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Abstract
Dopamine plays an important role in the development of alcohol dependence, cognitive

dysfunction, and is regulated via dopamine transporter activity. Although dopamine trans-

porter activity is critically involved in alcohol dependence, studies observing this relationship

are limited. Thus the current study examined whether dopamine transporter availability

is associated with developing of alcohol dependence and cognitive dysfunction. Brain

imaging with 99mTc-TRODAT-1 as a ligand was used to measure dopamine transporter

availability among 26 male patients with pure alcohol dependence and 22 age- and sex-

matched healthy volunteers. The Wisconsin Card Sorting Test (WCST) and Tridimensional

Personality Questionnaire (TPQ) were administered to assess neurocognitive functioning

and personality traits, respectively. Compared to healthy controls, patients with alcohol

dependence showed a significant reduction in dopamine transporter availability (p < 0.001),

as well as diminished performance on the WCST (p < 0.001). Dopamine transporter avail-

ability was negatively correlated with both total and perseverative WCST errors among

healthy controls, but only patients with alcohol dependence showed a positive correlation

between dopamine transporter availability and a harm avoidance personality profile. Thus,

reductions in dopamine transporter availability may play a pathophysiological role in the

development of pure alcohol dependence, given its association with neurocognitive deficits.

Moreover, personality may influence the development of pure alcohol dependence; how-

ever, additional clinical subgroups should be examined to confirm this possibility.
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Introduction
Alcohol dependence (AD) is a heterogeneous mental disorder that is confounded by several
factors [1]. Studies have shown that changes in central dopaminergic neurotransmission can
influence drinking behaviors in both animals and humans [2], and dysfunction of central dopa-
minergic system is an important factors in AD pathogenesis. The dopamine transporter (DAT)
is a trans-membrane protein [3, 4] responsible for the reuptake of dopamine from the synaptic
clefts into the presynaptic terminal. DAT knockout mice show a reduction in the intra-neuro-
nal vesicular storage pool of dopamine and a profound elevation of extracellular dopamine lev-
els [5]. Hence, evaluating central DAT availability may help better understand the state of
dopaminergic neurons in the brain.

DAT has been suggested as the molecular site of action for reinforcing mechanisms related
to drug addiction [6]. Alcohol is highly addictive, and long-term alcohol abuse may impair the
brain’s dopaminergic system. However, research using live neuroimaging of DAT among
patients with AD has been limited until now. One postmortem study observed reduced DAT
availability in the nucleus accumbens related to late-onset alcoholism [7]. Additionally, previ-
ous brain imaging studies using single-photon emission tomography (SPECT) have shown a
striatal DAT reduction among late-onset alcoholics [8, 9]. However, a relationship between
striatal DAT reduction and alcohol dependence has not been seen in previous studies using
positron emission tomography (PET) [10, 11]. These conflicting results could likely be attrib-
uted to the fact that AD is a complex disorder, and that the presence of different clinical sub-
types may influence DAT availability. Thus, assessing a homogenous AD group may provide
better insight into the association between striatal DAT availability and chronic alcoholism.

Previous research has shown reduced prefrontal cortical dopamine transmission among
patients with AD [12]; these areas include association cortices implicated in attention and exec-
utive function. Neurocognitive deficits in memory, attention, and other domain have been
associated with AD in previous studies [13]. The Wisconsin Card Sorting Test (WCST) is a
well-known test for assessing working memory and cognitive flexibility [14]. Although healthy
volunteers with higher striatal DAT density than patients tend to perform better on the WCST
[15], using the WCST data to explore differences in striatal DAT availability among AD sub-
jects has been limited. Therefore, it is important to determine whether the WCST can effec-
tively detect any relationship between striatal DAT availability and neurocognitive deficits
among alcohol abusers.

Dopamine is implicated in the regulation of specific personality traits [16, 17], and dopa-
mine transporter/receptor availability may also be associated with certain traits [18, 19]. How-
ever, the relationship between DAT availability and personality has not been clearly established
either among healthy subjects or patient populations [19, 20]. Thus, the current study investi-
gated striatal DAT density and its association to both cognitive functioning and specific per-
sonality traits among patients with pure AD compared with healthy controls. We hypothesized
that subjects with pure AD and healthy controls would show differences in striatal DAT avail-
ability and WCST performance and that striatal DAT availability would correlate with WCST
scores. We further investigated a putative association between personality traits and dopami-
nergic neuronal activity in the human brain.

