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The impact of temperature 
on the transmissibility 
and virulence of COVID‑19 
in Tokyo, Japan
Lisa Yamasaki1,2,4*, Hiroaki Murayama3,4 & Masahiro Hashizume1

Assessing the impact of temperature on COVID-19 epidemiology is critical for implementing non-
pharmaceutical interventions. However, few studies have accounted for the nature of contagious 
diseases, i.e., their dependent happenings. We aimed to quantify the impact of temperature on 
the transmissibility and virulence of COVID-19 in Tokyo, Japan, employing two epidemiological 
measurements of transmissibility and severity: the effective reproduction number ( R

t
 ) and case 

fatality risk (CFR). We estimated the R
t
 and time-delay adjusted CFR and to subsequently assess 

the nonlinear and delayed effect of temperature on R
t
 and time-delay adjusted CFR. For R

t
 at low 

temperatures, the cumulative relative risk (RR) at the first temperature percentile (3.3 °C) was 1.3 
(95% confidence interval (CI): 1.1–1.7). As for the virulence to humans, moderate cold temperatures 
were associated with higher CFR, and CFR also increased as the temperature rose. The cumulative 
RR at the 10th and 99th percentiles of temperature (5.8 °C and 30.8 °C) for CFR were 3.5 (95% CI: 
1.3–10.0) and 6.4 (95% CI: 4.1–10.1). Our results suggest the importance to take precautions to avoid 
infection in both cold and warm seasons to avoid severe cases of COVID-19. The results and our 
proposed approach will also help in assessing the possible seasonal course of COVID-19 in the future.

The COVID-19 pandemic has imposed significant health and economic burdens all over the world1. A bet-
ter understanding of the factors affecting the COVID-19 epidemic is critical to the design of tailored public 
health and social measures (PHSMs), e.g., travel restrictions, school closures, cancellation of public events and 
gatherings, etc. and much attention has been given to the impact of meteorological factors on the COVID-19 
transmissibility and severity.

Over the last couple of decades, essential factors related to the transmission of viral respiratory diseases have 
been investigated such as the highly predictable seasonal pattern of influenza epidemics2. These epidemiologi-
cal studies are supported by laboratory evidence that low temperature and/or humidity improve the stability of 
influenza virus3, impair the human innate immune system4 and contribute to the aerosol evaporation5,6.

Since the COVID-19 pandemic hit, many research groups worldwide have aimed to reveal the relationships 
between temperature and COVID-19 transmission. Previous studies examined the hypothesis that high tempera-
ture, humidity, wind speed, and ultraviolet (UV) radiation might have a reduction in transmission7–15. For exam-
ple, in recent studies conducted worldwide, Jie et al. found that temperatures below 21 °C, relative humidity, and 
wind speed were negatively correlated with the number of daily cases for one year in 188 countries10. Simiao et al. 
investigated that 1° increase in absolute latitude is associated with a 4.3% increase in COVID-19 cases per million 
inhabitants which is consistent with the hypothesis that high temperature and UV radiation can contribute to 
the reduction in transmission11. Some of these investigated the possibility that the transmissibility is associated 
with temperature, where the transmissibility is often translated into the number of positive cases7,10,11,14; however, 
these studies did not fully account for the transmission dynamics influenced by PHSMs of various intensities. 
In this context, Yiqun et al. investigated the association of increased effective reproduction number and lower 
temperature (within the 20–40 °C range), lower humidity, and lower UV radiation15. Yet there is still divergence 
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in the literature as another study indicated higher temperatures are not significantly associated with a reduction 
in total cases or effective reproduction number of COVID-19 in Canada16.

A few of the earlier studies have explored the association between temperature and mortality7,17,18 as an indi-
cator of the clinical severity. Previous studies showed a 1% increase in temperature was associated with a 1.19% 
decrease in daily new COVID-19 deaths in 166 countries17 and about 6% lower mortality in the subsequent 
30 days from the first death in the OECD countries and US states19. Non-linear relationships of temperature and 
mortality have also been investigated in the time-series analysis as such the daily cumulative relative death risk 
decreased by 12.3% for every 1.0 °C increase in temperature20. However, day-to-day fluctuations in the number 
of deaths are also vulnerable to the epidemic dynamics. Transmission dynamics of infectious diseases should also 
be considered when performing the regression models because observation of each case with a contagious disease 
is not independent, which characteristics is referred to as dependent happening and explicitly distinguishable 
from other non-communicable diseases; otherwise, such inferences get largely biased21,22.

