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Abstract: The peripheral (axonal) neuropathy associated with repeated exposure to aliphatic and
aromatic solvents that form protein-reactive γ-diketones shares some clinical and neuropathological
features with certain metabolic neuropathies, including type-II diabetic neuropathy and uremic
neuropathy, and with the largely sub-clinical nerve damage associated with old age. These conditions
may be linked by metabolites that adduct and cross-link neuroproteins required for the maintenance
of axonal transport and nerve fiber integrity in the peripheral and central nervous system.

Keywords: γ-diketone; amino acid pyrrolation; advanced glycation end product; protein cross-
linking; central-peripheral distal axonopathy; diabetic neuropathy; uremic neuropathy; aging

1. Introduction

This paper discusses the presence of neurotoxic γ-diketones in normal subjects and
in peripheral neuropathies resulting from overexposure to certain hydrocarbon solvents.
Also considered is the possibility that γ-diketones of endogenous origin contribute to the
etiology and pathogenesis of certain metabolic neuropathies, including type-II diabetic
neuropathy and uremic neuropathy, and to the largely subclinical peripheral nerve changes
that accumulate with age.

2. γ-Diketone Neuropathy
2.1. Clinical Picture

Repeated occupational exposure to organic solvent mixtures containing n-hexane
or 2-hexanone, the common metabolite of which is the γ-diketone 2,5-hexanedione, is
an established cause of sensory or sensory-motor neuropathy that has been reported in
the printing, textile, furniture, auto, pharmaceutical, and shoemaking industries [1–16].
Mainly motor neuropathy also results from deliberate inhalation of n-hexane fumes [17–22].
Sensory abnormalities (pain, touch, vibration, temperature discrimination) and diminished
deep tendon reflexes and progressive muscle weakness affect the distal extremities. Elec-
trophysiological studies demonstrate prolongation of distal latencies, slowing of nerve
conduction velocities, and conduction block with temporal dispersion in subjects with
severe neuropathy. Sural nerve biopsy reveals 10 nm neurofilament-filled focal giant axonal
swellings, secondary demyelination, and loss of large-diameter myelinated fibers. The
evolution of symptoms and signs continues for a few weeks/months after exposure ceases,
a phenomenon known as coasting, and this is followed by a slow recovery over subsequent
months/years [17]. Severely affected patients may develop sequelae of muscle wasting,
foot drop, and spasticity [12].
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2.2. Experimental Animal Neuropathy

The human disease is readily and accurately reproduced in animals (rats, cats) treated
systemically with aliphatic C6 compounds that form γ-diketone metabolites [23–25]. In rats
treated subcutaneously with 2,5-hexanedione, the onset of clinical signs is insidious and
occurs symmetrically in the hindlimbs. Nerve fiber degeneration is prominent in the distal
tibial nerve and its branches, with few changes in more proximal regions. Lumbosacral
motor neurons and dorsal root ganglion cells appear histologically normal. Myelinated
tibial nerve fibers show focal distal axonal swellings, often on the proximal sides of nodes of
Ranvier, secondary demyelination and remyelination, and distal atrophy. Axonal swellings
of myelinated and unmyelinated axons contain excessive numbers of 10 nm neurofilaments.
Distal regions with advanced nerve fiber degeneration are associated with endoneurial
and sub-perineurial edema [26–28]. In the spinal cord/medulla oblongata, swollen axons
are most prominent in the gracile nucleus, although in animals with early neuropathy,
similar pathological changes are evident in the cuneate nucleus and in a superficial ven-
trolateral zone corresponding to dorsal and ventral spinocerebellar tracts. These findings
demonstrate that γ-diketone neuropathy is a central-peripheral distal axonopathy [24,29].

A similar peripheral neuropathy is seen in rats treated repeatedly with 1,2-diethylben
zene or 1,2,4-triethylbenzene but not in animals comparably exposed to 1,3-diethylbenzene
or 1,3,5-triethylbenzene, both of which cannot form a γ-diketone metabolite [30–32]. While
aromatic as well as aliphatic compounds that form γ-diketones elicit experimental neuropa-
thy (Figure 1), the neurotoxic potency and corresponding location of nerve fiber pathology
vary substantially [33]. For example, 1,2-diacetylbenzene and 3,4-dimethyl-2,5-hexanedione
have a higher neurotoxic potency than 2,5-hexanedione, and neuropathological changes
in the former occur in proximal (intraspinal and spinal roots) instead of distal regions of
myelinated axons [33–36].