Materials and Methods

Sample preparation
This study enrolled male participants only because evidence suggests that gender is a signifi-
cant confounding factor in research on striatal DAT availability [21]. The Institutional Review
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Board for the Protection of Human Subjects at the Tri-Service General Hospital (TSGH), a
medical teaching hospital within the National Defense Medical center in Taiwan. The protocol
was approved by the Ethics Committee of TSGH for the Protection of Human Subjects
(TSGHIRB No. 099-05-017) and the methods were carried out in accordance with the
approved guidelines. All participants were informed about the aims and other details of the
study, and provided their written, informed consent. Subjects who voluntarily sought treat-
ment for alcohol dependence at the TSGH between 2009 and 2013 and met inclusion/exclusion
criteria were eligible to participate. All participants were older than 20 years of age. The
patients had been diagnosed with alcohol dependence based on the Diagnostic and Statistical
Manual of Mental Disorders, fourth edition (DSM-IV-TR), and were not dependent on other
substances. Each patient and control were initially evaluated by an attending psychiatrist and
then interviewed by a well-trained psychologist, using the Chinese version of the Modified
Schedule of Affective Disorder and Schizophrenia-Lifetime (SADS-L) to screen out other psy-
chiatric conditions. Subjects were excluded if they had a co-morbid axis I or II mental disorder
(except AD), medical conditions that could alter cerebral functioning, head trauma involving
loss of consciousness, or any neurological disease. The alcohol group consisted of 26 subjects
with pure AD recruited during intoxication or withdrawal, but last drinking time less than 48
hours previously. Of the psychotropics, only lorazepam (2–8 mg/day) was permitted, to pre-
vent alcohol withdrawal before the imaging study. SPECT studies were performed within the
first week of recruitment. The control group consisted of 22 physically and psychiatrically
healthy male volunteers. No participants were taking medications that could affect the central
dopamine system during the period of the study.

Imaging acquisition, processing, and data analysis
The procedure for preparing 99mTc-TRODAT-1 for use in the imaging protocol has previously
been described in detail [22, 23]. The brain SPECT scan with 99mTc-TRODAT-1 was carried
out within one week of the patient’s last alcoholic drink. TRODAT-1 kits were provided by the
Institute of Nuclear Energy Research (Taiwan). Images were acquired 4 h after administration
of a single bolus of 740 MBq (20 mCi) of 99mTc-TRODAT-1 via antecubital vein. At the start of
the scan, participants were placed in the camera in a supine position and the head fixed with a
head holder. Fifteen dynamic images of the brain were acquired using a dual-headed gamma
camera (Helix SPX; Elscint, Haifa, Israel) equipped with ultrahigh resolution fan-beam colli-
mators (HUFB-75). Total acquisition time was 30 min. Data were acquired in a 128 × 128
matrix through 360° (180° for each sense of rotation) with rotations at 3° intervals at 30 s per
angle step, with a pixel size of 3.17 × 3.17 mm (in a 1.4 zoom) and slice thickness of 3.4 mm.
An external digital camera was used to monitor patients in order to prevent head movement
during scanning, and sinograms and linograms were used for internal imaging quality checks.

Images were reconstructed using a back projection method with a Metz filter. Attenuation
correction was performed using Chang’s first-order method. The SPECT images were analyzed
along the level of the canthomeatal line. The composite image from the three highest-activity
basal ganglia slices from a given participant was co-registered with the corresponding CT image
to exclude possible brain lesions, and to delineate standardized regions of interest (ROIs) for the
caudate, putamen, and striatum. MRI was used to recheck the brain lesions if the CT demon-
strated inconclusive results. The defined ROIs were then manually applied to the other SPECT
slices for that subject [21]. The occipital cortices (OC), which had low DAT concentrations, were
also drawn in the same way and served as background areas. The uptakes of 99mTc-TRODAT-1
in various brain regions was measured 4 h after injection, and the specific uptake ratio (SUR) of
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each region was calculated by the following equation: (ROItarget—ROIreference/ROIreference). The
researcher drawing ROIs on the images was blinded to subject group.

