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Forward and backward locomotion 
patterns in C. elegans generated 
by a connectome‑based model 
simulation
Kazuma Sakamoto1, Zu Soh  2*, Michiyo Suzuki  3, Yuichi Iino  4 & Toshio Tsuji  2*

Caenorhabditis elegans (C. elegans) can produce various motion patterns despite having only 69 motor 
neurons and 95 muscle cells. Previous studies successfully elucidate the connectome and role of the 
respective motor neuron classes related to movement. However, these models have not analyzed the 
distribution of the synaptic and gap connection weights. In this study, we examined whether a motor 
neuron and muscle network can generate oscillations for both forward and backward movement and 
analyzed the distribution of the trained synaptic and gap connection weights through a machine 
learning approach. This paper presents a connectome-based neural network model consisting of 
motor neurons of classes A, B, D, AS, and muscle, considering both synaptic and gap connections. 
A supervised learning method called backpropagation through time was adapted to train the 
connection parameters by feeding teacher data composed of the command neuron input and muscle 
cell activation. Simulation results confirmed that the motor neuron circuit could generate oscillations 
with different phase patterns corresponding to forward and backward movement, and could be 
switched at arbitrary times according to the binary inputs simulating the output of command neurons. 
Subsequently, we confirmed that the trained synaptic and gap connection weights followed a 
Boltzmann-type distribution. It should be noted that the proposed model can be trained to reproduce 
the activity patterns measured for an animal (HRB4 strain). Therefore, the supervised learning 
approach adopted in this study may allow further analysis of complex activity patterns associated 
with movements.

Caenorhabditis elegans (C. elegans), measuring approximately 1.0 mm in length and weighing 0.5 µg, is one of 
the most commonly studied multicellular organisms. Its body consists of approximately 1000 cells, including 
302 neurons composing the nervous system2. Despite this low number of neurons, the worm produces various 
movement patterns by adjusting its whole-body movement according to diverse environmental stimuli1–4. Thus, 
the worm is a suitable model animal for investigating the mechanism of motion pattern generation.

The neural circuit structure related to motion generation has been clarified to some extent by biological 
experiments. Chalfie et al. revealed the role of interneurons that control forward and backward movement 
through experiments involving laser irradiation1. The anatomical study carried out by White et al. success-
fully mapped the connectome of C. elegans5, and the updated data can be accessed through the web database 
WormAtlas6. Figure 1 shows the neuromuscular connectome related to movement based on the connectome 
database (accessible at https://​wormw​iring.​org/​series/). Further experimental studies revealed the functions of 
the neural circuit structure. For example, Wen et al.7 found that proprioceptive feedback is essential for motion 
generation, and Kawano et al.8 showed that gap junctions are important for motion generation.

Although the structure and role of neurons related to movement have been clarified by experimental methods, 
explicating the function of the neural circuit requires the measurement and interpretation of the activity of each 
neuron. However, performing these tasks using only a bottom-up experimental approach would be extremely 
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difficult. Therefore, a top-down approach using a mathematical model has been employed. Niebur and Erdös 
constructed a body dynamics model incorporating the central pattern generator to analyze the forward move-
ment of C. elegans9, and postulated that stretch receptors are important for the generation of movement. Bryden 
and Cohen analyzed the gait generation mechanism of forward movement using a body model incorporating 
the command neuron AVB and motor neurons10. An integrated neuromechanical model proposed by Cohen’s 
group10–12 is often used in recent research to study neuromuscular control. Olivares et al.13 presented a model 
that incorporates the connectome and verified the existence of both a central pattern generator in the ventral 
nerve cord and the role of command neurons in switching between forward and backward motion. Fieseler 
et al.14 found that suppression of proprioceptive feedback may contribute to the generation of an omega turn. 
Although various aspects of motion generation in C. elegans have been elucidated, these models did not analyze 
the distribution of the synaptic and gap connection strength. According to observation in the actual animal, it 
was found that the number of synapses follows a modified Boltzmann distribution15. This modified Boltzmann 
distribution indicates that the network is sparsely connected.

