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Abstract: This literature review provides an overview of the fabrication and application of biopoly-
mer hybrid particles in dentistry. A total of 95 articles have been included in this review. In the review
paper, the common inorganic particles and biopolymers used in dentistry are discussed in general,
and detailed examples of inorganic particles (i.e., hydroxyapatite, calcium phosphate, and bioactive
glass) and biopolymers such as collagen, gelatin, and chitosan have been drawn from the scientific
literature and practical work. Among the included studies, calcium phosphate including hydroxyap-
atite is the most widely applied for inorganic particles used in dentistry, but bioactive glass is more
applicable and multifunctional than hydroxyapatite and is currently used in clinical practice. Today,
biopolymer hybrid particles are receiving more attention as novel materials for several applications
in dentistry, such as drug delivery systems, bone repair, and periodontal regeneration surgery. The
literature published on the biopolymer gel-assisted synthesis of inorganic particles for dentistry is
somewhat limited, and therefore, this article focuses on reviewing and discussing the biopolymer
hybrid particles used in dentistry.

Keywords: biopolymer gels; nano-particles; biomedical applications; dentistry

1. Introduction

Biopolymer gels are widely used in biomedical applications [1–3]. Examples in-
clude tissue engineering [4,5], wound dressing [6,7], dentistry [8] and in particular, the
combination of biopolymers with nanoparticles to fabricate membranes for periodontal
regeneration [9,10]. According to the different raw materials and production methods,
there are many different commercial products of biopolymers, such as polylactic acid,
collagen, gelatin, and so on [11]. Periodontal regeneration membranes made of collagen
are widely used in dentistry, i.e., the polylactide and polyglycolide membrane (Atrisorb®,
and Resolut LT®) [12], bovine type I collagen membrane (Osseoguard™), porcine type I
and III collagen membrane (BioGide®) [13], resorbable collagen membrane (Biomend®),
and the gelatin-based sponge (Gelfoam®) [14].

The association between biopolymer and hybrid particles is important for many
biomedical functions, such as antimicrobial applications [15] (including drug delivery [16])
and guided bone regeneration [17,18]. This system has been emphasized by many re-
searchers and clinicians, and it provides a useful framework to improve the repair of
patients. The common limitations of biopolymer are that the mechanical strength is insuf-
ficient, so various crosslinking techniques have been applied to promote the mechanical
properties of biopolymers for different biotechnological applications [19]. In the case of
biodegradable materials, the small molecules that are degraded sometimes also produce
cytotoxicity. For example, acidic small molecules can easily cause inflammation when
polylactic acid is degraded [20]. If the solvents (acids or other organic solvents) used in
the production process cannot be completely removed, this makes the biocompatibility
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of biopolymers worse than expected. Of course, the production cost is also a factor that
must be considered, and novel methods with high efficiency as compared to conventional
solvent extraction were developed [1].

In this article, we focus on biopolymer hybrid particles in dentistry and their potential
role in guided tissue regeneration membranes. The article is organized as follows. In
Section 2, we describe the role of inorganic particles in dentistry, especially in recent
research on guided tissue regeneration membrane or drug delivery, which are common
topics in clinical applications. In Section 3, we describe biopolymer hybrid particles
regarding their promising advantages for use in dentistry. The conclusions and outlook are
drawn in Section 4.

2. Inorganic Particles Used in Dentistry

Inorganic particles play an important role in dentistry, especially dental resins. They
are composite materials consisting of mostly inorganic fillers and additives bound together
with a polymer matrix [21]. Some inorganic particles are used for preventive oral disease
drugs and implants, so their chemical, physical, and biological properties must be consid-
ered. It is necessary to simultaneously satisfy the mechanical properties and bioactivity to
repair bone defects in dentistry. Inorganic particles are commonly used in ceramics, such
as hydroxyapatite [22], calcium phosphate [23], and bioactive glass [24].