Wisconsin Card Sorting Test
An experienced psychologist administered a computer-aided WCST on the same day as the
SPECT scan. During the WCST, all participants were asked to match response cards with four
stimulus cards along one of three perceptual dimensions (color, form, or number). Verbal feed-
back (right or wrong) was given without revealing information regarding the dimensions. After
ten consecutive correct matches, the classification principle changed without warning,
demanding flexibility in set shifting. There were 128 response cards during the test, and the test
proceeded until six sorting categories had been acquired or until all the cards had been sorted.
In accordance with the WCST manual [24], the following parameters were analyzed: (1) total
corrects; (2) total errors; (3) perseverative errors; (4) non-perseverative errors; (5) categories
completed; and (6) failure to maintain set. Evidence suggests that education and gender do not
significantly influence performance on the WCST among Taiwanese subjects [25].

Tridimensional Personality Questionnaire
We used the Chinese version of the Tridimensional Personality Questionnaire (TPQ). The
Chinese version of TPQ is a self-administered, true-false instrument that excludes the reward-
dependence dimension, which does not have adequate reliability among Han Chinese in Tai-
wan (Cronbach's α = 0.54) [26]. We measured two dimensions having acceptable internal con-
sistency, namely novelty seeking (32 items, Cronbach's α = 0.72) and harm avoidance (34
items, Cronbach's α = 0.89).

Statistical Analysis
Group differences on demographic characteristics with normally distributed continuous vari-
ables (age and education) were analyzed using Student’s t-test for independent samples, and
non-normally distributed continuous variables (e.g. SUR for each brain region, WCST perfor-
mance and TPQ performance) were analyzed using MannWhitney U tests. As this study was
based on several multiple comparisons, results could have arisen due to Type I errors. There-
fore, Bonferroni corrections were applied to reduce issues related to family-wise error rates.
Given that each participant had three correlated SURs (caudate, putamen, and striatum), a
multiple linear regression using the generalized estimating equation (GEE) was implemented
to adjust clustering within individuals. The effects of specific factors on the SURs were assessed
with an exchangeable working correlation structure.

Spearman’s rank correlations were carried out to examine the association between striatal
DAT availability and the WCST and TPQ parameters. Correlations between the SURs and
other parameters (e.g. age, daily alcohol intake, severity, and year of AD) were assessed using
Pearson correlations. All statistics were analyzed using SPSS software version 19.0 for Win-
dows (SPSS Inc., Chicago, IL, USA). An analysis was considered statistically significant if its
associated p-value was less than or equal to 0.05 (two-tailed).

Results
A total of 48 male individuals participated, including 26 patients with AD (mean age
42.73 ± 10.43 years) and 22 healthy controls (mean age 39.64 ± 9.10 years). Each subject under-
went SPECT scanning, and completed the WCST and TPQ. Subjects characteristics are pre-
sented in Table 1. There were no age differences between patients with AD and healthy
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controls (t = 1.435, p = 0.158). However, patients with AD had fewer years of education com-
pared with healthy controls (t = -3.689, p = 0.001).

Patients with AD showed significant impairment on several WCST measures, including
total errors (z = -3.572, p< 0.001), perseverative errors (z = -3.367, p = 0.001), non-persevera-
tive errors (z = -3.490, p< 0.001), and categories completed (z = -3.623, p< 0.001). These
results were significant after Bonferroni correction (Conservative p value would be 0.05/
10 = 0.005). In contrast, we found no significant differences on the total number of correct tri-
als, or a failure to maintain set (Table 1). In term of personality trait, results showed marginal
differences between patients with AD and healthy controls on novelty seeking (NS) and harm
avoidance (HA) (p = 0.085 for NS; p = 0.049 for HA).

