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Abstract. The biological characteristics and clinical outcomes 
of gastric cancer (GC) are largely dependent on the histopatho-
logical type and degree of differentiation. The identification of 
the molecular mechanisms underlying the histological grade 
of GC may provide information about tumorigenesis and 
tumor progression, and may subsequently be used to develop 
novel therapeutic agents. The present study obtained the RNA 
sequencing data and clinical characteristics of patients with 
GC from The Cancer Genome Atlas. A total of 1,400 differ-
entially expressed genes (DEGs) were screened between two 
histological grades. Weighted gene co-expression network 
analysis (WGCNA) was subsequently used to identify nine 
co-expressed gene modules, and the black module was found 
to be the most significant for prognosis prediction of tumor. 
Additionally, the black module was associated with overall 
survival time, death event, N stage and tumor-node-metastasis 
(TNM) stage. Functional enrichment analysis revealed that the 
biological processes of the genes in the black module included 
‘Wnt signaling pathway’ and ‘structural molecule activity’. 
Additionally, 10 network hub genes that were significantly 
associated with the progression of GC were identified from the 
black module, and the significance of each hub gene was deter-
mined across different TNM stages. Kaplan-Meier survival 
curves revealed that keratin 40 and glycine decarboxylase 
were significantly associated with patient prognosis (P<0.05), 
suggesting that these genes may serve as potential progression 
and prognosis biomarkers in GC. The present study identified 
molecular markers that correlated with histological grade in 
GC. Therefore, the results obtained in the present study may 

have important clinical implications on treatment selection, 
risk stratification and prognosis prediction in patients with GC.

Introduction

Gastric cancer (GC) is the second most common malignancy 
in Eastern Asia (particularly in Korea, Mongolia, Japan, and 
China) and has a five‑years survival rate as low as 31.5% (1). 
The histopathological type is an independent prognostic factor 
in GC, and a predictor of lymph node metastasis (2-6). Different 
histopathological types have distinct clinical outcomes and 
unique biological characteristics. The overall survival (OS) 
rate for patients with well-differentiated GC is higher than that 
for patients with poorly differentiated GC. Moreover, different 
types are associated with specific molecular mechanisms, 
treatment strategies and prognoses (7-9). However, the exact 
causes and mechanisms involved in the different types remain 
unclear. Therefore, it is necessary to further investigate the 
mechanisms underlying GC differentiation.

Weighted gene co-expression network analysis (WGCNA) 
has been used to explore the correlations between clinical features 
of disease and gene clusters (10). WGCNA transforms gene 
expression data into co-expression modules and provides insights 
into signaling networks that may be responsible for clinical 
indicators of tumor progression, including tumor stages, grades 
and metastasis (11‑13). WGCNA is a comprehensive collection 
of R functions (14), and is widely used to identify candidate 
biomarkers or therapeutic targets (15,16). In the present study, 
a co-expression module was constructed using expression data 
from patients with GC of different histological grades. Gene 
Ontology (GO) enrichment analysis was subsequently performed 
on selected modules to identify the hub genes, which may serve as 
potential therapeutic, diagnostic or prognostic markers.

Materials and methods

Preparation of genetic and clinical data. The workflow for the 
current study is presented in Fig. 1. The TCGA database included 
the mRNA sequencing data of 32 normal stomach samples and 
376 stomach adenocarcinoma samples, and the clinical data of 
408 patients with STAD. Level‑3 RNA sequencing data were 
obtained using an Illumina HiSeq RNAseq v2 RSEM platform. 
Patients without complete histological grade information were 
eliminated and 366 patients were available for the next screen. 
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Patients without complete follow‑up information or complete 
clinical information were excluded. A total of 172 patients 
were included in the WGCNA analysis. Other clinical informa-
tion, including neoplasm histological grade, American Joint 
Committee on Cancer pathological tumor-node-metastasis 
(TNM) stage (17) and anatomic neoplasm subdivision, were 
retrieved for WGCNA analysis.