Figure 1. Interconvertibility of aliphatic and aromatic γ-diketones and their respective reactions with amino groups to
form pyrrole (A) and isoindolium (B) adducts, respectively. Structures 1, 2, and 4 are experimentally observed and 5–8 are
hypothesized [37]. Rats treated with 1,2-diacetylbenzene (1,2-DAB) develop a bluish coloration whereas 2,5-hexanedione
(2,5-HD)-treated animals do not. This can be explained by the extended aromatic system in the case of 8 compared to 5 [37].
Even though 2,5-HD-derived 2 has high structural similarities with 1,2-DAB-derived 4 and 7, the reaction of 2,5-HD-induced
3 will not hypothetically proceed to 8 in vivo. From Trimpin, S.; Hsu, V.L.; Spencer, P.S.; Deinzer, M.L. Time-dependent
2,5-hexanedione adduction of lysine residues to isoindolium cation. Unpublished [38].
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2.3. Neurotoxic Properties of γ-Diketones

There is solid evidence that repeated exposure to aliphatic and aromatic compounds
that generate γ-diketone metabolites induces distal symmetrical axonal neuropathy in
humans and animals [33,39]. Aliphatic compounds are exemplified by straight-chain C6
solvents (such as n-hexane and 2-hexanone) that are metabolized to 2,5-hexanedione. This
amine-reactive pyrrole-generating chromogenic (orange) γ-diketone is responsible for the
induction of peripheral neuropathy in those repeatedly exposed to toxic levels of n-hexane-
or 2-hexanone-containing solvents [40–43]. An important target of 2,5-hexanedione is the
epsilon amino group of lysine residues in proteins, including neuroproteins. The pyrrole-
forming, protein-crosslinking, and associated neurotoxic properties of 2,5-hexanedione are
markedly enhanced by the addition of methyl groups at C3 and C4 [35,44,45], probably
because molecular rotation is reduced, thereby promoting the critical γ-diketo-amine
reaction. Even more theoretically rigid aromatic compounds, such as the potent neurotoxic
solvent 1,2-diacetylbenzene, also react with proteins, generate a tissue chromogen (bluish),
and precipitate proximal axonal neuropathy in laboratory animals [34,36,37,46]. Rodents
treated systemically with 1,2-diacetylbenzene develop blue tissue discoloration prior to
the development of hindlimb weakness. By contrast, animals treated with an aromatic
isomer (1,3-diacetylbenzene) or aliphatic isomer (2,4-hexanedione) unable to react with
amino groups of proteins to form pyrroles, fail to develop tissue discoloration or axonal
neuropathy [36,47]. Thus, the protein reactivity, chromogenicity, and neurotoxicity of
γ-diketones are directly related properties (Figure 2).

Figure 2. Reaction of 2,5-hexanedione (2,5-HD, (A)) and 1,2-diacetylbenzene (1,2-DAB, (B)) with
amino residues in proteins to form dimethylpyrrole 1 and dimethyl isoindole products 4, respec-
tively, that form colored oxidized polymers. More potent than 2,5-hexanedione is 3,4-dimethyl-
2,5-hexanedione, with increased potential for pyrrole formation and protein crosslinking [35]; by
contrast, 3,3-dimethyl-2,5-hexanedione, which cannot form a pyrrole, is unable to induce axonal
neuropathy. Redrawn from Spencer, P.S. Neuroprotein targets of gamma-diketone metabolites of
aliphatic and aromatic solvents that induce central-peripheral axonopathy. Toxicol. Pathol. 2020, 48,
411–421, doi:10.1177/0192623320910960 [33]. By permission of Sage Publishing, 2021.
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2.4. γ-Diketone Protein Adduction and Cross-Linking

Whereas 1,3-diacetylbenzene was non-chromogenic and non-neurotoxic, the widespread
bluish discoloration of tissues of rats treated systemically with 1,2-diacetylbenzene indi-
cated that the γ-diketone reacted with amino groups of proteins globally [46]. Measurement
of chromogenic product in vitro showed that, of 22 tested amino acids, 1,2-diacetylbenzene
was most reactive with L-lysine, glycine, γ-aminobutyric acid, and ornithine, a non-protein
amino acid and higher homolog of L-lysine. L-Cysteine was among the least reactive with
1,2-diacetylbenzene, and 1,3-diacetylbenzene failed to react with any of the amino acids or
with ornithine [46].

The protein reactivity of 1,2-diacetylbenzene and formation of adducts with high
molecular weights correlated with the lysine content of neuronal proteins. Both in vivo
and in vitro, rat neurofilament (NF) heavy chain (NF-H, 13–17% lysine) and NF-M (11–15%
lysine) formed polymers more readily than either NF-L (6-7% lysine) or β-tubulin (3–4%
lysine). Other 1,2-DAB protein targets involved in anterograde axonal transport included
the rat motor proteins kinesin (8–12%), dynein (8% lysine) and microtubule-associated tau
(7–8% lysine), and the rabbit glycolytic enzymes glyceraldehyde phosphate dehydrogenase
(8% lysine) and lactate dehydrogenase (7–8% lysine) [46,48]. In vivo, 1,2-diacetylbenzene
affected motor and cytoskeletal proteins in the sciatic nerve to a greater degree than in the
spinal cord. The motor proteins responsible for anterograde axonal transport (kinesin) and
retrograde transport (dynein), cytoskeletal protein NF-M, which is slowly transported from
proximal to distal regions, and the microtubule-associated protein tau, were differentially
impacted by 1,2-diacetylbenzene.