99mTc-TRODAT-1 images of a patient with AD and a healthy control are shown in Fig 1. Indi-
vidual with pure AD showed decreased radio signals with ill-defined margins in the striatum com-
pared to healthy control. For the pure AD group, SUR values across the whole striatum, putamen,
and caudate were 2.05 ± 0.39, 1.70 ± 0.42, and 2.41 ± 0.47, respectively. In the healthy control
group, the corresponding values were 2.55 ± 0.27, 2.25 ± 0.34, and 2.87 ± 0.32, respectively. Patients
with AD had significantly lower SURs in all three brain regions (striatum, putamen and caudate,
p = 0.001 and� 0.001, respectively; in Fig 2A and 2B). There were no significant difference in DAT
availability between left and right brain regions (including the caudate, putamen and striatum, sepa-
rately) in both subjects groups (S1 Table). The generalized estimating equation (GEE) analysis was
performed to explore the effects of variables such as age, smoking status, education, and group on
the SURs. The caudate and putamen SURs differed significantly from the striatum (p< 0.001).
When analyzing the correlation between age and SUR, a significant effect was found (p< 0.001),
but education years and smoking status did not have any significant association with SUR
(Table 2). Since healthy controls did not have histories of alcohol abuse, only patients with AD
were analyzed regarding correlations between SUR, daily alcohol intake, severity, and year of AD.
A significant negative correlation between striatal SUR and year of AD (P< 0.001) was observed,
but no significant associations emerged between SURs and daily alcohol intake and severity.

Table 1. Demographic Characteristics and Parameters of Wisconsin Card Sorting Test in People with Pure Alcohol Dependence and Healthy
Controls.

Pure Alcohol dependence (n = 26) Healthy control (n = 22)

Mean ± SD Mean ± SD t p a

Age (y)a 42.73 ±10.43 39.64 ± 9.10 1.435 0.158

Education(y)a 13.15 ± 3.33 16.64 ± 3.17 -3.689 0.001

Duration of alcohol use (y) 12.15 ± 8.12 n/a

Wisconsin Card Sorting Test z p b

Total corrects b 66.50 ± 17.49 70.68 ± 5.95 - 0.746 0.456

Total errorsb 45.96 ± 26.86 19.86 ±15.23 -3.572 < 0.001

Perseverative errors b 21.92 ± 15.79 9.73 ± 6.76 -3.367 0.001

Non-perseverative errors b 27.92 ± 22.10 10.14 ± 9.24 -3.490 < 0.001

Categories complete b 3.35 ± 2.37 5.59 ± 1.18 -3.623 < 0.001

Failure to maintain set b 1.12 ± 1.34 0.73 ± 1.03 -0.837 0.402

Tridimensional Personality Questionnaire (TPQ) z p b

Novelty seeking b 15,08 ± 4.65 12.95 ± 3.63 -1.723 0.085

Harm avoidance b 14.88 ± 5.55 11.82 ± 4.68 -1.973 0.049

a Independent samples t-tests.
b Mann-Whitney U test.

doi:10.1371/journal.pone.0131017.t001
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The association between striatal SUR and WCST parameters among healthy controls
revealed that total correct (rho = -0.732, p< 0.001), total errors (rho = -0.714, p< 0.001), and
perseverative errors (rho = -0.665, p< 0.001) reached statistical significance, and a marginal
association was observed for non-perseverative errors (rho = -0.596, p = 0.003). Patients with
AD had a marginally significant association between striatal SUR and total errors (rho = -0.445,
p = 0.023), perseverative errors (rho = -0.416, p = 0.035), and categories completed (rho = -0.392,
p = 0.048). However, these results did not meet the significance threshold after adjusting for mul-
tiple comparisons (Conservative P value would be 0.05/36 = 0.0014) (Table 3). Fig 3 presents the
significant associations found between striatal SUR and total and perseverative errors among
healthy controls.

Patients with AD demonstrated marginal differences from controls on novelty seeking
(z = -1.723, p = 0.085) and harm avoidance (z = -1.973, p = 0.049) (Table 1). A significant posi-
tive correlation between harm avoidance and DAT availability was found in the patient group
(rho = 0.475, p = 0.014 for striatum; rho = 0.474, p = 0.014 for the putamen; and rho = 0.527,
p = 0.006 for the caudate, Conservative p value would be 0.05/3 = 0.017 after Bonferroni cor-
rection) (Fig 4), but not in the healthy control group (p> 0.05). The novelty seeking scale did
not significantly correlate with DAT availability for either group in the brain regions studied.