Screening for differentially expressed genes (DEGs). R (version 
3.4.2) and RStudio (version 1.1.383) (18,19) and two R packages 
(limma and edgeR, Bioconductor version 3.6; bioconductor.
org/), were used to identify DEGs between cancer and normal 
samples. Additionally, patients were divided into poorly- and 
moderately/well‑differentiated groups to identify the DEGs 
associated tumor differentiation. The DEG threshold was set 
at an adjusted P<0.05 and a log2 fold-change >2.

Gene co‑expression network construction and module anal‑
ysis. The gradient method was used to test the independence 
and average connectivity of different modules with different 
power values (10). The power values ranged from 1 to 20. The 
appropriate power value was determined when the degree of 
independence was 0.9 which was set to eight in the present 
study, and the module construction was continued using the 
WGCNA algorithm. In addition, the corresponding gene infor-
mation for each module was extracted. The WGCNA algorithm 
may be used to identify co-expression modules (10). WGCNA 
was implemented in the R package (WGCNA Version 1.68; 

cloud.r‑project.org/) and the heatmaps package (Bioconductor 
version, 3.6) was used to analyze the strength of interactions.

Identification of the module of interest and functional anno‑
tation. The correlation between the modules and the clinical 
features such as TNM Stage, OS, Division and Grade were 
assessed by the Pearson's correlation test. Modules with the 
highest correlation with clinical features were selected as 
modules of interest. To explore the potential mechanisms by 
which the genes affect the relevant clinical features, all genes 
in the module of interest were uploaded to the Database for 
Annotation, Visualization, and Integrated Discovery (DAVID 
version 6.8, david.ncifcrf.gov/) (20) and subjected to GO func-
tional (geneontology.org/)and Kyoto Encyclopedia of Genes 
and Genomes (KEGG, https://www.kegg.jp/). The specific 
cut-off used for terms and pathways was 0.05.

Hub gene identification and correlation analysis. The 
modules of interest were visualized using Cytoscape software 
(version 3.6.0; cytoscape.org/), and the top ten genes with the 
greatest number of edges were identified as the hub genes (21). 
A one‑way ANOVA with a post‑hoc Dunnett's test was used 
to test for associations between hub genes and the corre-
sponding clinical features (SPSS version 21; IBM Corp.). The 
patients were subsequently divided into two groups based on 
the expression of each hub gene (high vs. low; cut-off point, 
50%). Survival analysis was performed for all hub genes using 
the survival package (version 2.42‑3, cloud.r‑project.org/) in 

Figure 1. Workflow of data preparation, processing and analysis in the present study.
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R (22). Kaplan-Meier analysis and a log-rank test were used 
to assess the effect of hub gene expression on overall survival 
time. In addition, the online software Kaplan-Meier plotter 
(kmplot.com/analysis) (23), which performs log‑rank tests 
based on data from Gene Expression Omnibus (GEO) datasets 
(GSE14210, GSE15459, GSE22377, GSE29272, GSE51105 and 
GSE62254), was used for further verification.

Results

DEGs screening. DEG analysis was performed on the 
RNA sequencing data of 376 STAD tissues and 32 adjacent 

non‑tumor tissue samples and a total of 11,031 DEGs were 
identified using edgeR and limma. The tumor samples 
were subsequently divided into two groups according to the 
histological grade: i) The poorly differentiated group (219 
samples); ii) and the moderately to well-differentiated group 
(147 samples). A total of 1,400 DEGs (836 upregulated and 
564 downregulated) were identified.

Functional annotation of DEGs between patients with poorly 
and moderately to well‑differentiated GC. To explore the 
functional significance of DEGs in GC differentiation, the 
aforementioned 1,400 DEGs were subjected to unbiased 

Table I. List of the top GO terms and KEGG pathways in DEGs.