Figure 1.   Diagram of neuro-muscular connections illustrated based on the WormAtlas database6. Synaptic 
connections and gap junctions of whole muscle cells (total 95) and motor neurons VA, VD, VB, DA, DD, and 
DB. The green oval represents the body-wall muscles, the left side of the figure is the anterior direction, the 
right side is the posterior direction, and, starting from the upper row, it shows the left dorsal side, right dorsal 
side, right ventral side, and left ventral side. The circles represent motor neurons, and the difference in color 
corresponds to the types of motor neurons, as shown in the legend. Solid lines represent synaptic connections, 
and dotted lines represent gap junctions.
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This study examines whether the motor neuron and muscle network could generate oscillation patterns for 
both forward and backward movement, and analyzes the distribution of the synapse and gap connection weights. 
The proposed model consists of motor neurons of classes A, B, D, AS, and muscle. Both gap junctions and synap-
tic connections are included based on the connectome data. The input to the motor neurons from the command 
neurons is modeled as a binary input based on their role in evoking forward and backward movements1,8, in 
addition to the generated teacher data from measured muscle activities of a strain expressing calcium indicator 
in the body-wall muscle (HRB4). The connection parameters were then trained using a supervised algorithm. 
Finally, the trained model was driven by the untrained input of the command neuron to examine its generaliz-
ability, and the fit of trained weights to the modified Boltzmann distribution was tested.

Materials and methods
Assumptions.  Figure 1 shows the connection diagram of the model based on the connectome described in 
the nematode database WormAtlas6. In particular, the model consists of seven types of 69 motor neurons that 
receive five pairs of ten binary inputs, and four rows of 95 muscles5,6,16. The neurons and muscles are connected 
based on the adjacency matrix of the synaptic and gap connections accessible from the following https://​wormw​
iring.​org/​pages/​adjac​ency.​html6.

We considered the inputs to motor neurons from command neurons of PVCL/R and AVBL/R (responsible 
for forward movement), in addition to AVAL/R, AVDL/R, and AVEL/R (responsible for backward movement)1. 
We assumed that these inputs have no specific polarity, and do not include an oscillating component to generate 
periodic muscle contractions17–20.

Motor neurons are comprised of DB, DA, DD, VB, VD, VA, and AS (indicated by circles in Fig. 1). Cholinergic 
neurons, DB, DA, VB, VA, and AS were assumed to excite VD, DD, and muscles. GABAergic neurons VD and 
DD then inhibit the cholinergic neurons and muscles. Although the polarities of the synaptic connections were 
determined based on the description in a previous study5,6, they have not been fully confirmed experimentally. 
Therefore, it should be noted that these connections have the potential to be either excitatory or inhibitory in 
an actual animal.

Proprioceptive feedback also plays an important role in generating undulatory movements, and the undif-
ferentiated processes extending from A- and B-class motor neurons are responsible for proprioceptive feedback7. 
Because the model does not contain the body in order to focus on the neuromuscular system, we connected 
several muscles to an anterior A-class neuron and a posterior B-class neuron to represent proprioceptive feed-
back, assuming that muscle activity correlates with body curvature. Here, we did not impose the polarities of 
the proprioceptive feedback connections.

In Fig. 1, the C. elegans muscle indicated by the ellipse is composed of 95 cells arranged in four rows, and 
the ventral and dorsal muscle cells alternately contract and relax to produce a smooth crawling motion. For 
simplification, we assumed the simultaneous activation in each left and right muscle pair, considering their 
two-dimensional movement on the agar. We trained the model using backpropagation through time (BPTT), 
a supervised algorithm, to generate muscle activity patterns using two types of teacher data: a mathematically 
defined sinusoidal pattern, and an activity pattern measured from a fluorescence strain (HBR4).

Mathematical expression of the model.  The model considers inputs from forward command neurons 
(PVCL/R, AVBL/R) and backward command neurons (AVAL/R, AVBL/R, AVEL/R), which are modeled to out-
put control signals of 1 or 0. An output of 1 represents the activated state, and 0 represents the resting state. As 
shown in the following equations, the forward command neuron La(t) outputs 1 and the backward command 
neuron Lc(t) outputs 0 during a preset time [T2v−1,T2v) (v = 1, 2, . . . , o) to command forward movement. This 
output is reversed during [T2v ,T2v+1) to command backward movement: 

where La(t) is the output of the forward command neurons (PVCL/R, AVBL/R) and Lc(t) is the output of the 
backward command neurons (AVAL/R, AVBL/R, AVEL/R). The index a = 1, 2, 3, 4 corresponds to a total of 
four forward command neurons, and c = 5, 6, …, 10 corresponds to a total of six backward command neurons.

