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Abstract
The historical subclassification of diabetes into predominantly types 1 and 2 is well appreciated to inadequately capture the
heterogeneity seen in patient presentations, disease course, response to therapy and disease complications. This review summa-
rises proposed data-driven approaches to further refine diabetes subtypes using clinical phenotypes and/or genetic information.
We highlight the benefits as well as the limitations of these subclassification schemas, including practical barriers to their
implementation that would need to be overcome before incorporation into clinical practice.
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Abbreviations
ANDIS All New Diabetics In Scania
CKD Chronic kidney disease
DIREVA Diabetes Register in Vasa
GDS German Diabetes Study
LADA Latent autoimmune diabetes in adults
MARD Mild age-related diabetes
MOD Mild obesity-related diabetes
ROC Receiver operating characteristic
SAID Severe autoimmune diabetes
SIDD Severe insulin-deficient diabetes
SIRD Severe insulin-resistant diabetes

Introduction

Diabetes is a heterogeneous group of diseases defined by
chronically elevated blood glucose levels. This umbrella
diagnosis is generally divided into several categories,
including type 1 diabetes, type 2 diabetes, gestational
diabetes and diabetes due to other causes (e.g. monogenic
diabetes or medications), with the majority of diabetes
cases attributed to type 2 (90–95%) or type 1 (5–10%)
[1].

Various biomarkers can help establish the subtype of
diabetes. For example, type 1 diabetes is strongly associ-
ated with the presence of islet autoantibodies, although
these antibodies may be absent in up to 10% of individ-
uals [2]. Additionally, monogenic diseases such as
MODY can be diagnosed with a single genetic test. In
contrast, no single biomarker can conclusively establish
a diagnosis of type 2 diabetes, which is the default diag-
nosis of any individual with diabetes who does not fulfil
the criteria for a more specific diabetes diagnosis [1]. In
type 2 diabetes, hyperglycaemia can arise from different
processes, ranging from insulin deficiency (in individuals
with relative insulin sensitivity) to severe insulin resis-
tance and hyperinsulinaemia; clinical presentations also
vary greatly with respect to disease severity, risk of
complications and response to therapy [3, 4].
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Further subclassification of diabetes into more homoge-
neous groups offers the potential for improved, personalised
treatment of diabetes [5]. Both phenotypic and genotypic
information can provide more precise classifications, ideally
elucidating distinct biological mechanisms that contribute to
development of hyperglycaemia in a given person. Such
patient stratification may allow a precision medicine approach
to diabetes management, highlighting subsets of patients who
are: (1) at highest risk for disease progression or particular
complications; and/or (2) most likely to benefit from particular
management strategies.

This review summarises the approaches that have been
proposed for clinical phenotype-based and genetically based
subclassifications of diabetes. Since the majority of subclassi-
fication approaches published to date have used either pheno-
typic or genetic data points as inputs and not both, we present
these two approaches separately, although we note that this is
an artificial delineation, as these approaches are complemen-
tary and may in theory converge on shared subtypes.
Subclassification approaches also differ with regard to the
starting patient population (e.g. all-comers with diabetes,
those with type 2 diabetes, those who have experienced
diabetic ketoacidosis), and thus the study populations are
noted throughout.

We will first introduce phenotype-driven subtyping strate-
gies, with a focus on those using algorithmic approaches,
which have identified mostly subtypes of type 2 diabetes.
Second, we will introduce genetic strategies for patient strat-
ification where we discuss applications to monogenic diabe-
tes, autoimmune diabetes and type 2 diabetes. Finally, we will
review proposed strategies to stratify patients at risk for diabe-
tes, as well as potential future directions for clinical imple-
mentation of the various subtyping approaches.

Phenotype-driven subclassification strategies

Historically, the vast majority (>95% [1]) of individuals
who develop diabetes outside of pregnancy have been
placed into two subtypes that have been referred to as
type 1 and type 2 since the 1950s, although they were
recognised as distinct entities long before these terms
were coined. These subtypes have been defined by clini-
cal characteristics and have been updated over the years to
incorporate new knowledge, such as the discovery of
autoantibodies to pancreatic islet cells in type 1 diabetes
in the 1970s [6, 7]. The non-discrete nature of these two
categories has been well recognised, with conditions such
as latent autoimmune diabetes in adults (LADA) and
ketosis-prone diabetes representing individuals with clin-
ical features overlapping with type 1 and type 2 diabetes
(reviewed in more detail elsewhere e.g. [8]; Fig. 1).