The present study explored the association between temperature and both the transmissibility and the severity 
of COVID-19 from early 2020 to early 2021. We used the effective reproduction number (Rt) , defined as the mean 
number of secondary cases generated by a single primary case, to quantify the transmissibility of the ongoing 
epidemic in Tokyo. To explore the association between temperature and severity, we used case fatality risk (CFR), 
an epidemiological measurement of severity. Crude CFR calculated from the ratio of the cumulative number 
of deceased cases to the cumulative number of confirmed cases can underestimate the actual CFR when cases 
are increasing and overestimate it when they are decreasing due to the time that passes from the onset illness to 
death. Such issues are also known as right censoring. We, therefore, estimated the time-delay adjusted CFR for 
every illness onset date, which accounted for the delay.

Results
The daily mean temperature from 15th February 2020 to 28th February 2021 in Tokyo is shown in Supplemen-
tary Fig. S1. Supplementary Fig. S2 (a) and (b) show the epidemic curves for confirmed cases by two age groups 
(under 70 s and over 70 s) and deaths, respectively. The epidemic curve and estimated median value of Rt with 
90% credible intervals (CrI) from 15th February 2020 to 28th February 2021 are shown in Fig. 1. Analysing the 
impact of temperature on Rt , the overall cumulative exposure–response relationship of temperature on Rt was 
non-linear, with lower temperature leading to higher RR (Fig. 2A). The RR corresponding to temperature at the 
first percentile (3.3 °C) was 1.3 (95% confidence interval (CI): 1.1–1.7). Figure 2B shows the three-dimensional 
plot of RR with temperature and lags up to 7 days. We found that the greatest risk of cold effects occurs in the 
day of exposure, increasing in 3–7 days of exposure.

Figure 3 shows the temporal variation of time-delay adjusted CFR and unbiased CFR from 25th May 2020 to 
28th February 2021. As of 28th February 2021, the time-delay adjusted daily CFR and the unbiased CFR were 
8.21% (95% CI: 4.50–12.9) and 2.42% (95% CrI: 2.41–2.43) (Supplementary Fig. 4), respectively. Figure 3 illus-
trates the temporal deviations from the baseline value of CFR, i.e., the unbiased CFR. To examine the potential 
for the temperature to contribute to changes in CFR, we estimated the overall effect of temperature with the 
reference of 18.6 °C (Fig. 4A). The harmful effect was seen to increase as temperature increased from the refer-
ence, and moderately cold temperatures were associated with high RRs of CFR. The three-dimensional plot of 
RR with temperature and lags for CFR is displayed in Fig. 4B, cold temperatures have an obvious impact on 
the day of exposure (lag day 0, the illness onset day) and we found a week delayed effect on both high and cold 
temperatures. The outcomes of the possible confounders are shown in Supplementary Table S4.

Figure 1.   Transmission dynamics from 15th February 2020 to 28th February 2021 in Tokyo, Japan. Blue line 
represents median, blue shading represents 95% credible intervals of the estimated effective reproduction 
number from 15th February 2020 to 28th February 2021. Green bars show the observed number of COVID-19 
cases with confirmed dates in Tokyo.
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Similar results were obtained in sensitivity analysis under different lags and adjustment of several meteoro-
logical variables (Supplementary Figs. S6–S11) for the transmissibility and severity analysis. We assessed the 
impact on the overall effects and delayed effect and successfully checked the robustness of the primary analysis.

Discussion
The present study was the first to comprehensively quantify the association between temperature and the epide-
miological dynamics of COVID-19 in Tokyo using the effective reproduction number and time-delay adjusted 
daily CFR considering the lagged effect of temperature. Though the epidemiology of COVID-19 is differentiated 
by the substantial transmissibility and severity which are measured by reproduction number and CFR, there is no 
study to explore the contribution of temperature using both of the two rigorous epidemiological measurements 
appropriately, specifically the association between temperature and CFR, to our best knowledge.

Rt rose explicitly at low temperatures; for example, RR of 3.3 °C (the 1st percentile of temperatures, defined 
as extremely cold temperature) was estimated as 1.3 (95% CI: 1.1–1.5) in the 0–1 days lag from an infected date 
(Supplementary Table S1), with median of all the temperatures (15.3 °C) as reference temperature. This indicates 
that the cold effects appear in short lags and the overall effect is more plausible in low temperature (Fig. 2A). 