In the motor neurons, a muscle contraction pattern is generated based on the binary input from the command 
neurons. The motor neuron is defined by the following equations:

(1)La(t) =

{

1 (T2v−1 ≤ t < T2v)
0 (T2v ≤ t < T2v+1)

,

(2)Lc(t) =

{
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,
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where xNi (t) and xMu (t) are currents flowing into motor neuron i and muscle u at time t, respectively; yNi (t) and 
yMu (t) are membrane potentials of motor neurons and muscles, respectively; ωl0

i  is the bias, τi is the first-order lag 
element, and Fs is the sampling frequency configured in the simulation procedure. ωNN

ij  , ωMN
iu  , ωIN

ip  are weights 
representing the synaptic connection strength among motor neurons, that from muscle to motor neuron, and that 
from the command neuron to motor neuron, respectively.gNNij = gNNji , gMN

iu = gMN
ui  are weights corresponding 

to the conductance of the gap junctions. J = 69 is the number of motor neurons, P = 10 is the number of command 
neurons, and U = 95 is the number of muscle cells. Ip,i(t) represents the proprioceptive feedback to the A- and 
B-class motor neurons determined by the following equation.

Here, wMN
i{3(i+1)−u} denotes the connection strength, 3(i + 1)− u and 3(i + 1)+ u are the indexes of a muscle, 

and we set the proprioceptive feedback length as S = 7 muscles. For the motor neurons located at the head and 
tail, S was set to the number of the existing anterior and posterior muscles. In this configuration, an A- and 
B-class neuron receives the outputs from up to seven anterior and posterior muscles.

When the muscles receive the output from the motor neurons, they output the muscle activation level accord-
ing to the following equations:

where ωNM
uj  is a weight representing the synaptic connection strength from the motor neuron to muscle, and 

gMM
uk  is a weight representing the conductance of the gap junctions between the muscle, K = 95 is the number 

of muscle cells.
According to the connectome data6, the absence of connections was represented by restricting the weights 

of the synapse connection and gap junction to 0 during the following training process.

Training algorithm.  The parameters of the neural network model (first-order lag element, synaptic connec-
tions, and gap junctions) are trained using the BPTT algorithm21. The evaluation function is defined as:

where du(t) is the teacher data, yMu (t) is the activity level of the muscles, and T is the maximum step number of 
the simulation time. BPTT updates each parameter in a particular direction to minimize the evaluation function, 
which is determined by partial differentiation of the evaluation function for the corresponding parameter. In 
addition, the following constraint condition is set for each parameter based on the type of connections.

・The synaptic connection strengths from the excitatory neurons DA ( i = 1, 2, . . . , 8 ), DB ( i = 9, 10, . . . , 16 ), 
VA ( i = 23, 24, . . . , 34 ), VB ( i = 35, 36, . . . , 45 ), and AS ( i = 59, 60, . . . , 69 ) are constrained to positive 
values.

The synaptic connection strengths from inhibitory neurons DD ( i = 17, 18, . . . , 22 ) and VD 
( i = 46, 47, . . . , 58 ) are constrained to negative values.

・The first-order lag elements τi,τu are constrained to positive values ( τi ≥ 0).
The teacher data du(t) used for parameter adjustment are generated based on the motion analysis of C. elegans. 

As shown in Fig. 2, we tracked seven points on the body of C. elegans while performing forward movement and 
plotted the time change of the angles between the two straight lines connecting adjacent points. In the figure, each 
angle shows a sinusoidal-like waveform that is transmitted from the head to the tail. Because the movement of C. 
elegans is generated by alternating activities of the muscles, the activity level is considered to have similar char-
acteristics. Therefore, we express the teacher data for the activity level of the muscles according to Eqs. (9)–(11).

In the first period of forward movement (T1 ≤ t < T2) , when the index q = 1, 2, …, 24 is sequentially defined 
for the muscles from the head to the tail, the teacher data for the left dorsal (u = 1, 2, …, 24) and the right dorsal 
(u = 25, 26, …, 48) muscles are given by the following equation:
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where phase φu(t),
(

φu(0) = −
πq
12

)

 is changed when switching between forward and backward movement at a 
time Tv(v > 1) as defined below.