Neuroprotein changes in the lumbosacral spinal cord of rodents with 2,5-hexanedione
axonopathy were comparable to those in animals with aromatic γ-diketone axonopathy
induced by 1,2-diacetylbenzene [49,50]. Thirty-four proteins were markedly modified by
both 2,5-hexanedione and 1,2-acetylbenzene, including neurofilament triplet L, gelsolin,
protein disulfide isomerase, glutathione S-transferase, nicotinamide adenine dinucleotide
(reduced) dehydrogenase 1α, pyruvate kinase, and fatty acid synthase. Proteins involved in
energy metabolism were mostly increased, whereas those involved in cytoskeletal integrity
or in redox and protein-folding mechanisms were reduced.

Proteomic studies showed that 1,2-diacetylbenzene, but not 1,3-diacetylbenzene, also
reacted with mouse brain stathmin (15.5% lysine), which binds to tubulin and inhibits mi-
crotubule assembly [33,51]. Stathmin and proteins involved in stathmin regulation showed
increased abundance in C57 mouse brain one week following single intraperitoneal treat-
ment with 50 mg/kg 1,2-diacetylbenzene. At this time, marked 1,2-diacetylbenzene-specific
changes were noted in the relative abundance of brain proteins involved in microtubule
interaction (notably lysine-rich actin α−2) and energy metabolism, especially malate de-
hydrogenase [33], which also participates in gluconeogenesis. Noteworthy is that aged
stathmin knock-out mice developed axonal degeneration and secondary demyelination [52]
comparable with the neuropathology induced by blue-chromogenic acetyl-ethyltetramethyl
tetralin [53]. Additionally, lysine-acetylated actin interacts with cyclase-associated protein
to form an inhibitor of inverted formin 2, dominant missense mutations of which are linked
with Charcot–Marie–Tooth disease, an inherited human axonal neuropathy associated
specifically with glycolysis- and gluconeogenesis-related processes [54,55].

The vulnerability of proteins to γ-diketone attack is focused on their differential
content of L-lysine, the epsilon-amino acid group of which is believed to be its primary
vulnerability. 2,5-Hexanedione and 1,2-diacetylbenzene undergo selective Paal–Knorr
reactions with lysine in axonal cytoskeleton proteins to form 2,5-dimethylpyrrole and 1,2-
diacetylisoindole adducts, respectively [33,56] (Figures 2 and 3). These adducts undergo
progressive oxidative protein crosslinking, which can be inter- or intramolecular, depending
on the adduct site [57,58]. Adduct oxidation is minimized in the absence of air or the
presence of antioxidants [59,60], and hyperbaric oxygen accelerates the neurotoxicity of
2,5-hexanedione [61].
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Figure 3. The C6 solvents n-hexane and methyl n-butyl ketone (2-hexanone) are converted by
ω-1 hydroxylation and oxidation to 2,5-hexanedione, which reacts with lysyl ε-amines of pro-
teins to form pyrrolated proteins that undergo intra- and intermolecular cross-linking reactions,
including dimer formation. Redrawn from Boekelheide, K.; Fleming, S.L.; Allio, T.; Embree-
Ku, M.E.; Hall, S.J.; Johnson, K.J.; Kwon, E.J.; Patel, S.R.; Rasoulpour, R.J.; Schoenfeld, H.A.;
et al. 2,5-hexanedione-induced testicular injury. Annu. Rev. Pharm. Toxicol. 2003, 43, 125–147,
doi:10.1146/annurev.pharmtox.43.100901.135930 [62]. By permission of Annual Reviews.

Rats treated orally with 2,5-hexanedione develop pyrrole adducts in hair, urine and
serum in a dose–response relationship [63], and serum and urine pyrrole levels are corre-
lated with time to onset of neuropathy induced by n-hexane administered to rats repeatedly
by gavage [64]. The highest level of 2,5-hexanedione is found in urine and the lowest in
the sciatic nerve, while the highest level of pyrrole adducts occurs in the liver and the
lowest in serum. Pyrrole adducts in serum show the most significant correlation with free
2,5-hexanedione or pyrrole adducts in tissues [65].
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2.5. Tissue Susceptibility to γ-Diketones

