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This article develops a general framework to guide the use
of subgroup cost-effectiveness analysis for decision mak-
ing in a collectively funded health system. In doing so, it
addresses 2 key policy questions, namely, the identifica-
tion and selection of subgroups, while distinguishing 2
sources of potential value associated with heterogeneity.
These are 1) the value of revealing the factors associated
with heterogeneity in costs and outcomes using existing
evidence (static value) and 2) the value of acquiring fur-
ther subgroup-related evidence to resolve the uncertainty
given the current understanding of heterogeneity
(dynamic value). Consideration of these 2 sources of value
can guide subgroup-specific treatment decisions and
inform whether further research should be conducted to
resolve uncertainty to explain variability in costs and

outcomes. We apply the proposed methods to a cost-
effectiveness analysis for the management of patients
with acute coronary syndrome. This study presents the ex-
pected net benefits under current and perfect information
when subgroups are defined based on the use and combi-
nation of 6 binary covariates. The results of the case study
confirm the theoretical expectations. As more subgroups
are considered, the marginal net benefit gains obtained
under the current information show diminishing marginal
returns, and the expected value of perfect information
shows a decreasing trend. We present a suggested algo-
rithm that synthesizes the results to guide policy. Key
words: heterogeneity; subgroup analysis; value of infor-
mation; cost-effectiveness analysis. (Med Decis Making
2014;34:951–964)

Decisions based on average measures of cost-
effectiveness may lead to incorrect treatment re-

commendations for specific subsets of the popula-
tion.1 This is because a treatment that is cost-
effective for one type of patient may not be so for
others. This type of heterogeneity can be ascribed
to both individual and contextual-level factors,2

which, if taken into account by the decision maker,
would support a more efficient allocation of
resources.

Although the concept of subgroup analysis has
a long history,3,4 its adoption has been met with cau-
tion in some areas of health care decision making,
possibly due to concerns related to low statistical
power and multiple statistical testing.5–7 Many
authors have indicated their preference for using an
average measure of treatment effect4,8,9 and for find-
ings from subgroup analyses being considered
exploratory in nature.8,10 More recently, there have
been arguments against the use of strict inferential
rules in assessing the effects of interventions for
health care decision making.11–14 This emphasizes

Received 26 February 2013 from the Department of Public Health, Pon-
tificia Universidad Católica de Chile, Santiago, Chile (MAE); Department
of Scientific Affairs, Institute of Public Health, Santiago, Chile (MAE);
Centre for Health Economics, University of York, York, UK (AM, KC,
MJS); and Department of Economics and Related Studies, University
of York, York, UK (KC). This research was funded by the UK Department
of Health Policy Research Programme through its Policy Research Unit
in Economic Evaluation of Health & Care Interventions (EEPRU). The
views expressed are not necessarily those of the Department. ME has
received doctoral funding from the Chilean scholarship program
‘‘Beca Presidente de la República’’ and the School of Medicine at Pon-
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the importance of considering evidence on subgroups
of patients when making probabilistic statements
about the (cost-) effectiveness of a given treatment
strategy.2,15 Several authors have made important
contributions in this area in recent years. Phelps16

introduced the idea that heterogeneity in cost-
effectiveness can be explained by different factors
(baseline risk, treatment efficacy, costs, and patient
preferences), Coyle and others15 proposed methods
to quantify the potential health gains facilitated by
making different decisions for different subgroups
(stratified analysis), and Basu and Meltzer17

extended this concept to decisions at the individual
level (expected value of individualized care [EVIC]).
All of these contributions have focused on the value
of understanding the reasons for variability (i.e.,
translating variability into heterogeneity explainable
by observable characteristics), but none has fully
addressed how variability and uncertainty interact.18

Nor have the implications for the relative priority of
different types of research or the most appropriate
level of discrimination (stratification) in differential
access to care been fully explored.

Several national health care agencies19,20 responsi-
ble for issuing recommendations about the adoption
of new medical technologies support the use of sub-
group analyses when making decisions about new
health technologies. For example, the methods guid-
ance for technology appraisal issued by the National
Institute for Health and Care Excellence (NICE) for
England and Wales19 states that ‘‘for many technolo-
gies, the capacity to benefit from treatment will differ
for patients with differing characteristics. This should
be explored as part of the reference-case analysis
by the provision of estimates of clinical and cost-
effectiveness separately for each relevant subgroup of
patients.’’ Similarly, the technical guidance of the Cana-
dian Agency for Drugs and Technologies in Health rec-
ommends ‘‘stratified analysis of smaller, more
homogeneous subgroups, where appropriate, if there
is variability (heterogeneity) in the target population.’’20

However, no specific guidance is offered for how to
explore and reflect heterogeneity when conducting sub-
group cost-effectiveness analyses to inform decisions.

Given the current policy debate and government
agenda relating to the personalization of health and
social care services in the United Kingdom21 and
elsewhere,22–24 a framework to support and guide
decision making in different groups of patients is rap-
idly becoming a key policy need. This article presents
a conceptual framework to explore heterogeneity
between patients, consistent with the objective
of maximizing population health subject to the

resources available to a health care system. The
framework builds on earlier work in this area,15,17

adding the following elements: First, it introduces
the efficiency frontier for subgroup analysis, an ana-
lytical tool that can be used to guide the choice of
the optimal subgroup definition. Second, it charac-
terizes 2 dimensions of the value of understanding
heterogeneity: 1) the expected health gained because
of stratified decisions and 2) the additional value of
further data collection aimed at resolving subgroup-
related uncertainty. The proposed framework is
tested using a policy-relevant analysis as a simple
extension of current cost-effectiveness methods.
The article ends with a final section discussing the
strengths and weaknesses of this work.