Recognising the imprecision of the existing diagnostic
categories of diabetes, various algorithms have been proposed
to more objectively divide diabetes into subtypes based on
phenotypic criteria, such as using blood-based estimates of
insulin secretion capacity and insulin resistance [9], large-
scale network analysis of phenotypes from electronic medical
records [10], and presence or absence of autoantibodies and
intact beta cell function in diabetes involving ketoacidosis
(‘AB classification’) [11]. While all these approaches have
supported the presence of heterogeneity within existing diabe-
tes subtypes, they have either pertained to a small subset of all
diabetes cases or have yet to be broadly replicated.

Five clinical subtypes of diabetes at time of diagnosis An
algorithmic subclassification approach that has been argu-
ably the most well replicated, including with findings of
clinical consequences related to the subgroups, was
proposed in 2018 by Leif Groop and colleagues (some-
times referred to as the Ahlqvist classification) [12].
Individuals with recently diagnosed diabetes from the
All New Diabetics In Scania (ANDIS) study were
grouped by phenotypic similarity based on six clinical
variables selected to reflect important risk factors and
aspects of the pathogenesis of diabetes: presence of
GAD65 autoantibodies, age at diabetes diagnosis, BMI,
HbA1c at diagnosis, and homeostatic model assessment
estimates of insulin secretion capacity (HOMA2-B) and
insulin resistance (HOMA2-IR). Using these variables,
the individuals with newly diagnosed diabetes were clus-
tered using k-means and hierarchical clustering into five
subtypes. The characteristics and stability of the clusters
were replicated in three independent cohorts from Sweden
and Finland as part of the initial publication.

The ANDIS clusters were named after their most defining
trait: severe autoimmune diabetes (SAID) was defined by
being GAD65 positive and thus included all individuals with
type 1 diabetes and LADA. As expected, this group had low
insulin secretion capacity, relatively low BMI and poor meta-
bolic control (high HbA1c). Individuals in the severe insulin-
deficient diabetes (SIDD) group were GAD65 negative but
otherwise similar to SAID. SIDD had the highest risk of early
diabetic retinopathy [12] and neuropathy [13]. Severe insulin-
resistant diabetes (SIRD) was characterised by obesity, severe
insulin resistance, high insulin secretion and late onset, but
relatively low HbA1c. This group had a markedly higher risk
of developing diabetic kidney complications, including chron-
ic kidney disease (CKD), albuminuria and end-stage renal
disease (ESRD). People with SIRD also had a higher preva-
lence of non-alcoholic fatty liver [12, 13]. The mild obesity-
related diabetes (MOD) and mild age-related diabetes
(MARD) subtypes were characterised by early onset (and
obesity) and late onset, respectively.
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Replication of ANDIS subtypes in diverse populations Since
the first publication, replication of the ANDIS subtypes has
been attempted in numerous cohorts of diverse populations, at
times using different clustering methods and variables
[13–19]. Overall, the five subtypes have been broadly repro-
ducible, with a detailed summary of replication studies includ-
ed elsewhere [20]. Several studies that used similar methods to
the original study have closely replicated the characteristics of
the five groups, including differences in risk of complications
[13, 14, 18, 19, 21, 22]. While the same clusters were
observed in several ethnicities, differences have been demon-
strated both in proportions and in mean values of the variables
used for classification [14, 23–26]. For example, a replication
study in a Chinese cohort showed a larger proportion of SIDD
individuals as well as generally lower BMI and earlier

diabetes onset [21]. Studies using alternative clustering vari-
ables or methods have shown partially consistent results
[15–17]. For example, a study in a large Indian cohort of
individuals with diabetes identified an additional cluster of
individuals with both insulin deficiency and insulin resistance
[16]. In a study by the Risk Assessment and Progression of
Diabetes (RHAPSODY) consortium, addition of HDL as a
cluster variable divided theMARD cluster into two subgroups
[17]. It is often difficult to discern if differences in clustering
results, subtype proportions and characteristics are true popu-
lation differences or study-specific due to methodology or
patient inclusion; caution should be applied in interpreting
studies until replicated.