Figure 2.   Overall and three-dimensional plots of relative risks with the reference at 15.3 °C. (A) The three-
dimensional plot of the association between daily mean temperature (°C) and the effective reproduction number 
over the lags of 7 days. The reference value of temperature was median temperature (15.3 °C). (B) The estimated 
overall effects of mean temperature (°C) over 7 days on Rt . Blue line shows the mean relative risks, and 95% 
confidence intervals are shown in the gray shadings.

Figure 3.   Temporal variation of time-delay adjusted case fatality risks (CFR) with unbiased CFR from 25th 
May 2020 to 28th February 2021 in Tokyo, Japan. The mean values of time-delay adjusted daily case fatality risks 
(CFR) from 25th May 2020 to 28th February 2021 are shown with a purple line. The shade region represents the 
95% confidence intervals. The blue dot line shows the unbiased case fatality risk as 2.42% (95% credible interval: 
2.41–2.43). If the time-delay adjusted daily CFR gets higher or lower, it is caused by random noises or other 
variables which have causal relationships. The unbiased case fatality risk plays a key role as a reference of the 
daily CFR.
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Our results are consistent with most of the previous works in that COVID-19 incidence decreases as tempera-
ture increased and non-linear associations of temperature and COVID-19 transmissibility were observed15,23,24. 
In winter, human behaviors such as less ventilations in the rooms and close contact might contribute to high 
transmissibility25. In a recent study, relative impacts of meteorological factors compared to PHSMs were reported 
to be small in the early stage of the local epidemics as 2.4% and 2.0% of the variation in effective reproduction 
number are attributable to temperature and absolute humidity while 13.8% are explained by government response 
in 409 cities across 26 countries23. Another study in the USA investigated attributable fractions of temperature, 
specific humidity, and UV as 3.7%, 9.4%, and 4.4%, respectively and observed the differences of each factor 
depending on seasons15. Impacts of meteorological factors on both transmission and severity might depend on 
climate zones and seasons and further investigations in different climate conditions are helpful to understand 
the contributions of meteorological factors in accordance with varying phases of pandemic as an introduction 
of vaccination and distribution of variants.

The exposure–response relationships of population mobilities and meteorological factors with Rt (Supple-
mentary Table S2) are consistent with previous work12,13,26. For example, the residual and workplace mobility 
changes were not slightly related to the fluctuation of Rt while the recreation mobility change was significant. This 
relationship in Tokyo were reported in the previous study26. Analysis including the other possible meteorological 
factors, i.e., solar radiation and wind speed, have a slight difference compared to the main analysis (Fig. 2) as the 
shape of the exposure–response outcome shows (Supplementary Fig. S9).

As for the severity, we found that low temperatures had a strong association with high CFR in the short lag 
periods. For example, RR of 2.3 °C (the 1st percentile of temperatures, defined as extremely cold temperature) and 
5.8 °C (the 10th percentile of temperatures, defined as extremely cold temperature) were 2.0 (95% CI: 1.2–3.5) and 
2.8 (95% CI: 1.7–4.7), respectively, in 0–2 days lag periods from illness onset dates (Supplementary Table S3), with 
a median of all the temperatures (18.6 °C) as reference temperature. While cold effects appeared in the short lag 
period and showed a slight gradual decline, extremely high temperatures were associated with higher CFR from 
few days after the illness onset, and those effects were stably maintained for two weeks (Supplementary Table S3).

Plausible mechanisms explaining the association between temperature and high CFR of COVID-19 remain 
undetermined. Even though many studies have postulated seasonal variations and the impact of temperature in 
the transmissibility of infectious diseases, little is known about the association of temperature and severity of the 
contagious disease. Since the common infectious respiratory diseases such as the influenza virus, circulate in the 
cold season, the impact of high temperature on severity is yet to be explored. One study indicated that immune 
response against the common cold virus can be impaired under the environment with cold temperature27. As a 
previous study on the impact of heat effect showed, extreme high temperature dampens physiological responses 
when the body temperature exceeds its normal range28. These phenomena might have contributed to the result 
observed in the current study. For high CFR of moderate temperature, one of the possible explanations is the 
difference in human movement which can affect the exposure level with ambient temperature; however, further 
investigation is needed.