SUBGROUP COST-EFFECTIVENESS ANALYSIS
UNDER CURRENT INFORMATION

Net Benefits for Subgroup Cost-Effectiveness
Analysis

Classical decision rules in cost-effectiveness anal-
ysis (CEA)25 state that, under current information, the
optimal strategy among j mutually exclusive alterna-
tives, given u, an uncertain vector of parameters, can
be expressed as follows:

maxjEuNBðj; uÞ: ð1Þ

That is, the optimal strategy is the one with the great-
est expected net benefit (NB). If the total (present and
future) patient population expected to benefit from
the intervention is defined as

XT

t¼1

It

ð1 1 rÞt
; ð2Þ

where I represents the disease incidence for each
period t, T indicates the period over which the tech-
nology is assumed to be relevant to clinical practice,
and r is an appropriate discount rate, then the popu-
lation expected NB can be estimated as

maxjEuNBðj; uÞ
XT

t¼1

It

ð1 1 rÞt
: ð3Þ

Coyle and others15 showed that by considering
heterogeneity in treatment effect between patient
subgroups within this framework (i.e., due to the
presence of observed treatment effect modifiers), dif-
ferent recommendations could be made for different
subgroups. This results in a greater expected NB com-
pared with decisions based on the average across the
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patient population as a whole. Later, Basu and Melt-
zer17 proposed EVIC, a metric that represents the
additional value, in terms of NB, of making decisions
at the level of the individual (patient) compared with
that of the average population. EVIC can also be esti-
mated for individual parameter(s), indicating the
value of categorizing the population based on a partic-
ular (set of) parameter(s) to make individualized deci-
sions about health care interventions.

Using a slightly different notation from that used
by Coyle and others,15 the total incremental net benefit
(TINB) (with INB ¼ EuNB j; uð Þ � EuNB j�; uð Þ, where
j 6¼ j�) across S subgroups can be written here as

TINB ¼
XS

s¼1

INBsws; ð4Þ

where ws 2 ð0; 1Þ is a weight indicating the propor-
tion of the total population represented by subgroup

s and
PS

s¼1

ws ¼ 1. Hence, the TINB is the weighted

average of the incremental net benefit (INB) in each
of the subgroups. Since some of the subgroup-specific
INB may be negative, the TINB when the intervention
is restricted to those subgroups with positive INB is

TINBS ¼
XS

s¼1

INBsws; 8s where INBs > 0; ð5Þ

and the INB gained from reflecting heterogeneity
in decisions—what Coyle and others15 termed
stratification—can be written as the negative sum of
the population weighted INB in those subgroups
where INB is negative:

DsTINB ¼ TINBS � TINB ¼ �
XS

s¼1

INBsws; 8s where INBs\0:

ð6Þ

The estimation of the total net benefits (TNBs) based on
absolute NB values can be expressed more generally as

TNBS ¼
XS

s¼1

wsðmaxjNBsÞ; ð7Þ

which is the weighted sum of the maximum NBs for
each subgroup, and the DsTNB being

DsTNB ¼
XS

s¼1

ws maxjNBs

� �
�maxjNB; ð8Þ

which corresponds to the difference between the
weighted sum across subgroups (equation 7) and
the average NBs.

Definition of Subgroups and Sources of
Heterogeneity

Cost-effectiveness analysis needs to assess hetero-
geneity in a wider set of parameters than those typi-
cally considered in clinical studies.2,26 The analysis
of clinical trials generally focuses on inferences about
treatment effects for the patient population defined
by the study’s inclusion criteria. Interest in hetero-
geneity is generally confined to treatment effect
moderators.10 In addition, there may be clinical
interest in heterogeneity in the underlying (or base-
line) risk of adverse clinical events associated with a
disease.27 This can lead to subgroup differences in
the absolute benefit conferred by a treatment offer-
ing a common proportionate risk reduction across
the entire patient population. There may also be sit-
uations in which baseline risk is correlated with the
relative treatment effect.28 These sources of hetero-
geneity relating to the intervention and the disease
are also important in CEA. In addition, resource
use (and hence costs) may systematically vary
between individuals based on their characteristics
and the geographical location of their treatment.29

Finally, heterogeneity in individual preferences
(and hence benefit) is increasingly recognized as
another key source of heterogeneity in cost-
effectiveness.3,26,30

There are, however, some potential constraints on
subgroup analysis for CEA. One is the need to con-
sider the costs of implementing subgroup-specific
guidance in the health system. These could include
the costs of acquiring relevant characteristics of indi-
vidual patients and the costs of monitoring whether
clinicians’ practice is consistent with the guidance
for patients with those characteristics. There are
also potential ethical and equity constraints when
conducting subgroup CEA for decision making. For
example, NICE considers unethical the use of age as
a source of heterogeneity in its decisions unless it
directly affects the efficacy of an intervention.19

These constraints should be made explicit when sub-
groups are being defined.