A, GO biological process   

Term Gene count P‑Value FDR

GO:0007586 digestion 15 1.17x10-07 2.08x10-04

GO:0010951 negative regulation of endopeptidase activity 17 2.12x10-05 3.70x10-02

GO:0002027 regulation of heart rate  9 3.20x10-05 5.70x10-02

GO:1903779 regulation of cardiac conduction  11 5.77x10-05 1.02x10-01

GO:0006936 muscle contraction 15 7.72x10-05 1.37x10-01

B, Cellular component    

Term Gene count P‑Value FDR

GO:0005615 extracellular space 136 3.61x10-24 4.97x10-21

GO:0005576 extracellular region 149 8.50x10‑23 1.17x10-19

GO:0030018 Z disc 23 1.44x10-09 1.99x10-06

GO:0072562 blood microparticle 24 3.90x10-08 5.37x10-05

GO:0043204 perikaryon 17 4.67x10-06 6.00x10‑03

C, GO molecular function   

Term Gene count P‑Value FDR

GO:0005198 structural molecule activity 37 5.61x10-12 8.54x10-09

GO:0008201 heparin binding 24 5.09x10-08 7.74x10-05

GO:0005179 hormone activity 18 9.67x10-08 1.47x10-04

GO:0008307 structural constituent of muscle   9 1.71x10-04 2.60x10-01

GO:0005102 receptor binding 29 2.54x10-04 3.85x10-01

D, KEGG analysis   

Pathway Gene count P‑Value FDR

hsa04080:Neuroactive ligand-receptor interaction 28 4.48x10-06 6.00x10‑03

hsa04970:Salivary secretion 14 1.67x10-05 2.10x10-02

hsa04971:Gastric acid secretion 10 1.50x10‑03 1.96 
hsa04972:Pancreatic secretion 11 2.50x10‑03 3.11 
hsa04610:Complement and coagulation cascades   9 4.10x10‑03 5.15

GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; FDR, false discovery rate.
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GO term and KEGG pathway enrichment analyses. For 
DEGs associated with GC differentiation, the terms ‘diges-
tion’ [false discovery rate (FDR)=2.08x10-04], ‘extracellular 
space’ (FDR=4.97x10-21) and ‘structural molecule activity’ 
(FDR=8.54x10-09) were the most significantly enriched 
biological process, cellular component and molecular function, 
respectively, while ‘neuroactive ligand-receptor interaction’ 
was the most significantly enriched pathway (Table I).

Co‑expression network construction and module analysis. 
To explore the functional modules in patients with GC with 
different histological grades, the 1,400 DEGs were subjected 
to WGCNA. Clinical characters, including neoplasm 
histological grade, TNM stage and anatomic neoplasm 
subdivision, were retrieved for WGCNA analysis. A total of 
172 patients were included in the WGCNA (Fig. 2). Three 
outlier samples were discarded. The connectivity between 
the genes in the gene network satisfied the scale‑free network 
distribution (Fig. S1). Nine co-expressed modules, ranging 
in size from 34 to 734 genes, were subsequently identified. 
Each module was assigned a color for reference. The grey 
module was reserved for genes that had been identified as not 
co‑expressed (Figs. 3 and S2). The genes in each module are 
listed in Table SI.

Identification of key modules and functional annotation. The 
black module exhibited a greater correlation with OS, event, N 
stage and TNM stage than the other modules (P<0.05; Fig. 4), 
and was correlated with the T stage (P=0.08). The genes in the 
black module may therefore be associated with the survival 

Figure 2. Clustering dendrogram of 169 samples and the associated clinical 
traits. Three samples were excluded from the original 172 samples. The 
clustering was based on the expression data of differentially expressed genes 
between patients with poorly and moderately to well-differentiated gastric 
cancer. Each clinical trait is depicted with varying color intensity. The darker 
the color, the stronger the correlation. TNM, tumor-node-metastasis; OS, 
overall survival.