2.1. Hydroxyapatite

Hydroxyapatite is a primary constituent of bones and teeth in vertebrates and is
known for its biocompatible, bioactive, osteoconductive, non-toxic, non-inflammatory, and
non-immunogenic properties [25]. Hydroxyapatite can be synthesized in various ways,
including via dry, wet, and high-temperature methods [26]. By choosing different methods
and manipulating operating parameters properly, we can synthesize tailor-made hydrox-
yapatite nanoparticles. The precursor of synthesized hydroxyapatite can be derived from
chemical or natural resources [27]. Although the pure form of the precursors can usually
increase purity, hydroxyapatites derived from natural resources are more economic and
show better metabolic activity and enhanced bioactivity in comparison to their synthetic
counterparts [3]. Suitable natural resources include eggshells [28], bovine bones [29], fish
scales [30], etc.

Combining hydroxyapatite with organic or inorganic compounds can enhance the me-
chanical strength, biocompatibility, and bioactivity, as well as some specific features [31,32].
Polyurethane membranes fabricated with titanium dioxide (TiO2) and hydroxyapatite has
higher water contact angle, mechanical strength, and stiffness than those without TiO2
and hydroxyapatite. They also show better cell adhesion, viability, proliferation, alkaline
phosphatase (ALP) activity, and calcium content [33]. Guided tissue membranes embedded
with hydroxyapatite have good biocompatibility and osteoconductivity and can establish
desirable conditions to prompt injured bone regeneration [34]. Hydroxyapatite also has
potential in dental tissue regeneration.

The minerals in the natural hard tissue are mainly composed of hydroxyapatite and
type I collagen. The inorganic compounds like calcium and hydroxyapatite precipitate
in the organic matrix. Their nucleation, crystal growth, morphology, and orientation is
regulated by interaction with the organic matrix, which is called biomineralization. These
nanohybrid structures provide excellent strength and resilience against outside pressure.
Biopolymer gel-assisted synthesis for hydroxyapatite particles is developed via biomimetic
mineralization [35] using biopolymers such as collagen [36], gelatin [37], chitosan [38], etc.

2.1.1. Collagen Gel-Assisted Synthesis

Collagen has the highest amount of protein in the animal kingdom and is a key
component of the extracellular matrix. Collagen in the human body is categorized into
3 types: type I, II, or III, and type I is commonly used in tissue engineering. Collagen
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type I is made up of three alpha chains, and each chain consists of glycine, proline and
hydroxyproline, respectively [39].

Collagen has good biological activity, and cell affinity and has become a common
wound dressing material in the market [40]. It is usually made from natural collagen
extracted from beef tendon tissue and is cut into appropriate shapes for use according
to different clinical needs. It has good biocompatibility, and has the effects of promoting
hemostasis, wound healing, and tissue repair. Human bone cells seeded onto collagen
and collagen/calcium phosphate coated substrates yielded well-developed filopodia and
lamellipodia, and cell proliferation was significantly higher than in the other specimens [41].
It is suitable for general or surgical wound treatment, can support wound healing, and is
also a commercial product used for dental periodontal regeneration film [42].

The limitation of collagen is its structural stability. In the process of extracting col-
lagen, the assembly structure and natural cross-linking are often destroyed, weakening
its mechanical strength, thermal stability, and enzyme resistance [8]. In addition, colla-
gen does not have antibacterial and hemostatic effects, so it needs to be combined with
other biopolymers, nano-particles, or drugs to improve its shortcomings [43]. The me-
chanical properties of collagen composite membranes can be reinforced by chitosan and
beta-tricalcium phosphate [44]. With increasing chitosan and beta-tricalcium phosphate
contents, the flexural-strength and tear-strength have been improved without a negative
effect on cell morphology, viability, and proliferation.