Thus, the first issue decision makers must address
in this context is the choice between subgroup speci-
fications (f), that is, the choice of covariates used to
define individuals’ membership to a particular sub-
group. These variables should be biologically plausi-
ble and operationalizable in practice.2 For example,
patients at risk of cardiovascular events can be
grouped on the basis of whether or not they have dia-
betes (f = 1), hypertension (f = 2), or a combination of
both (f = 3). We propose a criterion based on
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efficiency (measured in terms of expected NB) to
guide selection among alternative subgroup
specifications.

Consider an evaluation of the cost-effectiveness of
2 alternative treatments for non-ST elevation acute
coronary syndrome with F possible subgroup specifi-
cations that could be defined by a given parameter.
Assume now that only 2 subgroups are considered
(S = 2) and that these can be obtained by subdividing
the population using 3 alternative specifications: the
first based on the presence or not of diabetes (f =1); the
second based on high versus low baseline TIMI risk
score,31 a well-known score representing baseline
risk (f = 2); and the third based on the presence or
not of a highly sensitive and specific biomarker (tro-
ponin; f = 3). The same variables can be used to define
alternative specifications for 3 and 4 subgroups (e.g.,
the combination of 2 binary specifications such as
diabetes; troponin defines a specification that produ-
ces 4 subgroups). For each subgroup, total expected
NBs can be estimated, based on existing evidence
(current information).

The goal is to identify relevant subgroups and asso-
ciated specifications that produce the highest
expected NB, resolving the following maximization
problem:

maxj;f EuTNBS;f j; uð ÞS ¼ 1; 2; . . . ;n; f ¼ 1; 2; . . . ;F : ð9Þ

Equation 9 suggests that the specification with the
greatest total expected NBs should be preferred, given
current information. These points would lead to an
efficiency frontier similar to that depicted in Figure
1, which represents the range of possible expected
NBs achievable using alternative specifications for
each given number of subgroups.

The dotted line represents the frontier showing the
set of the most efficient specifications for each num-
ber of subgroups. Figure 1 introduces 2 further impor-
tant elements: first, the notion that there may be
instances in which consideration of subgroups does
not add any further societal benefit (in terms of
expected NB) compared with what is achieved by
providing a given treatment to the whole patient
population. This would happen if the same treat-
ment decision is appropriate for all subgroups (A).
Second, in other cases, further exploration of sub-
groups offers an additional societal benefit, even
given current information. This could be exclusively
explained by the effect of a different specification for
the same number of subgroups (B) or because addi-
tional numbers of subgroups have been taken into
account (C).

DECISION UNCERTAINTY AND THE VALUE OF
ADDITIONAL RESEARCH

The framework has so far not considered the role of
uncertainty in CEA, which can be classified as struc-
tural and parameter uncertainty.18,32 Although
parameter uncertainty is the primary focus here, the
same method of analysis can be applied if structural
uncertainties are quantified or parameterized.33

Parameter uncertainty reflects imperfect (imprecise)
knowledge about the true mean value of a (set of)
parameter(s) in the model. The existence of parame-
ter uncertainty implies the possibility of making
a wrong decision about which intervention is
expected to be cost-effective (on average) for a target
population or subpopulation of patients. Therefore,
additional evidence is valuable because it can inform
future decisions that will benefit future patients.
Value of information (VoI) methods can be used to
quantify the expected health that might be gained if
the uncertainty surrounding decisions about the cov-
erage or reimbursement of new health technologies
were resolved.14,34–36 This quantification requires
an estimate of the value of making decisions once
this uncertainty has been resolved (i.e., with perfect
information or a sample size such that the probability
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of making the wrong decision is expected to be zero).
In this circumstance, the decision maker would be
able to select the intervention that maximizes NBs
at the true value of the vector of parameters u, that is,

maxjNBðj; uÞ: ð10Þ

Since the true value of u is unknown, only the
expected value of this quantity can be estimated by
averaging the maximum NBs over the joint distribu-
tion of u,

EumaxjNBðj; uÞ: ð11Þ

The expected value of perfect information (EVPI) in
equation 12 is the difference between the NBs derived
from a decision made with perfect information (equa-
tion 11) and the NBs derived from decisions under
current information (equation 1). This represents
the expected gain (in NBs), for a single patient, from
collecting further information and resolving existing
uncertainty.

EVPI ¼ EumaxjNB j; uð Þ �maxjEuNB j; uð Þ: ð12Þ

Notice that the EVPI for the patient population
can be derived by multiplying equation 12 and equa-
tion 2.

Claxton14 showed that EVPI represents an upper
bound for a new research proposal aimed at resolving
the current levels of uncertainty. As long as obtaining
new information is less costly than the population
EVPI, there may be a positive potential payoff from
further research.37 Thus, a necessary condition is
achieved when this payoff is positive; otherwise,
investing in further research does not represent
a good use of available resources.

If mutually exclusive subgroups are considered,
different decisions can be made for different sub-
groups. Thus, under current information, the deci-
sion maker will need to choose for each subgroup s
the strategy with the maximum NB. Equation 1 can
therefore be reexpressed as

maxjEuNBsðj; uÞ; ð13Þ

with the expected value of the decision for subgroup s
under perfect information being

EumaxjNBsðj; uÞ ð14Þ

and the EVPI for the subgroup s given by

EVPIs ¼ EumaxjNBs j; uð Þ �maxjEuNBs j; uð Þ: ð15Þ

The EVPIs represents an upper bound for further
research on the target population considering that
different decisions can be made for different sub-
groups. This expression considers the overall uncer-
tainty in the population, which includes the
uncertainty given by both exchangeable and nonex-
changeable parameters. (Parameters are exchange-
able if the estimate to inform the cost-effectiveness
in one particular subgroup can be used to inform
the cost-effectiveness in another mutually exclusive
subgroup.) Generalizing equation 15, the total EVPI
when considering S subgroups is the weighted aver-
age of each subgroup-specific EVPI weighted by the
proportion of each subgroup in the population.