Systemic treatment with γ-diketones triggers pathological changes in the testes, as well
as the nervous system. Extensive experimental studies of Sertoli cells in rats treated orally
with 2,5-hexanedione point to alterations in microtubule-mediated functions, including
microtubule assembly (which is associated with the status of stathmin phosphorylation), as
well as kinesin and dynein motor-dependent transport [62,66]. The transport functions of
axonal microtubules are also implicated in the genesis of nerve fiber degeneration. Injection
of 2,5-hexanedione into the rat sciatic nerve results in rapid (<30 s) local reorganization of
axoplasm, specifically the central accumulation of microtubules and peripheral relocation
and disorientation of neurofilaments [67]. Microtubule cross-linking side arms are possible
targets of lysine-reactive γ-diketones. Noteworthy is that spindle microtubule crosslinks
contain PRC1 (protein regulator of cytokinesis 1), which binds microtubules via a structured
domain with a spectrin-fold and an unstructured Lys/Arg-rich domain, and PRC1 shares
the same binding site on the tubulin dimer as the motor proteins kinesin and dynein [68,69].
Clustered microtubules, sometimes associated with mitochondria, are often observed in the
axons of peripheral nerve fibers of animals treated systemically with n-hexane, 2-hexanone,
2,5-hexanedione, or 1,2-diacetylbenzene [70,71], as well in a number of other experimental
toxic neuropathies, human giant axonal neuropathy, and in hereditary distal motor and
sensory neuropathy or Charcot-Marie-Tooth disease [72]. Since local 2,5-hexanedione nerve
injection shows that the resulting local cytoskeletal reorganization precedes the formation
of neurofilament-filled focal axonal swellings, microtubule displacement may mark sites at
which anterograde transport of axonal neurofilaments is disrupted. Thus, intrathecal 2,5-
hexanedione interfered with the slow axonal transport of neurofilaments [73], and systemic
treatment with 3,4-dimethyl-2,5-hexanedione reduced the rate of transport of neurofilament
proteins 75–90%, while tubulin and other proteins were only modestly retarded [74].
Similarly, anterograde neurofilament transport was slowed, but the velocities and amounts
of labeled proteins in the fast anterograde component of the sciatic nerve were normal 2–5
h after eight once-weekly systemic treatments with 2,5-hexanedione [75]. Additionally, a
single high intraperitoneal dose of 2,5-hexanedione produced a time-dependent decrease
of fast retrograde transport velocity in mouse sciatic nerves (~65% inhibition between
2.0–2.5 h) with a reversal to normal rate 3–5 h after toxin administration, while retrograde
transport velocity was halved in animals with hindlimb paralysis after repeated treatment
with 3,4-dimethyl-2,5-hexanedione [76]. Motor nerves showed earlier and greater changes
than sensory nerves in the accumulation of retrogradely transported materials [75,77].

Changes in anterograde neurofilament transport are consistent with initial nerve fiber
changes in rats administered n-hexane, 2-hexanol, or 2,5-hexanedione. Teased fiber studies
revealed that neurofilament-rich giant axonal swellings developed first on the proximal
sides of multiple paranodes in distal non-terminal regions of large-diameter myelinated
fibers. Paranodal myelin sheaths were often retracted at sites of axonal swellings, while
adjacent distal internodes were attenuated. Axonal swellings later developed at internodal
sites. Demyelinated paranodes apparently underwent local shrinkage and remyelination
prior to the onset of distal nerve fiber breakdown. Smaller myelinated and unmyelinated
fibers also contained multifocal, giant axonal swellings with abnormally large numbers of
10 nm neurofilaments. [70].

While neurofilaments are prominent in the pathological process of γ-diketone neu-
ropathy, distal axonal degeneration also occurs in transgenic mice that lack axonal neurofil-
aments [78,79]. Taken in concert, these findings suggest that γ-diketones primarily disrupt
microtubule-associated proteins (MAP) and MAP-microtubule binding [80], perhaps with
preferential effect at nodes of Ranvier, and secondarily cause changes in bidirectional
axonal transport associated with changes in neurofilament distribution that may result
locally in axonal swelling or atrophy.
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2.6. Summary

γ-Diketones react preferentially with lysine residues to form chromogenic oxidized
pyrrole or isoindole adducts that can cross-link and disrupt the function of proteins, notably
microtubule-associated proteins responsible for protein transport within cells. Neurons are
vulnerable because they are required to transport proteins bidirectionally along elongate
axons in the central and peripheral nervous system. γ-Diketone potency determines
whether blockade of slow anterograde axonal transport of neurofilaments occurs proximally
(3,4-dimethyl-2,5-hexanedione, 1,2-diacetylbenzene) or distally (2,5-hexanedione), with
resulting focal neurofilament-filled axonal swellings that displace myelin sheaths resulting
in localized demyelination and remyelination, nerve fiber and axonal attenuation and,
eventually, distal axonal degeneration resulting in denervation of sensory end-organs and
muscle fibers. Comparable changes occur later in smaller (and shorter) myelinated and
unmyelinated nerve fibers. Contemporaneously, elongate ascending and descending axons
in the spinal cord undergo comparable distal changes. Whereas, in humans, distal nerve
fiber degeneration induced by aliphatic hexacarbons (n-hexane, 2-hexanone) manifests as a
slowly ascending distal symmetrical peripheral neuropathy that may continue to evolve
for some time after exposure ceases, sensation and muscle strength are restored in the
opposite direction in association with axonal regeneration and end-organ reinnervation.
However, failure of spinal motor pathways to regenerate may result in persistent spasticity
in persons who have otherwise recovered from severe neuropathy [28,29]. The distal ends
of other elongate nerve fibers in the central nervous system, including the optic nerve and
mammillary bodies, may also develop pathological changes (neurofilament-filled axons) in
γ-diketone intoxication [81–84].