Similarly, the left and right ventral muscle (u = 49, 50, . . . , 72, 73, 74, . . . , 95) are assumed to be active in 
opposite phases to the dorsal muscle cells, and are given by the following equation:

Based on measured data, the angular frequency is set to ω = 1.6 π.
Figure 3 shows the procedure of preparing the second teacher dataset. For du(t) of the second teacher data-

set, the muscle activities were measured using a strain expressing calcium indicator in the body-wall muscle 
(HBR4: goeIs3[pmyo-3::GCamP3.35::unc-54-3’ utr, unc-119(+)]V), and the model was trained using the measured 
fluorescence rate. The specification of the fluorescence microscope system was same as that described in the 
literature22 and the locomotion was video-recorded based on procedures3 previously established for wild-type 
animals. The recorded video images were then trimmed to extract the duration of one cycle of forward movement, 
followed by one cycle of backward movement. As shown in Fig. 3, a video analysis software (WormLab, MBF 
Bioscience, Williston, USA) was used to track the body outline of the animal, and then the body was divided 
into 24 equal segments from the head to the tail. The fluorescence intensities at the dorsal (k = d) and ventral 
(k = v) sides of the divided i-th segment Fki,t were measured in the ventral and dorsal areas of each segment, and 
converted to fluorescence rates 

(

Rk
i,t =

(

Fki,t − Fk0,i
)

/Fk0,i
)

, where Fk0,i is the minimum fluorescence intensity at 
the k side of the i-th segment. Rk

i,t was concatenated to generate several cycles of forward and backward move-
ment as shown in Fig. 4, and fitted to multiple sinusoidal functions, as expressed by the following equation, to 
smooth the measured data:

where n = 8 is the number of the functions, t is the time, aui , ωui , and φui are the amplitude, frequency, and phase 
of the i-th sinusoidal function, respectively. The fitted data were then concatenated to generate three cycles of 

(9)du(t) = sin (ωt + φu(t)) (u = 1, 2, . . . , 24, 25, 26, . . . , 48),

(10)φu(t) = π − 2ωTv − φu(Tv−1),

(11)du(t) = sin (ωt − π + φu(t)) (u = 49, 50, . . . , 72, 73, 74, . . . , 95).

(12)du(t) =

n
∑

i=1

auisin(ωuit + φui),

Figure 2.   Motion analysis of C. elegans. (A) Motion analysis capture of C. elegans using the image analysis 
software Wriggle tracker (Library Inc., Tokyo). (B) Points tracked by the image analysis software. (C) Temporal 
change in the angles between the straight lines connecting adjacent points.
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forward and backward movement. The value of fluorescence intensity was normalized to a range [0.25, 0.75], 
and used as the teacher data to train the model.

Simulation conditions
The teacher data for training was configured as follows: the simulation time was set to T = 30 s, and the sampling 
frequency was set to Fs = 0.05 s, the time for switching between forward and backward movement was set to 
T1 = 0.0, T2 = 8.7, T3 = 17.6, T4 = 22.8, T5 = 26.6. The initial value of each parameter was set at random according 
to a uniform distribution within the following range.

The excitatory synaptic connection ωNN
ij , (i = 1−8, 9−16, 23−34, 35−45, −69) : [0, 1]

The inhibitory synaptic connection ωNN
ij , (i = 17−22, 46−58) : [− 1, 0]

The synaptic connections ωMN
iu , ωIN

ip , ωl0
i , ωl1

u  : [− 1, 1].

The gap junctions gNNij , gMN
iu , gMM

uk  : [0, 1].
The first-order lag elements τi , τu : [0, 0.01].
The iterative adjustment of parameters terminates when the evaluation function (Eq. (8)) satisfies E ≤ 0.005.
Figure 4 A illustrates the teacher data generated using Eqs. (1), (2), and (9), and B shows the teacher data 

generated using the measured muscle activity. The same teacher data were used to train the ipsilateral side, assum-
ing movement on the 2D agar plane. The left part of Fig. 4 shows the binary input from the command neurons. 
Color maps show the teacher data of the muscles. This figure shows that during forward movement, waves are 
transmitted from the head to the tail with some phase delay. Conversely, the waves are transmitted from the tail 
to the head during the period of backward movement. The phase of each wave is reversed at the time when the 
forward and backward movement switches.