EVPIðSÞ ¼
XS

s¼1

EVPIsws: ð16Þ

The population EVPI can be estimated by multiply-
ing equation 16 by the future population of patients
expected to benefit from the new information, which
for s subgroups is given by

PðSÞ ¼
XS

s¼1

XTs

t¼1

Is;t

ð1 1 rÞt
; ð17Þ

where Ts is the period over which the information
that could be collected is useful in subgroup s,38

and Is,t is the incidence over period t. It follows that
the population EVPI with S subgroups is

popEVPIðSÞ ¼ EVPIðSÞPðSÞ; ð18Þ

which represents the maximum amount of resources
that the health system should be willing to pay for fur-
ther research given a particular cost-effectiveness
threshold.

This framework establishes a direct link between
current decision uncertainty and the value of future
research. Rather than considering uncertainty as
a constraint for decision making, VoI highlights that
its resolution is of value as a potential source of health
gain.14,34,39 This article extends this concept to
encompass the value of resolving those aspects of var-
iability (as opposed to uncertainty) that can be under-
stood as heterogeneity and coins the term value of
heterogeneity (VoH), to indicate the additional health
gains obtained by understanding heterogeneity for
decision making. In the proposed framework, VoH
has 2 components. The first of these results from
additional exploration of the existing evidence to
identify, characterize, and quantify heterogeneity.
This is termed static VoH, since it is not associated
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with new data collection. The second component
reflects the value derived from collecting new evi-
dence to reduce the sampling uncertainty associated
with subgroup-specific parameter estimates (or
parameters conditional on the value of specific cova-
riates), which is defined as dynamic VoH.

Both of these concepts can be illustrated graphi-
cally. Figure 2a illustrates the concept of EVPI.
Here, for the whole population, the empty diamond
marker represents the expected NB, expressed in
health terms (net health benefit [NHB]) under current
information, while the solid diamond marker

indicates the maximum expected NHB achievable
under perfect information, for one particular thresh-
old value. The difference between these 2 quantities
corresponds to the population-average EVPI.

Figure 2b shows the case with 2 subgroups when
there is value in identifying and reflecting heteroge-
neity using existing evidence, over and above the
value associated with undertaking further research.
Here, the total expected NHB with current informa-
tion (represented by the empty markers) is greater
when subgroups are considered. The difference
between the total NHB of a decision for the entire
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Figure 2 Value of information, static and dynamic value of heterogeneity. (a) Value of information concept. Empty diamond represents

the maximum expected net benefits (max EuNB), and the filled diamond shows the expected maximum net benefits (Eumax NB). The dif-

ference between them is the expected value of perfect information (EVPI). (b) The distance A represents the EVPI for the average population.

B is the EVPI for the population considering different decisions for 2 subgroups. C represents the static value of heterogeneity. D is the
dynamic value of heterogeneity. In this case, where (A = B), acknowledging heterogeneity does not lead to a change in the expected value

of further research. (c) The distances A and B represent the EVPI for the average and 2-subgroup case, respectively. In this case, B is greater

than A. Distance C is equal to zero; hence, there is no static value of heterogeneity. D is greater than zero, representing a positive dynamic

value of heterogeneity that is given by heterogeneity. (d) The distances A and B represent the EVPI for the average and 2-subgroup case,
respectively. In this case, A is greater than B. The static value of heterogeneity (C) and the dynamic value of heterogeneity (D) are positive;

however, D is smaller than C.
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population and the total NHB when considering sub-
groups (represented by the vertical distance C) is the
static value of heterogeneity. A formal expression for
this concept is equation 8. Notice that the scenario
depicted in Figure 2b indicates that, even if addi-
tional data could be collected through new research
to resolve any decision uncertainty for the subgroups,
the expected NHB to be gained would be similar to
what could be derived from the population-average
case. This is indicated by the fact that the vertical dis-
tance B is equal to the vertical distance A. In this sce-
nario, a policy maker might be interested in making
different decisions for different subgroups, according
to the evidence available, and investing in further
research would still be worthwhile if this were aimed
at resolving uncertainties not associated with
heterogeneity.

Figure 2c shows a further scenario. Here, the same
decision would be made for 2 subgroups under cur-
rent information, which would yield the same total
expected NHB as for the whole population. However,
the estimate under perfect information obtained
when considering subgroups (represented by the
solid square marker) is greater than the NHB under
perfect information derived from considering the
population as a whole (represented by the solid dia-
mond marker). The difference between these 2 quan-
tities (indicated by the vertical distance D) is the
dynamic value of heterogeneity. This value corre-
sponds to the additional (population) health that is
expected to be achieved when a sufficiently large
sample is collected to resolve current uncertainty
for a given stratification. This captures 2 sources of
value: 1) the value of resolving uncertainty in the esti-
mates of conditional parameters (parameter estimates
conditional on the subgroup category determined by
a particular specification) and 2) the value of estimat-
ing conditional parameters if uncertainty in their esti-
mation could be resolved. The first of these values
refers solely to uncertainty, that is, the difference
between the expected maximum NHB and the maxi-
mum expected NHB (i.e., EVPI). The second is the
value of heterogeneity with perfect information about
mean parameter values.