Figure 3. Tree diagram of clustered genes based on the difference in topo-
logical overlap and the specified module color. A total of nine co‑expression 
modules were constructed and displayed in different colors.

Figure 4. Module-feature association. Each row corresponds to a module 
eigengene, and the column corresponds to a feature. Each cell contains the 
corresponding correlation coefficient and P‑value. The table was color coded 
based on correlation according to the color legend. Red represents a posi-
tive correlation, green represents a negative correlation, and the darker the 
color, the greater the significance of the P‑value. OS, overall survival; TNM, 
tumor-node-metastasis.
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and prognosis of patients. However, each module was corre-
lated with different clinical features and the red module was 
correlated with anatomic neoplasm subdivision (P=0.04). 
Scatterplots of gene significance vs. specific module member-
ship were plotted (Fig. 5). The black module was selected as the 
module of interest and was subsequently analyzed. To identify 
the functional involvement of the black module, the 40 genes 
in the black module were uploaded onto DAVID for KEGG 
pathway enrichment and GO analyses. Biological processes 
of the black module included ‘Wnt signaling pathway’ 
(P=9.80x10-04), ‘structural molecule activity’ (P=0.004) and 
‘vitamin transport’ (P=0.005). KEGG pathway analysis 
revealed that ‘Wnt signaling pathway’ was the only significant 
pathway (P=0.008; Fig. 6; Table SII).

Hub gene identification and correlation analysis. Cytoscape soft-
ware was used to construct the co-expression network modules, 
and the intramodular connectivity was calculated. Genes with 
high intramodular connectivity were considered as intramodular 
hub genes (Table SIII). The hub genes in the black module are 

Figure 5. Scatterplot of gene significance for (A) T stage, (B) N stage, (C) TNM stage, (D) OS and (E) death events vs. module membership in the black module. 
(B) Scatterplot of N stage in the black module. (F) Scatterplot of gene significance for anatomic division in the red module. There is a highly significant associa-
tion between gene significance and module membership in these modules. TNM, tumor‑node‑metastasis; OS, overall survival; cor, correlation coefficient.

Figure 6. GO functional analysis and KEGG pathway enrichment for genes 
in the black module. The x‑axis shows the‑log10 (P‑value) and the y‑axis 
shows the GO and KEGG pathway terms. GO, Gene Ontology; KEGG, Kyoto 
Encyclopedia of Genes and Genomes.
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presented in Fig. 7 (the top ten hub genes, including GLDC, 
KRT40, GS homeobox 1 (GSX1), keratin associated protein 
4-12, distal-less homeobox 4 (DLX4), NFIA antisense RNA 2, 
Sp7 transcription factor, KRT39 and olfactory receptor family 
5 subfamily G member 5 pseudogene). Significant differences 
(P<0.05) between the hub genes and TNM stages were identi-
fied using the one‑way ANOVA (Table SIV). The OS analysis 
of 172 patients divided into two groups according to the median 
expression of each hub gene (high vs. low) revealed that keratin 
40 (KRT40) and glycine decarboxylase (GLDC) were associated 
with prognosis (P<0.05; Fig. 8A), suggesting that KRT40 and 
GLDC may act as prognostic biomarkers for GC. Additionally, 
the effects of KRT40 and GLDC on the OS were validated in 
datasets obtained from the GEO database (GSE14210, GSE15459, 
GSE22377, GSE29272, GSE51105 and GSE62254). The signifi-
cance of the aforementioned genes was further investigated by 
performing survival analysis (P<0.05; Fig. 8B).

Discussion

The degree of differentiation of GC is associated with complex 
gene interactions and often indicates prognosis (24-27). 
Studying the molecular mechanisms underlying differen-
tiation is important for understanding the pathogenesis and 
development of GC, and may be helpful for the diagnosis and 
treatment of GC. However, to the best of our knowledge, there is 
currently no clinically applicable biomarker for distinguishing 

between the histological types of GC. The present study used 
RNA sequencing data and clinical information obtained from 
408 GC samples in the TCGA database, 172 of which were 
included in the final WGCNA to identify robust co‑expression 
modules associated with cancer characteristics.