Chai et al. [36] compared two types of hybrid structures, hydroxyapatite precipitating
to collagen molecules (Col-M/HAp) and hydroxyapatite precipitating to collagen fibrils
(Col-F/HAp), to fish scales (shown in Figure 1). The aggregated and/or cross-linked states
of Col-F/HAp have a higher density than Col-M/HAp and are close to those of the fish
scale (i.e., natural hard tissue). In the Col-F/HAp, the collagen molecules will form the
fibrils first, and the fibril surfaces will regulate the precipitated hydroxyapatite nanocrystals.
Gelatin is produced by partial hydrolysis of collagen, which partially loses its triple-helix
structures and has the same chemical composition as the organic bone matrix. However, its
fast dissolution rate in physiological conditions and lack of pores with suitable dimensions
for cell permeation limit the gelatin’s application.
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Figure 1. The fabrication processes for biomimetic collagen/hydroxyapatite hybrids [36]. Hydroxya-
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or fibril states with hydroxyapatite, indicating that the hydroxyapatite crystal growth was effectively
enhanced by the collagen. Adapted with permission from Elsevier, Copyright (2019).
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2.1.2. Gelatin Gel-Assisted Synthesis

Gelatin is mainly composed of protein and is an irreversibly hydrolyzed form of
collagen. It is light-yellow and transparent gum, usually extracted from the skin, bones,
and connective tissues of cattle, pigs, and fish. Gelatin can be used in gelling agents for food,
medicine, or cosmetics [45]. Gelatin has various attractive features, such as biocompatibility,
low immunogenicity, biodegradability, and ease of manipulation. It can be made as various
microspheres to function as a drug delivery system [46].

The limitation of gelatin is its dissociation temperature around 30–35 ◦C and the fact
that it dissolves at elevated temperatures while forming a swollen hydrogel below this
phase change temperature. The physical properties of gelatin gel can be tuned physical,
enzymatic, and cross-linking agents to modify its use as a drug delivery vehicle [47],
wound dressing [48], or food packaging [49]. For example, the lower crosslinking results
in rapid swelling and diffusion, but the higher crosslinking results in reduced swelling and
sustained diffusion. This directly influences the efficiency of drug delivery.

The chemical cross-linking agents used for gelatin gel-assisted synthesis include
glutaraldehyde [50], genipin [51], and glycerol diglycidyl ether (GDE). Gelli et al. [37]
added the GDE, a chemical cross-linking agent used for increasing stability at physiological
temperature, to the gelatin solution (shown in Figure 2). Imogolite, a naturally occurring
hydrous aluminosilicate that has nano-sized cavities, was then added to the gelatin solution
to act as nucleation size for enhancing the formation of both hydroxyapatite and carbonated
hydroxyapatite. After the gelatin solution was gelled, the gelatin hydrogel was obtained via
a cryogenic formation procedure to acquire µm-sized porosity. The experimental findings of
this gelatin hydrogel characterized by a multi-technique approach showed the desired pore
size from 5 to 125 µm (100–125 µm required in materials for the regeneration of bone tissues)
and promoted hydroxyapatite formation proved by means of field-emission scanning
electron microscopy (FE-SEM), X-ray diffraction (XRD) analysis, and thermogravimetric
analysis (TGA).
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Elsevier, Copyright (2018).

2.1.3. Chitosan Gel-Assisted Synthesis

Chitosan is composed of glucosamine and derived via the deacetylation of chitin.
Chitin is a natural polysaccharide with a structure like cellulose. It is composed of thou-
sands of particles of N-acetylglucosamine, which is a kind of glucosamine ((1,4)-2-amino-2-
deoxy-β-D-glucan) polysaccharide. Its sources are widely distributed and can be found in
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arthropods, mollusks, algae, and fungi, including the crustaceans of crabs, shrimps and
other marine animals [52]. Chitosan is a product obtained by the deacetylation of chitin.
It can be regarded as a polymer composed of N-acetylglucosamine and glucosamine. It
is not a single specific structure. It can be deacetylated according to molecular weight.
The degree of chemical conversion and the pH value of the solution vary. Depending on
different processing methods, the degree of deacetylation of chitin may be between 65%
and 99%, and generally between 70% and 80%. If the degree of acetyl removal is more than
65%, it can be recognized as chitosan. In addition, chitosan with a degree of deacetylation
of more than 60% is soluble in weak acid [53].