While the classification was developed in populations
with recently diagnosed diabetes, the clusters have also

Example proposed 

subtypes:

• Battaglia et al 

  (2020) [43]

LADA

KPD

Example proposed subtypes:

• Li et al (2015) [10]

• Stidsen et al (2018) [9]

• Ahlqvist et al (2018) [12]

• Udler et al (2018) [61]

• Wesolowska-Andersen et al (2022) [29]

Type 1 Type 2

Monogenic
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Other

e.g. Pancreatic,

Drug-induced

Diabetes
Fig. 1 Diabetes subtypes.
Diabetes has historically been
classified as type 1, type 2,
gestational or secondary to other
causes (monogenic disease,
pancreatic disease, drug-induced,
etc.). Increasingly, there is
recognition that overlap exists
between these categories.
Subtypes representing an overlap
between type 1 and type 2
diabetes include LADA and
ketosis-prone diabetes (KPD).
Various strategies have been
proposed to further divide type 1
and type 2 diabetes into subtypes,
including the example
publications listed. This figure is
available as part of a
downloadable slideset

Severe autoimmune diabetes (SAID): GAD65 positive, low HOMA2-B, lower BMI, higher risk of baseline 

neuropathy

Severe insulin-deficient diabetes (SIDD): Low HOMA2-B, lower BMI, higher risk of retinopathy and 

neuropathy

Severe insulin-resistant diabetes (SIRD): High HOMA2-B, high HOMA2-IR, high BMI, late onset, higher 

risk of chronic kidney disease

Mild obesity-related diabetes (MOD): High BMI, early onset, less progressive disease

Mild age-related diabetes (MARD): Late onset, less progressive disease

Phenotypic diabetes subtypes
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been studied in populations with diabetes of longer dura-
tion (e.g. the Finnish Diabetes Register in Vasa [DIREVA]
cohort subset in [12]) and in populations with longitudinal
follow-up, using repeated measures from the same individ-
uals to assess whether movement between clusters occurs
over time [13, 15]. One such study followed 367 individ-
uals from the German Diabetes Study (GDS) over a period
of 5 years after diabetes diagnosis [13]. The proportion of
individuals allocated to the same cluster at baseline and 5
year follow-up was on average 77% but varied by cluster
(20% SIDD, 82% SAID, 51% SIRD, 79% MOD and 82%
MARD), suggesting some movement, particularly for indi-
viduals in the SIDD cluster [13]. Potential explanations for
cluster reassignment include exclusion criteria in GDS,
such as exclusion of individuals with poor glycaemic
control (HbA1c >74.9 mmol/mol [9%]) leading to fewer
true SIDD cases [27]; resolution of beta cell stress after
treatment of initial severe hyperglycaemia; or disease
progression, such as development of insulin resistance
over time. While HbA1c in treated SIDD cases remained
high at the time of subsequent cluster assignment, the rela-
tive difference in HbA1c values compared with SIRD,
MOD and MARD was not as marked, impeding cluster
assignment [13]. Ongoing follow-up studies in DIREVA
and ANDIS will provide more information about the
progression between clusters over time.

Genetic understanding of ANDIS subtypes Recently, the orig-
inal clusters from the ANDIS cohort were characterised genet-
ically using genome-wide association and polygenic score
analysis [28]. Polygenic scores were constructed to capture
the aggregate effect of multiple variants affecting a trait of
interest across the genome. The authors used scores composed
of variants associated with type 2 diabetes weighted by their
genetic effect on measures of insulin secretion and sensitivity.
The SIRD subtype stood out as not associated with any poly-
genic score reflecting insulin secretion (i.e. insulin secretion
rate or corrected insulin response during glucose tolerance
test). Additionally, only the SIRD subtype was significantly
associated with the polygenic score for fasting insulin.
Polygenic scores for BMI (including variants reaching
genome-wide association with BMI) were most strongly asso-
ciated with theMOD and SIRD subtypes but not withMARD.
Polygenic scores for type 1 diabetes were specific to the SAID
subtype with no overrepresentation in SIDD compared with
the other GAD65-negative subtypes or diabetes-free control
groups, arguing against a substantial role of autoimmunity in
the relative insulin deficiency seen in most individuals with
the SIDD subtype. A SNP in the LRMDA locus was also
found to be uniquely associated with the MOD subtype [28].
These results showed that there are aetiological differences
between the subtypes and that subtype-specific loci can be

identified; future studies with larger sample sizes are likely
to show more subtype-specific associations.

Subclassification of diabetes without distinct subgroups
While there is clinical appeal to a hierarchical (‘hard’) cluster-
ing strategy, in which individuals are assigned to a single
cluster or diabetes subtype, ‘soft’ clustering approaches allow
individuals with diabetes to have contributions from multiple
subtypes (Fig. 2a,b). This approach was recently taken in 726
individuals with type 2 diabetes in the Innovative Medicines
Initiative (IMI) Diabetes Research on Patient Stratification
(DIRECT) study, where a novel clustering approach that
considered 32 anthropometric, clinical and biochemical
phenotypes identified four quantitative profiles [29]. Most
individuals had intermediate characteristics related to more
than one of the four profiles; however, 101 individuals
(~14%) had extreme phenotypes of a single profile and were
considered ‘archetypes’. The four archetypes differed in
glycaemic progression and omics signals, but have not yet
been replicated in an independent dataset [29].