3. Endogenous 2,5-Hexanedione and Associated Pyrroles

Human serum obtained from healthy American and European subjects contains de-
tectable levels of compounds (2-hexanone, 3-heptanone) with the potential to form γ-diketones
by ω-1 oxidation [85]. 2-Pentanone, 2- and 3-hexanone, 4-heptanone, and 5-methyl-2-
hexanone were later identified in the human urinary metabolome [86]. Additionally, low
levels of free 2,5-hexanedione are normally present in human serum (6–30 µg/L and urine
(<12.0–77.9 µg/L), the latter representing 5th–95th percentiles of data collected from 99 Italian
subjects [87,88]. The concentration of free 2,5-hexanedione tended to be higher in the urine of
overweight subjects relative to those with normal body weight (p = 0.03) [88].

Larger amounts (ca. 0.45 mg/L) of 2,5-hexanedione were recovered from urine sub-
jected to acid hydrolysis of samples from various urban and rural populations (Chinese,
German, Japanese, Italian, Swedish) with no known exogenous exposure to n-hexane
or 2-hexanone (Table 1). Levels of total and free (18% of total) urinary 2,5-hexanedione
were correlated (r = 0.56; p < 0.0001) in such unexposed populations [88]. A similar per-
centage (mean = 14.2%) of free 2,5-hexanedione was found in the urine of 132 persons
occupationally exposed to n-hexane [89]. γ–Diketone pyrroles have also been measured
(1–6 µM) in healthy Chinese populations free of known exposure to these occupational
hydrocarbon solvents.
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Table 1. Total * urinary 2,5-hexanedione (mg/L) and 2,5-dimethylpyrroles in populations with no
known exposure to n-hexane or 2-hexanone.

n Mean Range Method * References

2,5-Hexanedione

12
8M, 4F 0.45 ± 0.20 0.12–0.78 GC-FID [90]

10M 0.49 ± 0.14 0.32–0.64 GC-FID [91]

53M 0.33 ± 0.47 - GC-FID [92]

55M 1.47 ± 0.60 - [93]

136
84M
52F

M+F: 0.35
M: 0.35
F: 0.49

- GC-MS [94]

26M 0.56 ± ? 0.17–0.98 GC-FID [87]

40
20M, 20F 0.47 ± 0.21 0.20–1.00 GC-FID [95]

22 0.44 ± 0.11 0.18–0.73 HPLC-F [96]

123
60M + 63F - 0.08–0.95 GC-FID

HPLC-UV [97]

110M
117F

M: 0.41
F: 0.38 - GC [98]

4216M
4019F

Median
M: 0.171
F: 0.147

GC-MS [99]

Pyrroles

5M
5F

71.3 ± 5.4 years
- - ESI-LC-MS/MS [100]

104M + 104F
18–24 years
21 ± 3 years

Median
0.91 µM Chromatography [101]

276M, 258F
68.3 ± 4.9 years

Median
7.4 µM Chromatography [102]

* After acid hydrolysis. ESI-LC-MS/MS Electrospray ionization liquid chromatography tandem mass spec-
trometry; GC-FID: Gas chromatography with mass-selective detection. GC-MS: Gas chromatography mass
spectrometry using an ion-trap mass spectrometer. HPLC-F: High performance liquid chromatography (HPLC)
with fluorescence detection. HPLC-UV: HPLC with UV detection. Acid hydrolysis converts other metabolites of
n-hexane, such as 4,5-dihydroxy-2-hexanone, to 2,5-hexanedione [103].

These findings point to the endogenous production of reactive γ–diketones in healthy
people, perhaps from lipid peroxidation [87,90] or other sources, including the endogenous
production of n-hexane (and other straight-chain alkanes) from probable lipid peroxidation,
as reported in humans and laboratory rats [104–106].

Urinary excretion of free 2,5-hexanedione did not seem to be influenced by gender
(52M, 47F), age (39.6 ± 12.8 years, range: 17–67 years), smoking habit, or area of residence
(urban vs. rural) [88]. Levels of acidified urinary 2,5-hexanedione were found to be
similar in a small study of male and female Germans [90] but modestly higher in Chinese
males than females [99]. Levels were somewhat higher in tobacco smokers but were
apparently unaffected by diet or alcohol consumption [97,99]. Fluctuations typical of a
circadian rhythm were not observed for 2,5-hexanedione in blood or urine. Excretion of 2,5-
hexanedione was inversely related to age among Chinese subjects [99], while a comparison
of two independent studies suggested that levels of urinary pyrroles were markedly higher
in older persons [101,102].
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4. Relationship to Neuropathies of Endogenous Origin
4.1. Central-Peripheral Distal Axonopathies