Chitosan has a positively charged amine group (NH3
+) while it is dissolved in weak

acid solution (–NH2 + H+ → NH3
+) [54]. The positively charged groups provide bacte-

riostasis and biocompatibility, as well as promoting cell growth. Compared with chitin,
chitosan has a wider range of application [55]. It possesses good mechanical properties,
biodegradability, biocompatibility, and antibacterial effects. Chitosan’s use as a wound
dressing, the commercial product has been demonstrated by experiments (cytotoxicity and
hemostatic activity) to show its high biocompatibility and non-toxicity [56]. In addition,
chitosan has a positive charge (polyglucosamine; –NH3

+), which can promote the rapid
accumulation of negatively charged platelets and red blood cells, thereby causing blood to
coagulate, which can quickly stop bleeding or control bleeding from wounds. Additionally,
the positive electric energy on the surface produces an antibacterial effect for up to seven
days, which can deter wound infections [57].

Rogina et al. [38] developed a pH-responsive-hydroxyapatite-based gel with sodium
bicarbonate as the gelling agent (shown in Figure 3). This can gel within 4 min without
excess sodium ion concentrations, and most important, it is non-cytotoxic. The in situ
synthesis of the apatite phase facilitates the physical crosslinking by reducing the acidity
of the chitosan solution, not only enhancing the mechanic properties of the gel but also
solving the problem of a low pH value resulting from the synthesis of the chitosan-based
hydrogel.
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The incorporation of nano-hydroxyapatite with chitosan to fabricate composite ma-
terial can be prepared via an in situ hybridization route [58]. Chitosan was dissolved as
a polymer solution. A calcium nitrate tetrahydrate (Ca(NO3)2·4H2O) and diammonium
hydrogen phosphate ((NH4)2HPO4) solution was added into the chitosan solution to ob-
tain a homogeneous polymer solution. The white gelatinous precipitate was separated
by the polymer solution. While increasing the chitosan, the aggregation of hydroxyap-
atite nanoparticles was enhanced. This indicated that chitosan had a strong adsorption
interaction with hydroxyapatite, and the hydroxyapatite nanocrystals were aligned along
the chitosan molecules. Observation via scanning electron microscopy noted that the
hydroxyapatite nanoparticles had a uniform size distribution. The spherical inorganic
hydroxyapatite was fabricated via chitosan gel-assisted synthesis.

2.2. Calcium Phosphate

Calcium phosphate can be successfully used as a filler for polymeric composites [59].
Calcium phosphate is one of the compositions of the inorganic phase of bone, and hence it
possesses biocompatible properties, osteoconductivity, and osteoinductivity. The surface of
calcium phosphate undergoes solution-mediated surface reactions when in contact with
biological media, and this is partly responsible for new bone formation. There are several
crystalline forms of calcium phosphate (alpha and beta forms) [60]. Hydroxyapatite and
tricalcium phosphate (TCP) [61] are the forms of calcium phosphate which are mostly
studied for bone tissue engineering [62]. Calcium phosphate nanotube arrays had a
pronounced effect on cell attachment on the biological responses of human bone cells [63].
The calcium phosphate grooved patterns affect the human fetal osteoblast cell shape and
cytoskeletal structure, thus influencing cell proliferation and cell adhesion forces [64].

The size and shape of calcium phosphate particles are critical for biological reactions
such as osteoblast proliferation, cellular activity, apoptosis, and macrophage activity [65].
By choosing different synthetic methods, altering the starting concentration and Ca/P ratio
of the precursor can achieve the expected size [66] and shape of calcium phosphate particles.
The gelatin–strontium substituted calcium phosphate composites can be fabricated via
coprecipitation in a gelatin solution to form unidirectional porous scaffolds with an oriented
microtubular structure [67]. The incorporation of calcium phosphate into the guided tissue
regeneration membrane can alter the membrane’s bioactivity, osteoconduction, and other
properties like porosity [68], mechanical strength, pH value, and antibacterial ability. An
inorganic crystal was guided via epitaxy with the organic matrix as a template.

