0.5 1

25

15

5F
re

qu
en

cy
 (

H
z)

0.15

0.2

0.25

0.3

D
ro

p 
in

 a
cc

ur
ac

y

0 0.5 1
Fraction of sleeptime

25

15

5F
re

qu
en

cy
 (

H
z)

0.23

0.24

0.25

A
ve

ra
ge

 d
ro

p 
  i

n 
ac

cu
ra

cy

a)

b)

Figure 5. Occlusion plots for the convolutional neural network classifier when 

classifying patients to the four sleepiness categories. All 32  × 32 occlusions 

(A) showing the difference in classification accuracy when the corresponding 

area of the input spectrograms are occluded. Time average of the occlusions (B) 

showing the average drop in accuracy for each frequency. Brighter color corres-

ponds to a larger drop in accuracy, that is, the occluded area is more important, 

and darker color corresponds to a smaller drop in accuracy.

Table 2. Classification accuracy in subgroups across all folds when 
classifying patients to the four sleepiness categories

Subgroup
Number of patients  
in subgroup

Classification  
accuracy (%)

Males 1,492 61.5
Females 522 57.9
AHI < 5 401 52.1
5 ≤ AHI < 15 438 59.4
15 ≤ AHI < 30 422 57.5
AHI ≥ 30 753 67.5
BMI < 25 355 56.7
25 ≤ BMI < 30 660 60.0
30 ≤ BMI < 35 598 62.7
BMI ≥ 35 421 61.5
age < 40 430 54.2
40 ≤ age < 50 406 60.1
50 ≤ age < 60 668 62.7
age ≥ 60 510 63.5

AHI, apnea–hypopnea index; BMI, body mass index.
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same population. In addition, no information on medications 
or comorbidities was available for this study population. This 
can be considered a study limitation as both of these could 
have an effect on the patients’ sleepiness. It is also important 
to note that all of the patients in this study were suspected OSA 
patients complaining from daytime sleepiness during clinical 
interview. This results in a biased population only consisting of 
patients with subjective sleepiness while including no patients 
who were objectively sleepy but not subjectively sleepy. Thus, 
the network might behave differently if applied to a different 
population such as a healthy population or to a population with 
different sleep disorders.

In conclusion, objective estimation of daytime sleepiness 
using polysomnographic signals shows promising results. The 
developed CNN classifier could be applied for OSA patients that 
undergo polysomnography to get an objective EDS evaluation 
with minimal workload.

Supplementary material
Supplementary material is available at SLEEP online.
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