This term was introduced 45 years ago to describe the pathological substrate of distal
symmetrical sensorimotor neuropathies (often with an autonomic component) that occur
in a number of toxic, metabolic, nutritional, and inherited states [24,29]. The distal ax-
onopathies comprise a group of diseases of varying etiology, of slow or rapid development,
in which there is largely symmetrical axonal degeneration, commencing distally, spreading
proximally, and rarely involving neuronal cell bodies. In the peripheral nervous system,
secondary demyelination and remyelination are found proximal (sometimes including
the spinal roots) to the region of active nerve fiber degeneration. On the central side,
degenerative changes are symmetrical, tract-oriented, and involve, to a varying degree,
the distal regions of the dorsal columns, especially the gracile tracts, the corticospinal
tracts, and the spinocerebellar tracts. The central changes are usually clinically silent until
post-exposure recovery from peripheral nerve damage is complete when, in severe cases,
unrepaired and thus persistent damage to the central motor pathway may manifest in the
form of lower-extremity hyperreflexia or even spasticity. Clinically silent features often
include reduced or loss of vibratory perception that is greater in the lower than upper
extremities, a result both of degenerative changes in nerve terminals innervating Pacinian
corpuscles and in the terminal regions of their corresponding centrally projecting axons
terminating in the gracile nucleus.

While the molecular etiology of peripheral neuropathies associated with central-
peripheral distal axonopathy is often obscure, the exception being toxic γ-diketone neu-
ropathy, certain peripheral neuropathies of metabolic origin are also associated with the
endogenous production of molecules that form adducts with proteins and neuroproteins.
Prominent among these metabolic disorders are type-II diabetes mellitus and, to a lesser ex-
tent, uremia, both of which are associated with distal symmetrical peripheral neuropathies
that evolve as a consequence of metabolic imbalance. Similar molecular mechanisms may
also have relevance to the etiology of age-related changes that resemble those found in
mild central-peripheral distal axonopathy.

4.2. Type II-Diabetic Peripheral Neuropathy (T2DN)
4.2.1. Clinical and Neuropathological Features

Distal symmetrical sensorimotor axonal neuropathy is the most common form of
diabetic neuropathy [107,108], the incidence of which increases with age and duration of
the diabetic state [109,110]. The prevalence of T2DN was 61.8% among Chinese patients
(>30 years old, n = 435) seen in downtown Shanghai [111]. Most relevant here is the
painless T2DN that manifests with impaired light touch sensation, position sense, vibratory
perception, and diminished or absent ankle reflexes [112]. Sensorimotor polyneuropathy
first affects the distal parts of the lower extremities and then spreads proximally [113]. Early
loss of vibration perception is prominent in T2DN [114–116] and has a pivotal role in the
early detection of nerve fiber degeneration [117]. The vibration perception threshold has
high sensitivity and specificity relative to nerve conduction studies in the early detection
of T2DN [118]. The neuropathology of T2BN conforms to a central-peripheral distal
axonopathy [24,119].

Risk factors for diabetic neuropathy include age, male gender, height, duration of
diabetes, uncontrolled glycemia, insulin resistance, and metabolic syndrome components,
such as hypertriglyceridemia, hypertension, abdominal obesity, and low high-density
lipoprotein level [109,120]. The pathogenesis of T2DN is not understood. Pathophysiologi-
cal concepts include hypoxia, immune complexes, oxidative stress, reduced neurotrophic
factors, mitochondrial dysfunction, inflammation, and inositol depletion leading to the
accumulation of sorbitol and fructose [112,120,121].
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4.2.2. Glycation End-Products

Increased glucose levels in the diabetic state promote glycation of numerous structural
and functional proteins. Glucose and other reducing sugars under physiological condi-
tions can react nonenzymatically with free amino groups to form reversible Schiff base
adducts (in days) and stable Amadori products (in weeks), which are then converted into
advanced glycation end-products (AGE) through chemical rearrangements and degrada-
tion reactions [122]. Markedly elevated in diabetes mellitus are plasma levels of pyrraline
(5-hydroxymethyl-1-alkylpyrrole-2-carbaldehyde) (Figure 4A), an AGE formed from 3-
deoxyglucosone, the dicarbonyl product of a non-enzymatic reaction between glucose and
the epsilon-amino group of lysine residues of proteins [123–125].

Figure 4. The structures of pyrraline, [2-formyl-5-(hydroxymethyl)pyrrole-1-norleucine] (A), and
methylglyoxal (B).

Additionally, the highly reactive dicarbonyl precursor methylglyoxal (Figure 4B), a
byproduct of glycolysis resulting from the spontaneous degradation of the triosephos-
phates, dihydroxyacetone phosphate, and glyceraldehyde-3-phosphate [126–128], binds
to arginine and promotes AGE formation. Methylglyoxal binds to lysine and cysteine
residues in proteins to form N-α-acetyl derivatives [129]. The compound reacts irreversibly
with lysine to form Nε-(1-carboxyethyl)lysine and the dimer 1,3-di(Nε-lysino)-4-methyl-
imidazolium [130]. Methylglyoxal can also cross-link arginine and lysine residues resulting
in the formation of 2-ammonio-6-((2-[(4-ammonio-5-oxido-5-oxopentyl)amino]-4-methyl-
4,5-dihydro-1H-imidazol-5-ylidene)amino)hexanoate [131]. Elevated methylglyoxal, a
marker of dicarbonyl stress, is a risk factor for type-2 diabetic neuropathy (T2DN) [132].
Analysis of reduced glycosylated amino acids in peripheral nerves showed that glyco-
sylated lysine and its hydrolysis rearrangement products were more than doubled in
diabetic rats and dogs compared with normal animals [133]. Additionally, tubulin and
tubulin-associated proteins were readily modified by non-enzymatic glycosylation and
cross-linking to form high-molecular aggregates [134].