Fig 1. 99mTc-TRODAT-1 with single photon emission computed tomographic images of a control subject (A) in comparison with an agematched
alcohol-dependent patient (B) in transverse slices at the level of striatum, and the corresponding MRI for the control subject (C). Regions of interest
shows are for caudate and putamen (A and C), and for occipital lobe which is the reference region (D).

doi:10.1371/journal.pone.0131017.g001
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Discussion

DAT availability in patients with alcohol dependence
DAT is widely expressed in the axons of dopamine neurons and its availability reflects mainte-
nance of presynaptic function [27]. As hypothesized, the present study found a significant
decrease of brain DAT availability in male patients with pure AD when compared to healthy

Fig 2. A scatter plot (A) and general data (B) of specific uptake ratio (SUR) of DAT in striatum, caudate and putamen calculated from 99mTc-
TRODAT-1 SPECT in alcohol dependent subjects and healthy controls.Horizontal bars indicates mean value of SUR. (mean ± SD). a p value of Mann-
WhitneyU test.

doi:10.1371/journal.pone.0131017.g002
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controls. Our results are consistent with previous neuroimaging studies in patients with AD
[7–9], but differ from others [10, 28].

There are three possible explanations for these conflicting results. First, alcohol dependence
(or abuse) is usually co-morbid with anxiety disorder and/or depressive disorder [1], and evi-
dence suggests the presence of higher DAT availability in depressive subjects than in healthy
controls [29–31]. Therefore, the presence of patients with AD having comorbid anxiety/
depressive disorders in a study group may be an important factor influencing findings of DAT
availability, but previous brain imaging studies could not exclude these confounding factors
[7–9, 28]. In order to exclude the influence of depressive factors on DAT availability, the pres-
ent study enrolled subjects with pure AD only. Thus, false negative results due to inclusion of
subjects with depressive disorders were unlikely.

Second, endogenous dopamine may compete with radioligands for the binding sites on DAT.
Radioligands such as [123I]FP-CIT have been reported to compete with endogenous dopamine in
an animal study [32]. If competition between endogenous dopamine and 99mTc-TRODAT-1
indeed exists, we may have overestimated DAT availability in patients with pure AD because the
extracellular dopamine level may decrease during alcohol withdrawal. Further studies should
investigate whether 99mTc-TRODAT-1 can be replaced by endogenous dopamine in humans.

Third, the timing of SPECT imaging during withdrawal or abstinence may influence the
results of DAT availability in patients with AD. Evidence suggests that alcohol-related neuro-
toxicity in striatal dopaminergic neurons is reversible. A human study [8] administering [123I]

Table 2. The effects of age, education years, smoking status, brain regions, and groups on the SUR using the GEEmethod.

Variable Estimate SE χ2 df p

Age 0.029 0.004 46.581 1 <0.001

Education years 0.012 0.009 1.905 1 0.167

Total caudate vs. total striatum 0.321 0.025 168.934 1 <0.001

Total putamen vs. total striatum 0.320 0.025 163.083 1 <0.001

Nonsmoking vs. Smoking 0.165 0.113 2.142 1 0.143

Numbers of cigarettes smoked per day 0.003 0.002 1.203 1 0.273

Pure AD vs. controls 0.466 0.103 20.576 1 <0.001

AD: Alcohol dependence; SE = standard error, df = degree of freedom.

doi:10.1371/journal.pone.0131017.t002

Table 3. Association betweenWCST parameters and DAT availability in pure AD patients and healthy controls using Spearman’s rank correlation.