Maas et al. [69] prepared mineralized collagen fibrils closely resembling natural bone
material by using a nano-porous polycarbonate track-etched membrane as a filtration
membrane and substrate (shown in Figure 4). Feed solution containing 1 mg/mL collagen,
1–20 mM CaCl2, and 1 mM HCL (pH value = 3.0) was pumped into the receiver solution
containing 0.66 mM Na2PO4 and 1 mM NaOH under a gauge pressure of 250 mbar. With
this method, the diameter of the mineralized fibril can be controlled through the choice of
the size of the nanopores in the membrane separating the feed solution from the receiver
solution.
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Figure 4. The preparation of mineralized nanofibers of collagen fibrils containing calcium phosphate [69]. This structure,
which resembles the basic constituent of bones, assembles itself without the addition of non-collagenous proteins or their
polymeric substitutes. Adapted with permission from American Chemical Society, Copyright (2017).

Kovach et al. [70] fabricated a supramolecular calcium phosphate ball by dropping
NaH2PO4·H2O precursor solution into CaCl2 solution with gelatin and chitosan at 90 ◦C
(pH values ranging from 5.5 to 3.8) under continuous stirring (shown in Figure 5). It
has a flower-like structure constructed of thin calcium phosphate platelets generated by
the synergistic effect of both the gelatin and chitosan. In the presence of only gelatin,
cube-shaped aggregates and large rhombic crystals are formed and can be observed under
the light microscope. On the molecular level, the gelatin cannot control the growth of
the thin platelets. In presence of only chitosan, the thin calcium phosphate platelets
(100 nm) are arranged and form equilateral cubes. Chitosan guided the crystal growth of
calcium phosphate and induced bundle formation. Gelatin–chitosan–water complexes
influenced the supramolecular ordering and guided calcium phosphate crystal growth to
form nano-porous supramolecular structures.
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2.3. Bioactive Glass

Silicate bioceramics are considered to promote bone regeneration as potential materials
for bone repair [32]. This material provides proper mechanical properties, degradation,
and manufacturability [71]. Bioactive glass is composed of silica and phosphate. In
the organism, it forms a hydroxyapatite layer on the surface, connects with bone cells,
promotes the absorption and release of growth factors, and assists in the proliferation and
differentiation of osteoblasts [72]. Bioceramic particles composed of silica and titanium
oxide composites can promote MG63 cell growth significantly and keep the pH value
and ion concentrations of the environment stable. These particles show potential for
bone-regenerating applications [73].

Bioactive glass particles usually have mesoporous structures and are advantageous
to use as drug delivery systems in dentistry. Bioactive glass can be doped with boron to
increase its bioactivity and give it a more porous structure. It is advantageous for drug
delivery given its ability for drug adsorption [74] (shown in Figure 6). Mesoporous silica
nanospheres were developed as engineered nanocarriers within a foam matrix for long-
term and sequential delivery. The matrix was shelled by biopolymers, polylactic acid, or
polyethylene glycol via electro-spraying to fuse it with the collagen foam. The biopolymer
shell substantially prolonged the release period of bovine serum albumin. It is effective for
sequential protein delivery. The foam scaffolding of the nanocarrier system is a potential
therapeutic three-dimensional matrix for cell culture and tissue engineering [75].
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Bioactive glass was first made by Larry L. Hench in the late 1960s [76] and called
bioglass 45S5. The manufacturing method was like that of industrial glass, which is melted
at a high temperature of about 1400 ◦C. However, it was replaced by the sol-gel method
to retain the bioactivity of bioglass [77]. The advantages of the sol-gel method are that
the synthesis temperature is relatively low, large-scale vacuum processing equipment is
not required, the composition ratio can be adjusted, organic and inorganic substances are
allowed to be doped, and the uniformity of the product’s particle size can be controlled
to obtain high-purity samples with extremely high uniformity [78]. The sol-gel method
uses chemically active compounds as precursors. The reactants and precursors can be
uniformly dispersed in the liquid environment. Through the control of environmental
factors such as temperature, concentration, and pH, the solution can gradually form a sol
system, and colloidal particles gradually aggregate and form a polymer structure to create
a three-dimensional gel structure.