There are several limitations to be noted. First, the effect of air particulates on increase in Rt and CFR were 
not considered in our study due to the data availability although some previous studies explored the relationship 
between air particulates and COVID-19 transmissibility and severity in other areas of the world29,30. Second, the 
assumption for epidemiological time-delays (e.g., generation time and incubation period, etc.) was imposed not 
to be contracted by meteorological factors or interventions. Third, we did not consider the uncertainty of vari-
ables in the regression models, which were derived from the mathematical models. Forth, age-specific CFR was 

Figure 4.   Overall and three-dimensional plots of relative risks with the reference at 18.6 °C. (A) The three-
dimensional plot of the association between daily mean temperature (°C) and time-delay adjusted case fatality 
risks (CFR) over the lags of 14 days. The reference value of temperature was median temperature (18.6 °C). (B) 
The estimated overall effects of mean temperature (°C) over 14 days on CFR. Blue line shows the mean relative 
risks, and 95% confidence intervals are shown in the gray shadings.
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not estimated in the present study due to scarce data. However, we attempted to make the best use of the data 
with back-projected incidence on illness onset dates and controlled the estimated incidence as a confounder in 
the regression model. Fifth, since we used Tokyo data and other geographical locations were not analysed, the 
results may vary under different climates. Thus, future studies in multiple locations with our proposed approach 
are needed. Lastly, the change of ascertainment rate and other confounders (e.g., comorbidity) were not con-
sidered in the regression model for CFR. However, we used the empirical data for severity from 25th May 2020 
when the state of emergency was lifted, i.e., the end of the first wave of the epidemic in Tokyo to avoid higher 
ascertainment bias and overestimation of CFR.

Despite such limitations, we believe that the present study has provided comprehensive and valuable insights 
on the association between temperature and the characteristics of COVID-19. Higher transmissibility is likely to 
be seen at low temperatures, while higher severity is likely to present at high and moderately low temperatures. 
Our findings have important implications to public health responses, as exposure to cold and hot temperatures 
under a surge of COVID-19 may have the major impact on the dynamics and reduction of the burden. We also 
successfully provided a framework to explore the impact of meteorological factors on the transmissibility and 
virulence of directly transmitted diseases. Our proposed approach will be applicable for future studies on the 
relationships between meteorological factors and directly transmitted diseases.

Method
Epidemiological and meteorological data.  The data used in the present study were from lab-con-
firmed, illness onset, and death cases in Tokyo. Meteorological data of temperature, relative humidity, ultraviolet 
radiation, and wind speed were also analysed.

We used data from 16th February 2020 to analyse the transmissibility with the regression model, as it was the 
earliest date of the limited publicly available dataset. To analyse severity, data in the regression model were used 
from 25th May 2020, when the first state of emergency was lifted in Tokyo because CFR may be underestimated 
given the under-ascertainment rate, and downward ascertained trend early in the epidemic. To avoid the influ-
ence of the different infectivity and severity between the previous strain and other evolved strains, e.g., variant 
Alpha of SARS-CoV-2 (B.1.1.7), we cut off the period in both analyses after March 202131,32.

The daily number of confirmed cases, illness onset cases, and deaths with COVID-19 in Tokyo were collected 
from 16th January 2020 to 19th March 2021. Confirmed data with age (decades) were also collected from 16th 
February 2020 to 7th April 2021. To address the measurement of overwhelmed medical situations, we obtained 
the daily number of cases of emergency transportation whose destination had not been determined within 
20 min from the start of the Emergency Medical Services team’s request, or who had been refused by at least five 
medical institutions. To deal with the impact of human mobility, we resorted to Google’s COVID-19 Community 
Mobility Reports33, which provides three data-streams on movement in Tokyo: “residual”, “retail and recreation”, 
and “workplace”. All measures quantify the percentage of deviation from a baseline which indicates the median 
value for the day of the week during the 5 weeks from 3rd January 2020 to 6th February 2020.

Daily weather data (mean temperature (°C), relative humidity (%), solar radiation as an ultraviolet (MJ/m2), 
and mean wind speed (m/s)) were obtained from the Japan Meteorological Agency.

Effective reproduction number Rt.  The daily Rt estimates were derived from the daily number of con-
firmed cases and implemented in the “EpiNow2” package in R v4.0.2 which method accounted for the week 
effect and the smoothed renewal process with an appropriate Gaussian process with a squared exponential 
kernel34. The distribution of generation time was adopted from the earlier work35.