WCST Parameter Pure AD (n = 26) Healthy controls (n = 22)

rho coefficiency (p value) rho coefficiency (p value)

striatum caudate putamen striatum caudate putamen

TC 0.028(0.893) 0.016(0.937) 0.084(0.684) 0.732(<0.001) 0.579(0.005) 0.506(0.016)

TE 0.445(0.023) 0.280(0.166) 0.490(0.011) 0.714(<0.001) 0.548(0.008) 0.569(0.006)

PE 0.416(0.035) 0.285(0.158) 0.495(0.010) 0.665(<0.001) 0.670(0.001) 0.356(0.104)

NPE 0.275(0.174) 0.175(0.393) 0.277(0.171) 0.596(0.003) 0.375(0.086) 0.570(0.006)

CC 0.392(0.048) 0.233(0.252) 0.461(0.018) 0.365(0.095) 0.268(0.228) 0.342(0.119)

FMS 0.028(0.890) 0.072(0.726) 0.090(0.662) 0.519(0.013) 0.376(0.084) 0.519(0.013)

AD: Alcohol dependence; TC: total corrects; TE: total errors; PE: perseverative errors; NPE: non-perseverative errors; CC: categories completed; FMS:

failure to maintain set.

doi:10.1371/journal.pone.0131017.t003
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β–CIT SPECT to subjects with alcohol dependence found a reduction in DAT availability during
withdrawal followed by a significant increase with continued abstinence. This reversible neuro-
toxicity was also found in a previous animal study in which alcohol-preferring monkeys showed
substantial improvement in alcohol-associated neurotoxicity and striatal DAT function after a
period of abstinence [33]. In order to exclude the influence of a time effect on DAT availability,
our patients were recruited during continued drinking behavior and the SPECT studies were per-
formed within a stable withdrawal state (within 72 hours of the last drink). Thus, the time factor
in abstinence from alcohol abuse is also unlikely to have interfered with our results.

Effects of age, gender, brain regions and smoking status on DAT availability
Our results showed a significant negative correlation between striatal DAT availability and age
in both patients with AD (r = -0.599, p = 0.001) and healthy controls (r = -0.573, p = 0.005),

Fig 3. Graph showing correlation of striatal specific uptake ratio of [99mTc] TRODAT-1 with perseverative errors and total errors. Significant
association between these parameters existed healthy controls.

doi:10.1371/journal.pone.0131017.g003

Fig 4. Graph showing correlation of striatal specific uptake ratio of [99mTc]TRODAT-1with harm avoidance. Significant association between harm
avoidance and SUR over total caudate(ρ = 0.527, p = 0.06) and total striatum (ρ = 0.475, p = 0.014) existed in pure alcohol-dependent individuals. The
coefficient of determination (r2) is 28.4% for the alcohol dependent group (n = 26) between harm avoidance and total striatum SUR.

doi:10.1371/journal.pone.0131017.g004

Dopamine Transporters and Cognitive Function in Alcohol Dependence

PLOS ONE | DOI:10.1371/journal.pone.0131017 June 29, 2015 9 / 14



which is consistent with the findings of other studies [21, 34]. Previous studies using different
radioligands have also shown decreased DAT availability related to age [35, 36]. However, our
study showed no average age difference between patients with AD and healthy controls, thus
eliminating age as a confounding factor in this study. With respect to gender effects, previous
studies reported higher DAT availability in women [21, 31]; by enrolling only men, we
excluded the effect of gender on DAT availability. The caudate and putamen are distinctly
anatomically separate in the human, and we found that the DAT availability from greatest to
lowest, in the three brain regions (ROIs) was caudate, striatum, putamen in both controls and
patients. However, these brain regions were congruent reduction in DAT availability among
patient group. These results suggested that the caudate and putamen may co-contributed to
the development of patient with pure AD, but this suggestion should be further investigated.

Smoking may have indirect effects on the dopaminergic system [37]. Yang et al [38] failed
to find the association [39]. The present study found no correlation between smoking and stria-
tal DAT availability (rho = -0.217, p = 0.138), but the effect of smoking on DAT availability
remains controversial and in need of further investigation with different clinical aspects.