ωNM
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(
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average fluorescence intensities were extracted at the dorsal and ventral sides of the i-th segment. (B) Procedure 
of teacher data preparation. The left shows the block diagram of data preparation, and the right shows the 
corresponding images.



7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:13737  | https://doi.org/10.1038/s41598-021-92690-2

www.nature.com/scientificreports/

Results
Training of model parameters.  Figure 5 illustrates the convergence of the residual errors defined by the 
evaluation function (Eq. (8)) over ten training trials using the teacher data generated from Eqs. (9)–(11) and 
another ten training trials using teacher data generated from the measured muscle activity. By adjusting the 
model parameters, the evaluation function decreased as the learning iterations increased, and finally reached an 
error tolerance of E ≤ 0.005, although the convergence speeds differ depending on the random initial parameters.

Figure 6 shows the residual errors of pre-training, post-training, and verification trials. Significant differ-
ences (p < 0.001) between pre-training and post-training, and pre-training and verification trials indicate that 
the model was successfully trained. Although significant differences were also found between the post-training 
and verification trials, we confirmed that the model could generate the oscillation of muscle activity and switch 
between oscillation patterns for forward and backward movements, as described below.

Muscle activity generated by the trained model.  Figure 7 shows examples of muscle activities gen-
erated by feeding trained input to the model. The two sample data shown in Fig. 7 are those with the median 
values of residual errors among the ten trials of training, respectively, for the two types of teacher data. The figure 
confirms that the muscle activity patterns corresponding to forward and backward movement are successfully 
generated based on the inputs from the command neurons. The muscle activity propagates from head to tail 
when the forward command neurons activate, and it propagates from tail to head when the backward command 
neurons activate. However, the model failed to generate activities in neck muscles, as shown in the output of the 
four–eight muscles from the head in each quadrant. This is because the model focuses on the ventral cord motor 
neurons and does not include the nerve ring motor neurons. The nerve ring is a neuropile involved in processing 
various information related to various behaviors in addition to forward and backward movement5. Four muscles 
from the head in each quadrant are innervated by the nerve ring motor neurons, and the next four muscles each 
in the head are innervated by both the body-wall motor neurons and head motor neurons23. This result indicates 
that the gap junctions between the muscles cannot transmit the activity pattern to the four muscles in the head, 
and these muscle cells are independently controlled by the nerve ring motor neurons.

In the verification simulation, we inputted command neuron signals to evoke switching between forward and 
backward movement at different points in time from those in the teacher data. The switching times are T1 = 0.0, 
T2 = 4.7, T3 = 7.3, T4 = 17.25, T5 = 22.5, and T6 = 28 s for the model trained by the teacher data generated by Eqs. 
(9)–(11), and T1 = 0.0, T2 = 10.1 s for the model trained by the teacher data generated from the measured muscle 
activity. The outputs of the muscles are shown in Fig. 8. Again, the two sample data shown in Fig. 8 are those 
with the median values of residual errors among the ten training trials for the two types of teacher data. The 
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Figure 4.   Teacher data for muscles. (A) Teacher data generated by Eqs. (9)–(11). (B) Teacher data generated 
using the measured muscle activity. The red arrows represent the time duration of forward movement, and the 
blue arrows represent the time duration of backward movement. The output switches between forward and 
backward movement at the predetermined time. The x-axis represents the muscle cell number, indexed from 
head to tail, the y-axis represents time, and the color represents the teacher data for the muscle activation level. 
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results confirm that muscle activity patterns corresponding to forward and backward movement are successfully 
generated, as with the training data. This result indicates the generalizability of the time of switching between 
the forward and backward movements.

Figure 5.   Learning curve. The values of evaluation function converged through the BPTT learning algorithm 
for all five trials. The dotted red line represents the error tolerance. (A) Learning curve obtained from ten 
training trials using the teacher data generated from Eqs. (9)–(11). (B) Learning curve obtained from ten 
training trials using the teacher data generated from the measured muscle activity.