An alternative strategy to stratify patients is to use contin-
uous variables integrated into a regression model, yielding a
continuous measurement of various outcomes (e.g. risk of
developing a certain complication or glucose-lowering effect
of a particular medication; Fig. 2c). Thresholds can be chosen
to implement clinical decisions, such as starting a given medi-
cation. Under this approach, clinical endpoints can be
modelled for an individual patient using all relevant patient
information, rather than considering the collective risk of the
endpoint in those assigned to a given cluster. Dennis and
colleagues have used this approach to model glycaemic
progression (HbA1c change over time), incidence of kidney
disease and glycaemic response to medications in a reanalysis
of two clinical trials [18, 30]. The results were comparable or
at times superior to the ANDIS cluster-based approach; for
example, eGFR at baseline was a better predictor of time to
CKD (defined as eGFR below 60 ml min−1 1.73 m−2) than
cluster membership, and modelling of simple clinical features
(sex, BMI, age at diagnosis, baseline HbA1c) outperformed
the clusters for treatment selection, as measured by HbA1c

lowering in SIRD [18]. When considering these results, it is
important to recognise that the cohorts were selected to
exclude the most severe cases (that would mostly belong to
SIDD and SIRD), which could lead to an underestimation of
differences between clusters. In accordance, this study found
no significant difference in risk of complications after adjust-
ment for baseline eGFR, whereas studies of the ANDIS clus-
ters found significant differences, with larger effect sizes for
more severe kidney disease and with longer duration of diabe-
tes [12, 31]. For treatment selection, the continuous models
only evaluated HbA1c as the endpoint, whereas change in
insulin resistance and risk of kidney disease would be as
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important to evaluate benefit in the SIRD cluster, which has
relatively good metabolic control. Of course, an important
limitation of HbA1c lowering as a single endpoint is that it
may be influenced by hypoglycaemic adverse events. In spite
of the limitations, modelling using continuous traits is a valu-
able approach that can provide improved prediction for specif-
ic complications, and the two strategies can be regarded as
complementary [32].

Clinical translation of phenotypic subclassification Before
novel subclassification approaches are implemented into clin-
ical practice, there first needs to be robust evidence of benefit
to patients. While multiple studies have supported the value of
ANDIS cluster membership for prediction of diabetes compli-
cations (e.g. [13]), there are limited data on response to treat-
ment. As mentioned above, reanalysis of A Diabetes Outcome
Prevention Trial (ADOPT) and Rosiglitazone Evaluated for
Cardiovascular Outcomes and Regulation of Glycemia in
Diabetes (RECORD) indicated benefit of particular drugs for

certain clusters, such as sulfonylureas for MARD and thiazol-
idinedione for SIRD [18]. In the Outcome Reduction with
Initial Glargine Intervention (ORIGIN) trial, the subtype with
the greatest glycaemic response to glargine, a long-acting
insulin, compared with standard care was the SIDD subtype,
where it decreased occurrence of hyperglycaemia (defined as
a mean post-randomisation HbA1c ≥47.5 mmol/mol [6.5%])
by 13% in comparison with the MARD subtype [22]. While
promising, further studies are needed before clinical recom-
mendations can be made based on the subclassification.

For a phenotypic subtyping approach that involves cluster-
ing or regression modelling to be applied in clinical practice,
there would need to be: (1) measurement of the defining
phenotypes in a given patient; and (2) real-time analysis using
the patient’s phenotypes to determine subtype or outcome
risk. While measurement of complex phenotypes, such as
HOMA estimates, may not be widely available, studies have
demonstrated that simple measurements sometimes can be
used as surrogates for complex phenotypes [15, 17, 33].
However, such simpler surrogates may not always be

Trait 1

Trait 2

Trait 3

Trait 4

Trait 1

Trait 2

Trait 3

Trait 4

Trait 1

Trait 2

Trait 3

Trait 4

Endotypes

Multi-trait regression modelling for outcome 1

(e.g. response to drug X)

Multi-trait regression modelling for 

outcome 2 (e.g. risk of complication Y)

a

c

b

Decision point for outcome 1

Decision point for outcome 2

... ...

...

Fig. 2 Strategies for identifying diabetes subtypes. (a) Hierarchical
(‘hard’) clustering distributes people into discrete subtypes. These clus-
ters are defined using a series of traits, which may include phenotypic
and/or genotypic criteria. (b) In a ‘soft’ clustering approach, discrete
subtypes are also defined using a series of traits; however, people may
have features belonging to more than one cluster. Clusters that represent a
distinct pathobiological mechanism may be referred to as endotypes.