In cancer studies, candidate molecular biomarkers may be used 
to distinguish between normal and cancerous tissues (28‑32). The 
present study identified DEGs between GC and paracancerous 
tissues in 408 samples in the TCGA database. The samples were 
divided into two groups based on the degree of GC differentia-
tion, and a total of 1,400 DEGs associated with the differentiation 
of GC were obtained. GO enrichment analysis revealed that the 
1,400 DEGs were associated with ‘digestion’, ‘extracellular space’, 
‘structural molecule activity’ and ‘neuroactive ligand-receptor 
interaction’. As the preliminary GO analysis did not clearly 
explain the role of the DEGs, WGCNA was subsequently used 
to further analyze the aforementioned DEGs. WGCNA has a 
number of advantages, as the analysis focuses on the association 
between clinical features and co-expression, resulting in higher 
reliability and biological significance (33‑35). Therefore, genes 
in the same module are considered to be functionally associated 
with each other, and the analysis identifies biologically relevant 
modules and hub genes that may eventually serve as biomarkers 
for detection or treatment (10).

The black co-expression module in the current study was 
correlated with various clinical traits, including OS, death 
event, N stage and TNM stage. The aforementioned clinical 
traits were associated with the survival and prognosis of 
patients. The black module was therefore considered to be a 
clinically significant gene cluster that required further investi-
gation in the current study.

Functional annotation of the black module revealed that 
the genes were involved in the ‘Wnt signaling pathway’ and 
‘structural molecule activity’, which affect the pathogenesis 
and development of tumors (36‑40). The associations between 
the TNM stage and the genes in the ‘Wnt signaling pathway’, 
including NKD inhibitor of WNT signaling pathway 1 
and 2 and notum palmitoleoyl-protein carboxylesterase, 
and the genes involved in ‘structural molecule activity’, 
including keratin (KRT) 39 and KRT40, were investigated. 
Furthermore, the black the genes in the black module were 
analyzed using Cytoscape software and the top ten hub 
genes, including GLDC, KRT40, GS homeobox 1 (GSX1), 
keratin associated protein 4-12, distal-less homeobox 4 
(DLX4), NFIA antisense RNA 2, Sp7 transcription factor, 
KRT39 and olfactory receptor family 5 subfamily G member 
5 pseudogene, were identified.

GLDC is involved in glycine metabolism and serves a 
role in several types of cancer (41‑45). KRT39 and KRT40 
contribute to the structural integrity of a complex or assembly 
within or outside a cell (46). GSX1 is among the earliest 
transcription factors expressed in neuronal progenitors (47) 
and may be used as a prognostic predictor. DLX4 is a tran-
scription factor encoded by a homeobox gene associated with 
ovarian cancer (48). The expression value of each hub gene 
across different TNM stages was significantly different, and 
KRT40 and GLDC were associated with patient prognosis 
for 3‑year overall survival analysis, suggesting that these 
hub genes were positively correlated with tumor stage and 
prognosis of GC.

Figure 7. Black module gene network. The top ten hub genes of the black 
module are presented in red, orange and yellow depending on the gene 
importance defined as the degree of connectivity. The other genes in the 
black module are represented in blue.
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In summary, the present study established a gene 
co-expression network to identify network genes associated 
with the progression of GC, relative to the histological grade. 
GLDC, KRT40, GSX1 and DLX4 were identified as potential 
diagnostic and prognostic biomarkers of GC as they showed 
the highest levels of significance for prognosis. Additional 
research is required to investigate the roles of the aforemen-
tioned genes in in the pathogenesis and progression of GC. 
The results obtained in the current study may contribute 
to the improvement of risk stratification, therapeutic deci-
sion-making and prognosis prediction for patients with GC.
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