Finally, Figure 2d illustrates a situation in which
there are both static and dynamic values of heteroge-
neity (C . 0 and D . 0). However, a particular feature
of this example is that the EVPI when considering
subgroups (distance B) is less than the average EVPI
(distance A). This would occur when the specifica-
tion used to define subgroups is informative about
heterogeneity. In this situation, the effect is not only
observed under perfect information but also under

current information (positive static value). Hence,
the difference between current and perfect informa-
tion is lower than the average.

PRESENTATION OF SUBGROUP ANALYSIS AND
CHOICE OF THE OPTIMAL NUMBER OF SUB-
GROUPS: THE ROLE OF THE COST FUNCTION

By considering the static and dynamic dimensions
of heterogeneity simultaneously, the trend in
expected NHBs, as a function of the number of sub-
groups, can be shown graphically for both current
and perfect information. Several alternative specifi-
cations are available for each number of subgroups.
These range from no subgroups (indicated by the ver-
tical bar on the left in Figure 3) to decisions at the
individual level, where the treatment is chosen
according to the comparison between the observed
outcome and its counterfactual (indicated by the ver-
tical bar on the right in Figure 3). It is, therefore, pos-
sible to plot the most efficient specifications, that is,
those with the highest NHB for each number of sub-
groups. In addition, those specifications that have
lower NHB under current information but are
expected to produce higher NHB with perfect infor-
mation might also be included in the graph.

In principle, if there is no residual unexplained
heterogeneity (i.e., there is complete knowledge of
the individual characteristics that determine vari-
ability), the decision maker has the best possible
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information to allocate resources efficiently (the right
end of Figure 3). At the other extreme, the maximum
value of exploring heterogeneity is observed when no
subgroups have been taken into account. In terms of
uncertainty, it is not necessarily the case that the
maximum decision uncertainty is at the average pop-
ulation level. Indeed, increasing the number of sub-
groups could increase or decrease uncertainty,
depending on how informative the specification
used is and the reduction of the sample size due the
number of subgroups considered. It would generally
be expected, however, that if informative specifica-
tions are used to explain heterogeneity, then decision
uncertainty should decrease as more heterogeneity is
revealed. This uncertainty will, however, never be
completely resolved because the true value of the
individual treatment effect can never be measured,
as the counterfactual can never be observed.

The optimal number of subgroups would tend
toward n if there were no costs associated with imple-
menting recommendations for finer levels of stratifi-
cation. However, there are a number of costs that
are likely to be incurred as part of this process. Indi-
vidualized care (n) will not be optimal if the marginal
costs of increased stratification exceed the marginal
benefits before n is reached. These costs include the
transaction cost of implementing increasingly com-
plex recommendations, monitoring and enforcement
costs, and the opportunity costs of failing to restrict
access to care that is not cost-effective. For example,
the additional effort of implementing a finer level of
stratification might include additional health profes-
sionals’ time, the cost of additional diagnostic tests
required to categorize the patient, and the cost of dis-
semination and implementation strategies. They also
include the effort required to monitor and then enforce
compliance with restricted access and the additional
opportunity costs of failing to enforce differential
access when such further stratification makes effective
monitoring more difficult. Since patients and their
clinicians will not fully account for health care system
costs that fall on others when making treatment
choices, there is always a risk that providing guidance
that adds more granularity to subgroup-specific deci-
sions will not be adhered to and patients will receive
interventions that are not cost-effective.40 Assuming
that all transaction costs fall on the health budget,
this cost function can be expressed in terms of forgone
NHB using the cost-effectiveness threshold and com-
pared with the NHB gained due to further understand-
ing of heterogeneity (Figure 3).

In general, the implementation, monitoring, and
effective enforcement of a guideline will tend to

become more costly as finer stratification is made.
Therefore, the optimal level of stratification depends
on the marginal costs and benefits associated with
finer stratification. This might be expressed in terms
of the ratio between the incremental net benefits and
the additional transaction costs of 2 adjacent levels of
disaggregation (e.g., 1 and 2). If the ratio is lower than
1, then the next relevant comparison is levels 1 and 3.
If the ratio is greater than 1, then 2 subgroups are better
than 1, and the next comparison should be 2 against 3.

The key qualitative conclusion, however, is that
individualized care is not necessarily optimal. The
most appropriate level of stratification will depend
on context, such as the nature of the health care sys-
tem (e.g., ease of monitoring and enforcement possi-
bilities available to the decision maker), the nature
of the characteristics that can be used to stratify
(that must be easily observable and not easily manip-
ulated), and the type of incentives faced by patients
and their clinicians (e.g., third-party payment com-
bined with fee for service tends to increase the incen-
tives for moral hazard and the opportunity costs
associated with it).40