(c) Alternatively, clinical traits may be integrated into a regression model,
yielding a continuous measurement of various outcomes (e.g. response to
a certain drug or risk of developing a certain complication). Clinical
decisions (e.g. to start a certain medication) are implemented for people
who fall above a specified threshold. This figure is available as part of a
downloadable slideset
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adequate, as for example no study has enabled identification
of the SIRD cluster without some measure of C-peptide or
insulin. For real-time mapping of the patient’s traits to clusters
or regression model outcomes, there are efforts underway to
develop decision support tools, although notably a challenge
that emerges is ability to map a given patient’s clinical data to
an appropriately representative cohort (e.g. with similar
ethnicity) for determination of that patient’s cluster member-
ship or modelled outcome risk.

Genetic subtyping approaches

In addition to phenotypic information, genetic information
can be used to subclassify diabetes. The clearest example of
a genetic subtype is seen with monogenic diabetes, where a
diabetes subtype is defined by a single blood test. Establishing
a diagnosis of monogenic diabetes has important clinical
implications, informing timing and severity of disease onset;
response to therapy; and expected disease progression and
complication risk. Beyond monogenic diabetes, genetic
approaches involving polygenic scores have aimed to: (1)
improve delineation of diabetes subtypes; and (2) improve
subclassification within type 1 and type 2 diabetes.

Monogenic diabetes Arguably, the most objectively defined
subcategories of diabetes are monogenic subtypes, whereby
the majority of diabetes risk comes from variation in a single
gene. Monogenic diabetes accounts for approximately 0.4%
of all diabetes [34] and 1–6% of paediatric diabetes cases [35].
Of course, individuals with monogenic diabetes were initially
described based on phenotypic features before causal genes
were discovered and genetic testing became more widely
available; however, genetic testing can now provide definitive
diagnoses for patients and has allowed better characterisation
of distinct genetic disease subtypes. For example, 80% of
individuals with monogenic diabetes have been estimated to
be misdiagnosed as having type 1 or type 2 diabetes [36], and
thus correctly identifying monogenic diabetes is essential for
refining the heterogeneity of diabetes.

The most common form of monogenic diabetes, MODY, is
usually inherited in an autosomal dominant fashion and is
characterised by pancreatic beta cell dysfunction [35].
MODY is classically recognised as: (1) diabetes onset before
age 35; (2) with strong family history of similar diabetes; and
(3) lack of characteristics of type 1 diabetes (e.g. no islet
autoantibodies) and of type 2 diabetes (e.g. no marked obesi-
ty) [35]. Increasingly, there is also appreciation that not all
individuals with MODY meet all criteria [37] and that
common genetic variation contributes to clinical features of
monogenic disease [38], such as age of diagnosis [39].
Nevertheless, knowledge of the genetic subtype of diabetes
has very important implications for a patient’s clinical course

and response to treatment. For example, individuals with
MODY caused by mutations in GCK (GCK-MODY) have
mild, non-progressive hyperglycaemia present from birth with
low risk of complications and typically do not require treat-
ment [40]; individuals with HFN1A- and HNF4A-MODY
may achieve excellent control with sulfonylureas [41] or
glucagon-like peptide 1 (GLP-1) receptor agonists [42],
removing the need for insulin.

Diabetes classification informed by type 1 diabetes genetics
Autoimmune diabetes is increasingly recognised as involving
more than classic type 1 diabetes; it represents a heteroge-
neous group of diseases with differences in age of onset, rates
of progression and rates of complications (described in [43]).
Genetic approaches have been used both to help distinguish
other forms of diabetes from type 1 diabetes, as well as to
evaluate evidence of distinct subtypes within autoimmune
diabetes.

Genetic contribution to type 1 diabetes, as quantified in a
polygenic score, has demonstrated exciting clinical potential
to improve delineation of diabetes subtypes. With growing
discovery of genetic loci associated with type 1 diabetes and
increased ability to model the HLA region’s impact on disease
risk, the type 1 diabetes polygenic score has evolved over the
years. One of the most recent versions, a polygenic score
constructed from 67 genetic variants, can predict the risk of
developing type 1 diabetes in children with an AUC of the
receiver operating characteristic (ROC) curve of 0.92 [44],
where a value of 1.0 indicates a perfectly accurate test. Type
1 polygenic scores have also demonstrated value in addressing
diagnostic uncertainty, such as discrimination of type 1 diabe-
tes from type 2 diabetes [44, 45], MODY [46] and syndromic
autoimmune monogenic diabetes [47].