4.2.3. γ-Diketone-Derived Pyrroles

The genesis of diabetic neuropathy is associated with elevated levels of serum metabo-
lites with the potential to form γ-diketones was first explored four decades ago [85]. Analy-
sis of serum samples from subjects with and without diabetes mellitus revealed similar qual-
itative profiles of volatile metabolites (low nanogram concentration), with relatively high
and low concentrations respectively of 2-hexanone and 3-heptanone, both of can undergo
ω-oxidation to form γ-diketones, namely 2,5-hexanedione and 3,6-heptanedione [87,88].
Normal and diabetic sera contained similar concentrations of 2-butanone (methyl ethyl
ketone), a compound that increases the persistence of blood-borne 2,5-hexanedione and
markedly potentiates the neurotoxic potency of n-hexane and 2-hexanone [135–137]. Other
aliphatic ketones found in normal and diabetic serum include 2-propanone, 2-pentanone,
4-heptanone, and 2-octanone [85]. Substances in the normal human urine metabolome
include 2-pentanone, 2- and 3-hexanone, 5-methyl-2-hexanone [86,138], and 4-heptanone,
which increases in diabetes mellitus and renal disease [139,140].

In recent years, we and our colleagues have begun to examine more critically whether
endogenous γ-diketones are involved in the genesis of T2DN. We assayed the urinary
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concentration of γ-diketone pyrroles in age- and gender-matched elderly (60–84 years)
Chinese persons with and without (n = 267/group) indicators of diabetes mellitus. Subjects
were drawn from a community of 9411 adults aged ≥ 60 years in the city of Shenzhen,
Guangdong, China [102]. Subjects with diabetes mellitus relative to healthy controls had
significantly higher levels of fasting blood glucose, glycated hemoglobin A1c, urinary
ketone bodies, and urinary γ-diketone pyrroles. The median concentration of urinary
γ-diketone pyrrole adducts (Figure 5) was significantly higher (p < 0.0001) in individuals
with diabetes (7.5 µM or 0.99 mg/g urine creatinine) than in healthy controls (5.9 µM or
0.70 mg/g urine creatinine). Significant linear associations and non-linear associations
were observed between urinary pyrrole adduct concentrations and diabetic indices (DM
status, fasting blood glucose levels, or HbA1c levels). Studies are now underway to
assess whether there is a correlation between urinary γ-diketone pyrroles and clinically
measurable neuropathy.

Figure 5. Violin plots of the distribution of urinary γ-diketone pyrrole adducts before (A) and after (B) correction for urinary
creatinine, the excreted metabolite of muscle creatine. The white box in the center represents the interquartile range and the
center line in the middle represents the median value. The thin black line extended from the thick black bar represents the
upper (max) and lower (min) adjacent values of the data. (Figure 5A was redrawn from [102]).

In summary, from the time of onset of diabetes mellitus, glucose forms covalent
adducts with plasma proteins through a non-enzymatic process known as glycation [141].
Protein glycation and formation of AGEs are considered to play an important role in the
pathogenesis of diabetic complications, including neuropathy and retinopathy [142,143].
However, rats treated with intraperitoneal injection of AGE for 12 weeks failed to in-
duce structural changes in tibial nerves other than interstitial edema [144]. Neuroprotein
modifications triggered by endogenous levels of a pyrrole-forming γ-diketone might also
participate in the genesis of T2DN.

4.3. Uremic Neuropathy

End-stage renal disease is commonly associated (16–60% of patients) with a slowly
progressive symmetrical sensorimotor disorder of the axons of elongate large-diameter
myelinated fibers [145]. Nerve conduction studies demonstrate findings consistent with



Toxics 2021, 9, 98 12 of 19

a generalized neuropathy of the axonal type. Early clinical signs include distal loss of
position and vibration sense plus a decreased Achilles reflex. Sensory deficits ascend to
the knees, whereupon the hands may become involved. Advanced disease is associated
with additional muscle atrophy and eventual paralysis. Patients may also develop auto-
nomic features, with postural hypotension, impaired sweating, diarrhea, constipation, or
impotence [145]. In sum, like T2DN, uremic neuropathy has features characteristic of a
metabolic central-peripheral distal axonopathy.