The sol-gel method can be used to prepare silica-based bioglass for bone tissue regener-
ation [78]. First, the precursor (i.e., tetraethyl silicate), catalyst solvent, and water are mixed
into a homogeneous sol solution. The precursor can be processed under the catalyst, hy-
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drolysis, and polycondensation reactions. Since the precursors of the reaction are dissolved
in aqueous solutions of different pH values, the alkoxy groups of the reaction precursors
can react with the hydroxyl groups of water. Then, the polycondensation reaction consists
of two forms, namely water condensation and alcohol condensation, respectively.

Luo et al. [79] fabricated SiO2-CaO binary glass scaffolds via bacterial cellulose, nanofi-
brous biopolymer (shown in Figure 7). Bacterial cellulose was composed of 2.5% (w/v)
glucose, 0.75% (w/v) yeast extract, 1% (w/v) tryptone, and 1% (w/v) Na2HPO4. It was used
as a template for nanofibrous structures. Then, the sol-gel process was used to form fibrous
silica-based scaffolds upon bacterial cellulose fibers. The bacterial cellulose template was
moved via calcination at 700 ◦C for 6 h. The fiber diameter of pristine bacterial cellulose
ranges from 25 to 95 nm and the scaffold exhibits the dominant mesopores at around
10.6 nm.
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3. Biopolymers Hybrid Particles Used in Dentistry

In periodontal regeneration surgery, periodontal regeneration membranes are often
used to block the invasion of bacteria or fibroblasts. Periodontal regeneration membranes
have a porous structure to prevent bacteria or fibroblasts from invading while allowing
nutrients and blood to pass through [80,81]. It can create a space to guide the regrowth of
periodontal tissue cells. Periodontal regeneration membrane materials are divided into
two types: absorbable [82] and non-absorbable [83]. The non-absorbable regeneration
membrane must be removed 4–6 weeks after surgery, which is very disruptive. Therefore,
artificial synthetic or native materials which are absorbable and have good biocompatibility
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are often used [9,84]. Various biopolymers can be used, such as hyaluronic acid [85],
alginate [86], polylactic acid [87], and chitosan [88].

Hyaluronic acid is a biomolecule composed of glycosaminoglycan (polysaccharide,
carbohydrate). In oral tissues, native hyaluronic acid is mainly present in gingiva and the
periodontal ligaments. The viscosity, elasticity and hydrophilicity of hyaluronic acid are
usually modified to enhance its resistance to degradation [89]. Hyaluronic acid-gelatin
hydrogel polymers, β-tricalcium phosphate, and biphasic calcium phosphate ceramics can
be fabricated using freeze-drying methods to develop a dental-bone substitute for bone
regeneration. This biopolymer and bioceramic mixing scaffold showed excellent bone
formation via osteocytes without tissue collapse [85].

Alginate is a natural biopolymer found in seaweed and widely used in the food and
pharmaceutical industry. Alginate hydrogel can be developed as a promising scaffold
for dental-derived stem cells with a high capacity for osteo-differentiation and adipo-
differentiation in vitro [90]. However, pure alginate exhibits low cell adhesion and poor
mechanical properties [91]. Bioactive glass containing Zinc and Magnesium was incor-
porated into alginate networks to improve antibacterial and biological activity, as well
as mechanical properties [86]. This shows the potential use-value of the biopolymers of
hybrid bioactive glass particles in dentistry.

Periodontal regeneration film is often mixed with other materials to expand its func-
tionality; bioglass can promote tissue regeneration due to its good biocompatibility, and
the alkaline environment generated during its degradation can inhibit bacterial growth.
However, not all polymers can be combined with bioglass. For example, polylactic acid
is often used as a material for periodontal regeneration film because of its good stability,
biodegradability, mechanical material, and biocompatibility, and since the product of poly-
lactic acid degradation is acidic, it has a sterilization function. However, after being mixed
with bioglass, it will neutralize the alkaline environment produced by the bioglass, causing
the periodontal film to form a neutral environment in which bacteria may proliferate [87].