Genetic studies have also evaluated a potential subtype of
autoimmune diabetes, LADA. The LADA diagnosis is
considered to apply to a subgroup of individuals with autoan-
tibodies who initially present with diabetes similar to type 2
diabetes, but subsequently require insulin [48, 49]. LADA has
been defined using various criteria, and a question has been
raised as to whether it exists as a distinct clinical entity or
represents a heterogeneous mix of people with type 1 and type
2 diabetes (who by chance have background levels of autoan-
tibody positivity) [50]. The largest genome-wide association
study (GWAS) for LADA found that most loci were associ-
ated with type 1 diabetes (e.g. HLA, INS, PTPN22), although
some genes such as TCF7L2 were shared by LADA and type
2 diabetes [51]. An analysis of polygenic scores in 978 LADA
cases demonstrated that a type 1 diabetes polygenic score was
more predictive of LADA than a type 2 diabetes polygenic
score (AUC of ROC curve 0.67 vs 0.57), although neither
score offered substantial discriminatory power [52]. While
such findings suggest that LADA has genetic contribution
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from both type 1 and type 2 diabetes, they do not exclude the
possibility that LADA comprises a heterogeneous mix of
people with type 1 and type 2 diabetes rather than being a
distinct diabetes subtype. Notably, the latter study also
assessed the distribution of the type 1 diabetes polygenic score
(composed of 69 SNPs) in people with type 1 diabetes
compared with people with LADAwho were positive for both
GAD and islet antigen 2 (IA-2) antibodies and found that the
mean score value was significantly lower in the LADA group
[52]. This finding suggests that LADA may be genetically
distinct from type 1 diabetes, and it is unlikely that the
LADA cases represented mixing of individuals with type 1
and type 2 diabetes, given the low likelihood that someone
with type 2 diabetes would have two autoantibodies elevated
just by chance. It is certainly possible that type 1 diabetes
genetic risk exists on a spectrum, and people with moderate
genetic risk (perhaps encompassing LADA) may develop a
milder phenotype. Additionally, while the type 1 diabetes
polygenic score applied in [52] could not definitively identify
individuals with LADA, the score may help identify a subset
of patients who are more likely to require insulin; among
patients with type 2 diabetes and GAD65 autoantibodies,
48% of patients with a (30 variant [45]) type 1 diabetes poly-
genic score above the 50th percentile required insulin within 5
years of diabetes diagnosis, compared with 18% of patients
with scores below the 5th percentile [53].

Diabetes classification informed by type 2 diabetes genetics
Similar to type 1 diabetes, polygenic scores can identify indi-
viduals at risk of developing type 2 diabetes; however, recent-
ly developed scores for type 2 diabetes involving thousands of
genetic variants (‘global extended polygenic scores,’
described in [54]) only reach AUCs of the ROC curve of
0.73 in discriminating people with type 2 diabetes from
control groups after adjustment for age and sex [54].
Focusing on individuals with the top 5% of type 2 diabetes
polygenic scores can identify people with a 4.5-fold increased
risk of type 2 diabetes compared with the rest of the popula-
tion [54, 55]. Comparedwith type 1 diabetes polygenic scores,
the type 2 diabetes polygenic score provides less ability to
distinguish between type 1 and type 2 diabetes (AUC of
ROC curve 0.64 [95% CI 0.63, 0.66]) [45]. Thus, current
versions of the type 2 diabetes polygenic score have limited
ability to definitively diagnose type 2 diabetes or delineate it
from other diabetes subtypes.

A separate line of research has focused on whether genetic
information can be used to help identify genetic subtypes within
type 2 diabetes, represented as disease driven by particular
genetic pathways. There has been tremendous discovery of
genetic variants associated with type 2 diabetes, with well over
500 loci identified to date [56]. Such findings have great poten-
tial to inform disease biology and improve understanding of

why patients develop disease. Clinical translation of these find-
ings from genetic association studies has been limited, howev-
er, in large part because the majority of genetic signals fall
within non-protein-coding regions of the genome, making it
challenging to pinpoint causal variants and genes [57]. As a
result, identifying genetic pathways predisposing to type 2
diabetes is not trivial. Early efforts to systemically connect type
2 diabetes loci to pathways initially focused on associations of
loci with glycaemic traits [58–60] and broadly connected loci to
‘hard’ clusters related to beta cell function and insulin action
(Fig. 2a). Notably, in these studies the majority of the loci were
grouped in a single ‘unclassified’ cluster, even though several
had known biological mechanisms (e.g. HNF1A, KCNJ11).