Cognitive functioning and dopamine dysfunction in AD
TheWCST is one of the most important tools for assessing cortico-striatal circuit functioning
and frontal lobe activity [40]. For instance, DAT knockout mice show diminished spatial cog-
nitive functioning [41]. Alterations of dopamine levels within the basal ganglia may ultimately
lead to cognitive deficits [42]. Additionlly, striatal dopaminergic neurotransmission modulates
maintenance processes of working memory [43, 44]. In our study, Spearman's correlation anal-
yses revealed a significant negative relationship between striatal DAT availability and total and
perseverative WCST errors among the healthy groups (Fig 3). These results are in line with pre-
vious studies in humans [11] and experimental animals [45], suggesting that impaired dopami-
nergic functioning is associated with cognitive deficits and striatal DAT availability may play
an important role in cognitive task performance. Although cognitive dysfunction and reduc-
tions in DAT availability were found among AD patients, only a marginally negative relation-
ship between striatal DAT and total and perseverative errors was observed. One possibility for
this result is that an early withdrawal state may influence this relationship among our pure AD
patients; however, other possibilities should be further investigated.

Interestingly, but not surprisingly, no association was observed between striatal DAT avail-
ability and failure to maintain sets for both groups. Failure to maintain sets is defined as the
process of making five or more consecutive correct choices followed by an error, without com-
pleting the category. Failure to maintain sets is regarded as a type of non-perseverative error
[46]. In the present study, perseverative errors were possibly more sensitive than non-persever-
ative errors for identifying lower striatal DAT availability.

Personality traits and DAT availability among patients with AD
The dopaminergic system and specific personality traits have been implicated in the develop-
ment of AD [7, 16, 47]; however, the relationship between DAT availability and personality in
AD has received very little attention. The present study found that patients with AD displayed
higher NS and HA traits than healthy controls, in agreement with a previous study [16]. Addi-
tionally, the present study found that among patients with AD, high HA was related to high
brain DAT availability (Fig 4). However, we could not find a significant correlation between
NS and DAT availability for either group, even though a previous study speculated that NS
behavior is positively related to DAT availability in antisocial AD [19]. Certain methodological
differences may contribute to this discrepancy. For instance, the presents study used 99mTc-

Dopamine Transporters and Cognitive Function in Alcohol Dependence

PLOS ONE | DOI:10.1371/journal.pone.0131017 June 29, 2015 10 / 14



TRODAT as the radioligand and selected a pure AD group (subjects having AD without
comorbid Axis I or II disorders) from a Han Chinese sample. Conversely, Laine et al. [19] used
[123I] β -CIT SPECT and selected an antisocial-subtype AD group from a European sample.
Although these results support the idea that dopamine may play a role in regulating neuronal
activity based on different personality types during AD development, specific methodological
differences (e.g., different radioligands, populations, and AD subgroups) likely influenced
divergent results. Therefore, the relationship between specific personality types and DAT avail-
ability should be further investigated using homogenous AD samples and subgroups as well as
larger sample sizes.

Limitations
The present study had some notable limitations. First, a cross-sectional design was used, AD is
a complex disorder, and enrolled patients with pure AD could develop other mental illnesses
later in life. This might be why our findings are perhaps discordant with other similar study.
Second, our subjects with AD had taken lorazepam to prevent withdrawal symptoms before
SPECT imaging, and there is evidence that benzodiazepines may interfere with levels of extra-
cellular dopamine [48]. Third, the small sample size limited the power of our statistical analy-
ses. To prevent possible Type I errors, we recruited only male patients with pure AD from a
Han Chinese sample, thus limiting the effects of ethnicity and multifactorial diversity. Fourth,
the present study focused on Cloninger’s original biosocial theory of NS and HA, but other per-
sonality traits such as persistence, self-directedness, cooperativeness, and self-transcendence
were not assessed. Therefore, the study likely did not address all relevant personality traits
(self-directedness, etc.) that could be associated with DAT availability in patients with AD.

Conclusion
The present findings suggest that drinking behavior may influence the stabilization of brain
dopamine levels and reduced striatal DAT availability. Low DAT availability may imply low
dopamine levels in the brain, which would further influence neurocognitive deficits among
patients with pure AD. Therefore, a reduction in DAT availability may play a pathophysiologi-
cal role in the development of AD, which is also associated with neurocognitive deficits. More-
over, patients with pure AD who are high in trait–HAmay show a positive relationship
between DAT availability and the development of pure AD; however, different clinical sub-
groups and large-scale studies are needed to confirm this possibility.
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