CASE STUDY: SUBGROUP ANALYSIS OF THE
COST-EFFECTIVENESS OF AN INVASIVE
TREATMENT FOR ACUTE CORONARY
SYNDROME

Background and Methods

The applicability of the framework and methods
described so far is demonstrated using a case study.
The efficiency frontier for subgroups, the EVIC, and
the static and dynamic value of heterogeneity were
estimated for a set of relevant specifications. The
example is a CEA that used data from the multicenter
trial RITA-3, which compared an intensive versus
a conservative strategy for the management of
patients with non–ST-elevation acute coronary syn-
drome.41 Briefly, the study used estimates derived
from the individual patient data (n = 1810) in the trial
to populate a decision analytic model. Parameters
used in the model (e.g., transition probabilities, costs,
and quality-of-life weights) were estimated from a set
of regression equations, which were specified condi-
tional to a set of individual-level covariates. The
study showed that invasive treatment had an incre-
mental cost-effectiveness ratio (ICER) of £21 943/
quality-adjusted life-year (QALY). Details of the
model and the equations have been reported
elsewhere.41,42
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The model was used to estimate the individual
NHB of an invasive and conservative intervention
using individual participant data from the random-
ized controlled trial. Between-individuals variation
could be characterized thanks to the fact that each
parameter of the model was estimated conditional
to the profile of each individual. The mean costs
and QALYs were averaged across individual esti-
mates to calculate the ICERs. For subgroup analysis,
the mean values were obtained as the average across
those patients who belong to one particular category
(e.g., diabetics). This provided the information to
estimate the EVIC, which can be calculated as the dif-
ference between the average of the maximum individ-
ual NHB and the maximum of the average NHB.17,43

Parameter uncertainty was propagated through the
model using probabilistic sensitivity analysis, which
entailed running 1000 random draws from the (set of)
parameter(s) characterizing each patient in the data
set. This corresponds to the uncertainty surrounding
the effect of the covariate on the estimation of the
parameter of interest (e.g., transition probability,
costs, or quality-of-life weights). This generated
a total of 1 810 000 realizations; that is 4 matrices of
1000 by 1810 (2 for expected costs and 2 for expected
QALYs of the invasive and conservative strategy,
respectively). The model was implemented in Micro-
soft Excel 2007, and macros were written in Visual
Basic (Microsoft Corporation, Redmond, WA). These
matrices, each in a different Excel sheet, provided the
data needed to implement the analytical framework.
The uncertainty relating to the overall mean results
was estimated by averaging each of the 1000

iterations across the 1810 individuals, producing
a unique vector of 1000 iterations.

Subgroup CEA considered all covariates used
in the regression equations in the original analysis.44

The potential for each covariate to inform
different decisions based on the cost-effectiveness
was also assessed. A logit model was developed
to examine the effect of each covariate on the proba-
bility that the new strategy is cost-effective, in
1 particular individual, at a cost-effectiveness
threshold of £20 000 per QALY. All covariates
were significantly associated with a greater proba-
bility of the invasive strategy’s being cost-effective
(Table 1).

Six covariates were selected based on clinical
plausibility, feasibility of implementation, ethical
constraints, and the probability of being informative
of cost-effectiveness according to the analysis pre-
sented in Table 1. Sex and age were excluded,
because decisions that differentiate reimbursement
based on those specifications are likely to be subject
to ethical criticism. The numerical variable of pulse
was excluded as a covariate because there is no con-
sensus about how to categorize it, and it would be
very difficult to implement alternative decisions
based on an arbitrary definition. A further subgroup
specification was defined based on a baseline risk
score, as used in the original analysis.44 The score
was estimated from the trial data to predict the pri-
mary outcome. This baseline risk score was also
used by the original cost-effectiveness study to
explore heterogeneity in subgroups.

Parameter uncertainty for subgroups was analyzed
using the same approach described for individuals,
but separately for each specific subgroup. These esti-
mates provided the basis to calculate the static and
dynamic values of heterogeneity. All of the results
shown in this case study were calculated for a thresh-
old (l) value of £20 000/QALY gained and expressed
for an estimated population of 556 723 patients. This
is based on an annual incidence of 59 756 patients,
a time horizon of 10 y, and a discount rate of 3.5%
per year.45

Results

Table 2 reports the results of this analysis. As in the
original study, the invasive strategy was found not to
be cost-effective, on average, at l = 20 000/QALY
(ICER = £21 960/QALY). The expected NHBs yielded
by the most cost-effective strategy (conservative strat-
egy) are 4 397 388 net-QALYs. If further research is
undertaken to resolve the current uncertainty, the

Table 1 Average Marginal Effects of 9 Covariates
on the Probability That the Invasive Strategy Is the
Most Cost-Effective at a Threshold of $20 000 per

QALY

dF/dx Standard Error z (P . z)

Diabetes 0.448 0.021 20.67 (P \ 0.001)
Previous myocardial

infarction
0.270 0.016 16.29 (P \ 0.001)

Smoker 0.359 0.015 23.89 (P \ 0.001)
ST depression 0.177 0.014 12.34 (P \ 0.001)
Left bundle

branch block
0.622 0.025 24.47 (P \ 0.001)

Severe angina –0.082 0.013 –6.31 (P \ 0.001)
Sex 0.192 0.012 14.90 (P \ 0.001)
Age 0.009 0.0006 15.15 (P \ 0.001)
Pulse 0.04 0.002 19.29 (P \ 0.001)

Note: Results are based on a multivariable logit model.
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expected NHBs are 4 408 143 net-QALYs. The EVPI
is, therefore, 10 755 net-QALYs (4 408 143 minus
4 397 388). The total population EVIC was estimated
at 14 349 net-QALYs. This corresponds to the differ-
ence between the expected maximum individual
NHBs (4 411 737 net-QALYs) and the maximum
expected NHBs (4 397 388 net-QALYs). The individ-
ualized analysis also provided evidence that the new
strategy should be implemented in 591 patients
(32.65%) in the sample if the cost-effectiveness deci-
sion rule were applied to each patient.