In 2018, two studies employed an alternative approach clus-
tering variants and multiple glycaemic and non-glycaemic traits
using ‘soft clustering’ (Fig. 2b), intended to better capture the
pleiotropic nature of variants involved in more than one genetic
pathway [57, 61]. These two studies generated a set of five
broadly overlapping genetic clusters that weremore readily inter-
pretable than prior efforts. Each cluster related to a disease mech-
anism that could be inferred from the set of top-weighted genetic
loci and associated clinical traits: two clusters related to decreased
beta cell function (e.g. MTNR1B, TCF7L2, HNF1A, SLC30A8,
reduced disposition index, increased proinsulin adjusted for insu-
lin levels; andARAP1/STARD10, reduced proinsulin adjusted for
insulin levels), and three related to mechanisms of insulin resis-
tance, mediated through: (1) obesity (e.g. FTO,MC4R, NRXN3,
increased percentage body fat, BMI); (2) abnormal fat distribu-
tion or ‘lipodystrophy’ (e.g. PPARG, IRS1, KLF14, increased
fasting insulin, triglycerides, reduced BMI); and (3) impaired
liver/lipid metabolism (e.g. GCKR, PNPLA3, TM6SF2, reduced
triglycerides). The effort by Mahajan and colleagues also identi-
fied a sixth cluster with mixed phenotypic features [57].

In theory, genetic clusters of loci can identify subsets of
individuals for whom type 2 diabetes risk is primarily driven
by a specific pathway, indicating a genetic subtype of disease.
A person’s genetic risk for a given cluster can be calculated
using a cluster-specific partitioned polygenic score that gener-
ates a weighted sum of the number of variants carried for a
given cluster, with the weights corresponding to the strength
of each variant’s membership to that cluster [54]. Using the five
genetic clusters described in [61] (sometimes referred to as the
Udler clusters), individuals with type 2 diabetes who fell in the
top 10th percentile of just one cluster-specific polygenic score
were shown to have distinct clinical features [61]. For example,
those with a high burden of genetic variants related to beta cell
dysfunction had significantly lower C-peptide levels compared
with all others with type 2 diabetes, indicating that their diabetes
represented relative insulin deficiency [61]. Other key defining
features of the genetic subtypes included elevated BMI in the
‘obesity’ genetic subtype, elevated C-peptide and reduced
HDL-cholesterol in the ‘lipodystrophy’ genetic subtype and
reduced triglyceride levels in the ‘liver/lipid’ subtype.
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Additionally, these type 2 diabetes partitioned polygenic scores
have been shown to be associated with comorbid metabolic
diseases. For instance, hypertension was more likely in people
with a higher score in the ‘obesity’ cluster or the
‘lipodystrophy’ cluster; people with a higher ‘liver/lipid’ poly-
genic score were more likely to have CKD but less likely to
have coronary artery disease [61, 62].

Recent work investigating adipose mesenchymal-derived
stem cells has demonstrated, using lipocyte cell painting, that
the ‘lipodystrophy’ cluster polygenic score identifies a distinct
cellular-level phenotype. Study participants with the top 20%
lipodystrophy polygenic score values had obvious differences
in cellular features, with increased mitochondrial activity and
decreased lipid accumulation, compared with those with the
bottom 20% scores [63]. Remarkably, this cellular profile was
also shared with single-gene perturbations for monogenic
lipodystrophy genes, supporting convergence of polygenic
and monogenic diabetes pathways [63].

Clinical translation of genetic subclassificationGenetic testing
for monogenic diabetes is part of current clinical practice,
although barriers to its use include recognition of potential
cases appropriate for testing and access to testing. The poly-
genic diabetes scores are not currently part of general clinical
practice. Given the high discriminatory ability of the type 1
diabetes score, there is a potential role for it in improving
diabetes classification in practice, for example, by applying
it in patients with diagnostic uncertainty. In contrast, both the
full and cluster-specific polygenic scores for type 2 diabetes
currently have insufficient predictive ability to warrant use in
standard practice [38, 62]. While all five subgroups in the
genetically driven subclassification of type 2 diabetes
described in [61] had distinct replicable clinical phenotypes,

phenotypic differences between subgroups were quantitative-
ly small and unlikely to be appreciated clinically on an indi-
vidual patient level [62]. Nevertheless, polygenic scores relat-
ed to type 2 diabetes have the potential to become more
predictive in future iterations, particularly with the inclusion
of rarer genetic variation [64], which may lead to future use in
clinical practice.

Identification of more precise genetic subtypes of type 2
diabetes may enable targeted therapies; for example, patients
with high genetic risk for beta cell dysfunction may benefit
from early initiation of insulin, whereas patients with high
genetic risk for obesity-related diabetes may benefit from
insulin-sensitising agents. Such hypotheses need to be tested
and will require access to large clinical trials with genetic data.