Chitosan has become a novel choice and has the advantages of biodegradability, but
the product is neutral after degradation, so the alkaline antibacterial environment of bio-
glass can continue to function [88]. Moreover, the introduction of bioglass into chitosan
increases the hardness and elasticity of the composite film so that the film can still maintain
proper mechanical strength in a humid environment. Bioglass can effectively precipitate
calcium and phosphorus on the surface of the composite membrane. This type of material
has the potential to induce bone regeneration and is significant for promoting the pro-
liferation and metabolism of human periodontal ligament cells. Although there is only
a significant increase in the metabolism of human bone marrow stromal cells, it has a
significant effect on the mineralization of the two types of cell matrices. Hydroxyapatite
nanoparticles (nHA) incorporated in the chitosan/gelatin/nHA scaffolds can promote the
deposition of nanocrystalline mineralized tissue inside the cell-seeded scaffolds without the
need for exogenous addition of inductive factors [92]. The chitosan hybrid hydroxyapatite
membrane also can be designed as a smooth–rough asymmetric structure in the guided
regeneration of the barrier membrane for periodontal tissue regeneration [93]. The bilayer
collagenous coated chitosan membrane had higher proliferation/metabolic activity com-
pared to the pristine chitosan membranes and the potential for guided bone regeneration
to promote bone formation [94].

Moreover, chitosan can be made as micro-/nanoparticles, fibers, film sponges, gels
and injectable devices to develop local drug delivery systems for the treatment of periodon-
titis, tooth caries, or root canal procedures (endodontics). It sustains the release of drugs
in the periodontal pockets and therapeutic concentrations for long periods of treatment
time [95] (shown in Figure 8). Drug-loaded chitosan micro/nanoparticles can be modified
with anionic biopolymers (i.e., alginate) via polyelectrolyte complexation. They have less
toxicity and enhance the controlled release in acidic environments. Chitosan can be made
as nano/microfibers, but its mechanical property must be improved by composite formula-
tions (i.e., polyvinyl alcohol, PVA). Non-steroidal anti-inflammatory drugs (NSAIDs) can
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be incorporated in chitosan/PVA fibers for drug delivery systems to reduce inflammation.
Biodegradable chitosan films were made via solvent casting for the delivery of effective
concentrations of local anesthetics, such as tetracaine, lidocaine, and benzocaine. They
can provide prolonged anesthetic treatments and relieve pain. Thermosensitive hydrogels
based on chitosan and glycerophosphate were developed as an injectable loaded with
anti-inflammatory and antibiotics (i.e., metronidazole, and moxifloxacin) or growth factors
(i.e., metformin and bone morphogenetic proteins, BMP-7) to enhance biomineralization
and induce bone tissue regeneration.
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4. Conclusions and Outlook

This review compiles currently available information regarding aspects of biopolymer
hybrid particles, which are important in dentistry. Furthermore, information regarding
factors affecting biopolymer gel-assisted synthesis for inorganic particles used in dentistry
is discussed. From a clinical point of view, calcium phosphate including hydroxyapatite
is non-toxic, osteoconductive, and bioactive, both in vitro and in vivo. For a long time,
hydroxyapatite was the main material used for bone implants due to its physicochemical
properties and bioactivity. However, bioactive glass is more applicable and multifunctional
than hydroxyapatite and is currently used in clinical practice and commercially available.
In addition, chitosan can be used as a tunable and biodegradable carrier for drug delivery
systems. Bioactive glass and chitosan, therefore, present novel options for the design of
biopolymer hybrid particles for therapeutic dentistry procedures to promote tissue regen-
eration. With this review article, we hope to encourage the development of biopolymer
hybrid particles use in dentistry, considering their physicochemical properties, bioactivity,
and multifunctionality.
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