The etiology of uremic neuropathy is unknown but has been related in part to elevated
levels of blood urea [146]. Carbonyl stress may contribute to the long-term complications of
chronic renal failure. AGEs (carboxymethyllysine and pentosidine) are markedly increased
in plasma proteins and skin collagen of uremic patients, whether or not diabetes or elevated
blood glucose is present [146–148]. Breath analysis of patients with end-stage renal disease
undergoing dialysis included 4-heptanal, 4-heptanone, and 2-heptanone [149,150]. Another
study of exhaled breath and blood identified 60 volatile organic compounds including
n-alkanes (C4–C7), 2-ethyl-hexanol, 3-methyl-2-hexanone, 2-hexanone, and 3-heptanone,
the latter two of which, plus the C6 alkane n-hexane, have the potential to form a neurotoxic
γ-diketone.

4.4. Age-Associated Distal Axonopathy

By the seventh decade of life, most persons display evidence of peripheral nervous
system dysfunction in the form of decreased vibration sensation, two-point discrimination,
ankle reflexes, muscle bulk, and nerve conduction [151–153]. While the possible causes
of these changes are manifold, including repeated trauma, focal nerve entrapment, and
ischemia, the normal process of biological aging is thought to be an important contribut-
ing factor. The most suggestive evidence of central-peripheral distal axonopathy is the
progressive increase in vibratory threshold with age, more in the lower limb (great toe)
than in the upper limb (finger) [154–160]. Vibration perception also decreases with body
height, which is consistent with a length-dependent axonopathy [160]. Other signs, such as
distal impairment of tendon reflexes follow the same pattern in aging as in many distal
axonopathies. Studies of very old rats reveal an age-associated axonopathy featured by
axonal swelling and distal retrograde degeneration of the gracile tract, similar but less
affected cuneate nuclei, spinocerebellar tracts, and corticospinal tracts [161]. While the
etiology of these neuropathological changes is unknown, it is noteworthy that age-related
changes are found in levels of 2,5-hexanedione (decrease) and associated pyrroles (increase)
in acidified human urine [99,102]. This might indicate age-dependent increased binding of
2,5-hexanedione to target proteins, including neuroproteins responsible for maintenance of
axonal integrity. AGEs are also formed in high amounts during aging [143,162–165].

5. Summary

The molecular mechanisms of peripheral neuropathy resulting from overexposure
to certain organic solvents are largely understood. Several studies have shown that 2,5-
hexanedione, the common γ-diketone metabolite of n-hexane and 2-hexanone, reacts
with amino groups of proteins, including neuroproteins, to form pyrrolated products
that undergo oxidation and cross-link proteins. Lysine-rich neuroproteins are particu-
larly vulnerable, including microtubule-associated proteins required for axonal transport.
Disruption of axonal transport results in sequential degenerative changes, notably focal
neurofilament accumulation resulting in localized demyelination and remyelination, with
initial changes in the largest and longest axons in peripheral nerves and the spinal cord,
with similar changes in shorter nerve fibers at a later stage. This results in distal symmetri-
cal sensorimotor neuropathy underpinned by central-peripheral distal axonopathy. Potent
neurotoxic methylated aliphatic and aromatic γ-diketones disrupt axonal transport more
proximally, which results in neurofilament blockade in spinal roots (leading to localized
demyelination and remyelination) with distal nerve fiber atrophy.
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Low levels of the γ-diketone 2,5-hexanedione appear to be a component of the normal
metabolome. Unlike low tissue levels of other potentially neurotoxic substances with
established physiological functions, such as carbon monoxide, cyanide, formaldehyde,
and nitric oxide, endogenous 2,5-hexanedione has no known function. Urinary levels of
2,5-hexanedione seem to decline with the advance of age while its protein reaction product
increases, which raises the possibility of an etiological relationship with the usually sub-
clinical distal axonopathy associated with advancing age. Preliminary findings also show
elevated urinary γ-diketone pyrroles in T2DM, a metabolic state that commonly results in
a progressive distal symmetrical axonopathy. A similar length-dependent neuropathy de-
velops in chronic renal disease, but tissue γ-diketone levels in this condition are unknown
and uninvestigated. Other endogenous metabolites, notably methylglyoxal (a dicarbonyl
with both keto and aldehyde groups), that bind to lysine and other protein residues have
been demonstrated with the advance of age, in uremia, and especially in T2DM. However,
pyralline was not detected (<1.2 pmol) in one study of serum albumin isolated from the
serum samples of diabetic and non-diabetic subjects [166]. Further research is therefore
needed to determine whether distal axonal degeneration in these conditions is triggered
by the formation of advanced glycation products, 2,5-hexanedione-pyrrolated proteins,
or both.

Note Added in Proof: Recently published data show that prolonged treatment of
rats with large doses (400 mg/day, 5 days/week, for 5 weeks) of 2,5-hexanedione induces
evidence of increased neuronal apoptosis in spinal anterior horn cells in association with
severe limb weakness [167] indicative of marked central-peripheral distal axonopathy.
Apoptotic changes in neuronal somata, which probably occur secondary to the onset of
distal axonal degeneration/regeneration, involve changes in nerve growth factor and
associated cell signal pathways [167–169].
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