A significant challenge for clinical translation of polygenic
subtypes of type 2 diabetes is that the majority of large-scale
genetic studies have been conducted in individuals of
European ancestry, although there are increasing efforts for
datasets to present more diverse ancestral groups [56, 65].
Further investigation is needed to include more diverse popu-
lations, particularly to avoid exacerbation of health disparities
[66].

Subclassification of people at risk for type 2
diabetes

Clustering methods have also been performed in individuals
who do not have type 2 diabetes but are at elevated risk of
developing the disease. Wagner and colleagues used a hybrid
approach that combined phenotypic values (measures derived
from oral glucose challenge and MRI-measured body fat
distribution and liver fat content) and polygenic risk of type

Decreased pancreatic beta cell function:

• Increased proinsulin adjusted for insulin (e.g. MTNR1B, TCF7L2, HNF1A, 

SLC30A8)

• Decreased proinsulin adjusted for insulin (e.g. ARAP1)

Increased insulin resistance:

• Obesity-related (e.g. FTO, MC4R, NRXN3)

• Lipodystrophy-related (e.g. PPARG, IRS1, KLF14)

• Liver/lipid metabolism (e.g. GCKR, PNPLA3, TM6SF2)

Examples of genetic loci associated with each subtype are listed in parentheses. Note 

that the locus name indicates either the nearest gene or suspected causal gene, 

since the true causal gene at most loci is often not known

Genetic diabetes subtypes
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2 diabetes, identifying six clusters with different propensities
to develop diabetes and diabetes-related complications [33].
Interestingly, some of the clusters had clinical features similar
to the ANDIS clusters; yet, despite the similar features, the
people in the at-risk diabetes clusters who developed diabetes
were not consistently members in the corresponding ANDIS
cluster. Nevertheless, studying people at risk for type 2 diabe-
tes illustrates how improved stratification would be valuable
for more targeted efforts to prevent diabetes and related
complications.

The efforts aimed at identifying genetic subtypes of type 2
diabetes can also potentially be applied to stratify people at
risk of type 2 diabetes before they develop symptomatic
disease. For instance, in an analysis of large cohorts contain-
ing people with and without diabetes, people with an elevated
‘lipodystrophy’ cluster polygenic score had an increased risk
of hypertension even after adjusting for type 2 diabetes status
[62], suggesting that pathway-specific polygenic scores can
predict risk of specific combinations of future diseases (e.g.
type 2 diabetes and hypertension).

Future directions

Phenotypic and genotypic patient characteristics offer
complementary approaches to classify diabetes subtypes.
Further research is therefore also needed to determine how
best to integrate both types of data together to improve disease
subclassification. In addition, it is possible that deeper pheno-
typing of patients, including a broader set of phenotypic traits,
may more precisely distinguish between various subtypes of
diabetes (e.g. analysing multiple islet cell autoantibodies, not
just GAD65, in the ANDIS classification).

Although type 2 diabetes primarily affects adults, it is
increasingly being diagnosed in children, making it more chal-
lenging to discern known subtypes in this age group [67].
Additionally, the subclassification approaches described in this
review have almost exclusively been replicated in adult popu-
lations, not paediatric. Further work is needed to apply and
refine subclassification approaches for paediatric diabetes.

Once subtypes of diabetes have been identified and repli-
cated, an important next step is demonstration of clinical
significance. Clinical trials offer an important such opportuni-
ty, particularly when cardiovascular outcomes are measured.
Limited analyses of clinical trials using phenotypic stratifica-
tion approaches have been performed, as described, with iden-
tification of both subtypes and clinical features associatedwith
response to particular medications [18, 22]. Fewer such anal-
yses involving genetic subtypes have been performed to date
(e.g. [68]). Wider access to clinical trial data will be critical for
hypothesis testing and validation with replication that any
diabetes subclassification has clinical utility. Additionally,
clinical translation for subtyping approaches that involve

algorithmic modelling will require decision support tools to
facilitate integration of available information into clinical care,
as well as continued inclusion of diverse populations to ensure
broad and equitable translation of findings.

In conclusion, the existing subclassification of diabetes into
predominantly type 1 and type 2 is increasingly recognised as
insufficient to capture the heterogeneity of patient presentations,
disease course, response to medications and risk of complica-
tions. Emerging subclassification schemas with more refined
subgroups, involving phenotypic and genetic data, have already
demonstrated reproducibility and in some instances evidence of
clinical utility. Further study of the existing approaches, as well
as novel integrated methods to redefine diabetes subtypes, will
be necessary to determine when and how best to bring these
approaches into mainstream clinical practice.
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