Figure 6.   Residual errors. (A) and (B) show the residual errors (see Eq. (8)) of the models trained by artificial 
teacher signals and measured muscle activity, respectively. Multiple comparisons with Bonferroni adjustment 
illustrate significant differences between the residual errors of the pre-training and post-training, and pre-
training and verification trials (p < 0.001).
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Distribution of synaptic and conductance weights.  Finally, we analyzed the trained parameters, 
which are synaptic and conductance weights. An analysis by Snider15 showed that the number of synapses in the 
actual animal follows the modified Boltzmann distribution given by the following equation:

(13)p(w) = A
e−β(a|w|)
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Figure 7.   Muscle activities generated by the trained input. The phases of the muscle activity are reversed as the 
inputs of the command neurons change. The four muscles from the head in each quadrant, controlled by the 
nerve ring, fail to generate oscillation patterns. In (A), the model is trained by the teacher data generated from 
Eqs. (9)–(11). In (B), the model is trained by the teacher data generated from the measured muscle activity.
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where A and a are the scaling factors, β is the power index, and n is the total number of synaptic connections. We 
adopted this equation to fit the strength distribution of the synaptic and conductance weights. Figure 9 plots the 
distribution of the trained synaptic and conductance weights for each of the 10 training trials. The frequencies of 
weights in all training trials showed a similar trend of decreasing exponentially with the weight strength. Figure 9 
also shows the fitted line of the modified Boltzmann distribution to the mean frequency. The distribution of the 
trained synaptic weights and conductance weights fitted the modified Boltzmann distribution well, with coef-
ficients of determination R2 = 0.972 ( p = 1.04× 10−25 ) and R2 = 0.993 ( p = 7.23× 10−17 ), respectively. This 
result indicates the possibility that not only the number of synapses but also the synaptic strength could follow 
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Figure 8.   Muscle activities generated by the verification input. (A) and (B) show examples of the muscle 
activity generated by the trained models in a verification trial, which yielded the median value of the residual 
errors. The activity patterns corresponding to the forward and backward movements are successfully generated 
by switching the phase delay, as with the training data.
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the modified Boltzmann distribution. In addition, Fig. 9(b) predicts that the conductance of the gap connection 
could also follow the modified Boltzmann distribution.

Theoretically, synapse connections following the modified Boltzmann distribution form a candidate network 
structures that can maximize the information storage15. In this study, the neural network model was trained to 
store the dynamic patterns corresponding to forward and backward motion using the BPTT algorithm, thus, as 
a consequence, the weights may have followed a modified Boltzmann distribution.

Discussion
This study formulated a neural network model consisting of 69 motor neurons and 95 muscle cells based on 
the connectome of C. elegans. After the parameters of the model were adjusted using machine learning, it was 
shown that the motor neurons could generate the activity patterns of the muscle cells corresponding to forward 
and backward movement based on the input from the command neurons modeled as binary values. However, 
the four-eight muscles in the head failed to generate oscillation patterns. This result suggests that the gap junc-
tion between muscle cells cannot transmit activity to generate head motion, and the nerve ring motor neuron is 
necessary to control the activity of these muscles.

Previous models assigned the values of parameters by various means11–14,24–28, such as manually10 or by using 
an evolutional algorithm13,26. However, the distribution of the assigned parameter values was not analyzed. In 
this study, we trained the proposed model using the BPTT algorithm. We found that the modified Boltzmann 
distribution was well fitted to the distribution of the trained parameters (synaptic and conductance weights). This 
result predicts that the motor neuron and muscle network downstream of the command neurons could form a 
sparse network in terms of connection strength, which is advantageous to code various movement patterns15.

While the previous models reproduced the frequency and wavelength of muscle activities, the proposed model 
reproduced the fluorescence rates measured from the body wall muscles using a fluorescence strain (HBR4). 
Therefore, the supervised learning approach taken in this study may allow further analysis of complex activity 
patterns associated with movements because it provides a framework to reproduce the measured muscle activity 
patterns of an actual animal.

The proposed model does not consider body dynamics, which renders it unable to explore the ability of gait 
adaptation through proprioceptive feedback. However, these aspects of motion have already been extensively 
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analyzed in previous models11–14,24–28. Incorporating body dynamics models11,12,28–32 is certainly required for the 
further analysis of complex movements such as an omega turn.

Conclusion
In this paper, we presented a connectome-based neuromuscular network model of C. elgans. The model is trained 
to generate muscle oscillation patterns for both backward and forward movements using a supervised learning 
approach. The main finding of this study is that a motor neuron and muscle network with a sparse connection 
strength can generate the oscillatory patterns. In addition, the model can be trained to generate measured muscle 
activity patterns. Therefore, the supervised learning approach taken in this study may allow further analysis of 
complex activity patterns associated with movements.
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