To identify those patients, subgroup analysis was
conducted for 6 binary specifications: diabetes melli-
tus (DM), previous myocardial infarction, left bundle
branch block, smoking, depression of the segment ST
in the electrocardiogram, and severe angina. They
were combined to explore specifications for 2, 4, 8,
16, and 64 subgroups. The expected NHB for current
and perfect information and the EVPI of those speci-
fications with the highest NHB for each level of disag-
gregation (specifications on the efficiency frontier)
are reported in Table 2. Using all (6) covariates to
characterize subgroup specification yielded 49
potential subgroups, since the remaining 15 sub-
groups were not represented in the sample. This anal-
ysis produced the highest expected NHBs (4 408 359
net-QALYs), which corresponds to a static value of
heterogeneity of 10 971 net-QALYs, accounting for
76.5% of the total EVIC (10 971/14 349). By way of
comparison, subgroup analysis based on patients’
baseline risk score was conducted in a similar way
to the original cost-effectiveness study.44 Five sub-
groups were defined (4 quartiles, with the upper
one divided in 2 eights). The expected NHBs were
4 407 074 net-QALYs, which is less than what is
obtained by using a guideline that combines all
covariates.

Figure 4 shows the efficiency frontier (maximum
expected NHB for those specifications with the

highest NHB) and the expected maximum NHB
(expected net health with perfect information) for
the same specifications on the efficiency frontier.
These results are consistent with the hypothesis
that the efficiency frontier for subgroup analysis
shows diminishing marginal returns in terms of
NHB; that is, as additional levels of stratification are
assessed, the marginal gains between adjacent levels
(e.g., 3 versus 2 or 5 versus 4 subgroups) are lower.
The figure also shows that the EVPI tends to decrease
with higher level of disaggregation. An additional
element presented in Figure 4 is the only subgroup
specification (DM and smoking) in which less NHB
is obtained with current information but more health
can be expected with perfect information. In this
case, the decision about adoption or rejection is not
affected (because it corresponds to the specification
on the efficiency frontier); however, if further
research is planned, this additional specification
might be taken into account since greater health is
expected when the uncertainty, conditional on that
specification, is resolved.

The transaction costs of implementing guidelines
for the different levels of disaggregation reported
here were not estimated directly. However, because
all of these covariates are part of routine clinical
assessment, their implementation as part of a guide-
line is not expected to be associated with high trans-
action costs. This is not the case for the baseline risk
score examined here, which has not been clinically
validated and, therefore, would be difficult to imple-
ment in practice. A guideline based on the analysis
that produced the highest NHB is presented in Figure
5. This combines all 6 covariates considered in this
analysis. It is based on 49 subgroups provided by
the study, which were grouped when they led to the
same decision. The diagrams illustrate that a potential
complex scenario can be simplified to a manageable
clinical guideline.

Table 2 NHBs under Current and Perfect Information, and EVPI for the Specifications on the Efficiency
Frontier for Subgroup Analysis

Specification NHB (Current Information) NHB (Perfect Information) EVPI

Average 4 397 388 4 408 143 10 755
DM (2 subgroups) 4 403 199 4 412 177 8978
DM and LBBB (4 subgroups) 4 404 566 4 412 841 8275
DM and PMI and smoking (8 subgroups) 4 405 519 4 414 587 9068
DM and PMI and smoking and LBBB (16 subgroups) 4 406 788 4 415 294 8505
All covariates (49 subgroups) 4 408 359 4 416 806 8447

Note: The estimates consider a cost-effectiveness threshold of £20 000/QALY gained. NHB is expressed as QALYs net of costs. DM = diabetes mellitus;
EVPI = expected value of perfect information; LBBB = left bundle branch block; NHB = net health benefit; PMI = previous myocardial infarction; QALY
= quality-adjusted life-years; all covariates (including DM, LBBB, PMI, smoking, depression of the segment ST, and severe angina).
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DISCUSSION

The article contributes to frameworks and analyses
to inform decisions regarding where health care
resources should be invested: providing early access
to new technologies, ensuring the findings of existing
(or commissioned) research are (or will be) imple-
mented, conducting research to provide additional
evidence about particular sources of uncertainty in
some (or all) subgroups, or conducting research that
can lead to a better understanding of variability in
effects. This type of research may be very different
from the type of evaluative or comparative effective-
ness research that commonly reduces uncertainty
only about estimates of treatment effect. For example,
it might include diagnostic procedures and technolo-
gies, pharmacogenetics, analysis of observational
data, and treatment selection as well as novel trial

designs that can reveal something of the joint distri-
bution of effects.40

Importantly, the framework also informs policy
makers about the assessments that need to be made
when considering finer stratification of access to
treatment or promoting individualized care and
patient choice. The key implication is that individu-
alized care is not necessarily optimal, and the most
appropriate level of stratification will depend on
context.

Ethical and equity constraints have also been men-
tioned in this article, in the context of their relevance
when defining subgroups. Although recommenda-
tions based on cost-effectiveness subgroup analysis
are supported by strong ethical principles (e.g., the
fair use of limited resources across different benefi-
ciaries of the same health care system), it should be
acknowledged that ethical and equity criteria
reflected in social values other than efficiency
should also be considered. It seems reasonable that
these criteria should be defined in advance, in meth-
ods guidelines or in the scoping phase of technology
assessment.

The article’s more specific contributions are, first,
to identify the best potential specifications for
resource allocation decisions by choosing those that
maximize NHBs for different levels of disaggregation.
The set of specifications for different levels of disag-
gregation represents the efficiency frontier for sub-
group analysis, which provides a tool for decisions
about adoption of technologies in different sub-
groups. Second, the value of heterogeneity has been
conceptualized as a bidimensional concept: the value
of making different recommendations across sub-
groups (static value) and the value of potential future
research conducted to resolve parameter uncertainty
for different levels of heterogeneity (dynamic value).
Third, it provides an application of these concepts to
a case study as an extension of the classical methods
used for cost-effectiveness, which makes this frame-
work feasible for a wide implementation.

Static value has been previously presented in the
literature15,17 and represents the health gained due
to understanding heterogeneity (i.e., observable char-
acteristics that explain differences between sub-
groups).18 Basu and Meltzer17 have previously
presented this static value in a framework in which
decisions can be made either with or without cost
internalization. Although our work has been focused
on the estimation of static value with cost internaliza-
tion (i.e., decisions take into account not only
account benefits but also opportunity costs), it is
expected that the static value will be lower without
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cost internalization, as presented by Basu and
Meltzer.17

In addition, EVIC for specific parameter(s) (EVICui)
has been proposed as an informative metric to imple-
ment a subgroup-based policy.43 The advantage of the
EVICui approach is that it can provide an estimate of
the static value for a set of several parameters. The
methods presented in this article add information to
EVICui, because they provide detailed information
about the decisions that should be made in specific
subgroups. Furthermore, this method provides a
feasible approach to estimate the static value and
the parameter uncertainty simultaneously, which
is another important complement to the EVIC
framework.

The dynamic value, on the other hand, is the addi-
tional value of resolving second-order uncertainty in
the future when we compare 2 adjacent levels of dis-
aggregation. This value might be associated with an
increase or decrease of EVPI. Because the value of
estimating conditional parameters is also observed
under current information, it is to be anticipated
that the difference between the expected maximum
NHB and the maximum expected NHB (i.e., EVPI) is
smaller than the average (or the previous level of dis-
aggregation). This was the case for the results shown

in the case study. In contrast, if a particular specifica-
tion contains limited information or the amount of
data (sample size) to examine its effect is too limited,
EVPI can increase. Of course, in the limit as more
sources of variability are observed, the value of addi-
tional evidence will fall. Indeed, if all sources of var-
iability could be observed, then there would be no
uncertainty or value of information.

Two issues that have not been addressed here are
the value of the relevant metrics for specific parame-
ters and the value of sampling information. Both cor-
respond to different dimensions of the research
space, and future extensions of this work might focus
on these elements. The expected value of perfect
information for parameters (EVPPI) provides infor-
mation about the value of resolving the uncertainty
of the effect of a given parameter ui on the net health
outcome, shedding lights on which parameters
should be in the focus of future research. A related
issue to clarify is that there is also uncertainty sur-
rounding the categorization of patients into alterative
subgroups (e.g., moderators of treatment effects). For
example, we may be certain that a given patient has
a genetic polymorphism (complete information),
but there is uncertainty about the effect of this charac-
teristic on the patient’s expected (net) health
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Figure 5 Guideline for the specification that combines 6 covariates based on the results of the case study.
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outcome. More realistically, there may be uncertainty
about both the effect of the polymorphism on the out-
come and whether the patient has the polymorphism
(since genetic tests are not 100% sensitive and spe-
cific). It is, therefore, important to emphasize that
EVICui assumes that the information at the individual
level is accurate (i.e., there is sensitivity and specificity
of 1 at the individual level).43 In principle, the uncer-
tainty around the value that a covariate takes can be
represented as another EVPPI for parameters relating
to the diagnostic test. The EVPPI calculation is compu-
tationally demanding for the population analysis and
may be even more difficult in the case of subgroups.

An important concept mentioned in this article is
that subgroup-specific parameters can be exchange-
able or nonexchangeable. One parameter (ui) is
exchangeable if the information used to estimate
ui|s conditional for one subgroup can be used to esti-
mate ui|(1-s) for another subgroup. The EVPI(S) esti-
mated as the weighted average of the EVPI for each
subgroup captures the uncertainty given by both
exchangeable and nonexchangeable parameters.
Therefore, EVPI(S) is the informative metric with
which to address the question of whether further
research should be conducted in order to update
a guideline for the entire population, considering
that different decisions can be made in different sub-
groups with future information. However, we might
be interested in conducting research in only 1 sub-
group. In this case, we should choose the one that
offers the highest population EVPI. If the goal were
to update the recommendation in only 1 subgroup,
the EVPIs is a good estimate of the dynamic value,
but if the aim is to synthesize the new information
and to update the guideline for the whole population,
the EVPIs estimate, as presented in this article, under-
estimates the real EVPIs for that subgroup, because it
does not take into account the value of (previous)
information provided by another subgroup.
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