Nonlinear and delayed effect of temperature on Rt.  Non-linear and delayed effects of temperature 
on the transmissibility of COVID-19 were identified by using the generalized additive Gaussian model with the 
distributed lag non-linear model36,37.

where cb.temp represents the nonlinear and delayed exposure-lag-response relationship between the daily Rt and 
temperature as a form of cross-basis spline function. We used a natural cubic spline with four equally spaced 
internal knots in the log scale in the cross-basis function38, accounting for up to 7 days of lag for the temperature 
to examine the lag effect from infection to secondary infection, which is referred to as generation time35. Four 
degrees of freedom (df) of lag were chosen by Akaike Information Criteria (AIC) to find the best-fit df for pre-
dicting missing observations, i.e., unobserved temperatures. s(.) is a natural cubic spline function. The median 
value of temperature for calculating relative risk (RR) was 15.3 °C. We controlled calendar dates for seasonality 
or long-term trend ( time ) as a confounder (Supplementary Fig. S5). Seven df per 380 days to time were chosen. 
In addition, Rt would be also influenced by the suppression or mitigation strategies, and other social behavioral 
changes due to increase in individual awareness of infection26. Therefore, we used mobility data, specifically 
classified into recreation, work, and residual place based on Google mobility data, assuming the three types 
of places as major possible sites of infection as the variables in the model involved some non-pharmaceutical 
interventions. To compensate above-mentioned issues other than human mobility, we reflected three categorical 
variables ( interventiont ) as 0/1/2. interventiont was imputed as 0 when there were interventions with low inten-
sity on the day t  , 1 was denoted when the shortened business hours were requested by the Tokyo Metropolitan 
Government, and 2 was denoted when the state of emergency was declared. Here we did not include a variable 
for week effect because the framework to estimate Rt has implicitly accounted for the week effect34. Distributed 
lag non-linear model was implemented via the “dlnm” package in R v4.0.2.

(1)log(E(Rt)) = α + cb.temp+ s(time, 7)+ interventiont +mobilitiest
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Time‑delay adjusted case fatality risk (CFR).  Subsequently, the association between temperature and the 
severity of COVID-19 was explored using CFR as a proxy of severity, and the unbiased CFR and daily CFR were 
estimated39. Unbiased CFR is time consistent value while daily CFR is fluctuated on every illness onset date and 
both accounted for the delay from illness onset to death. We assumed fs = Fs − Fs−1 for s > 0 where Fs is cumu-
lative density function of the time-delay. The empirical time-delay distribution was fitted to lognormal, Weibull, 
gamma, and exponential distributions and best fit gamma distribution with mean 16.6 days and standard deviation 
118.4 days by the lowest value of AIC (Supplementary Fig. S3). Here let δt , dt , and jt be the number of illness onset 
dates of deaths, deceased dates of deaths, and daily new cases on day t  , respectively. To adjust for the time delay, we 
developed a framework to estimate daily CFR on an illness onset date. Then the time-delay adjusted daily CFR πti on 
a time point ti with observation (i = 1, 2, . . . , 299) , i.e., from 25th May 2020 to 28th February 2021, was modeled as

The daily CFR was modelled to be generated by beta posterior distribution (Eq. (2)). We convoluted ft with 
δt to obtain the expected number of illness onset dates of deceased cases d′t and dt was assumed to follow a Pois-
son distribution (Eqs. (3) and 4). To deal with the latent variable caused by the convolution, the non-parametric 
back-projection based on Expectation–Maximization-Smoothing algorithm40,41 was conducted by using the 
“surveillance” package in R v4.0.2.

In addition, unbiased CFR was estimated as the baseline of the daily CFR estimates. π denoted the parameter 
representing the unbiased CFR on the latest day t  , the likelihood of the estimate π was given as

where ti and Dti represent and the cumulative number of deaths until the reported day ti , respectively39,42. The 
parameter was estimated by using Markov chain Monte Carlo (MCMC) method in a Bayesian framework with 
the flat prior 

(

Uniform(0, 1)
)

 . We employed Hamiltonian Monte Carlo algorithm with No-U-Turn-Sampler and 
obtained five chains of 600 thinned samples from 30,000 MCMC iterations where the first 1000 samples of the 
chains were discarded as burn-in. The MCMC simulations were performed using the “rstan” package in R v4.0.2.

Nonlinear and delayed effect of temperature on time‑delay adjusted CFR.  We fitted a gamma 
regression combined with DLNM to estimate the association between temperature and the time-delay adjusted 
daily CFR πti with illness onset dates taking into account the delays in effect of temperature.

where cb.temp represents cross-basis spline function of temperature by a natural cubic spline with four equally 
spaced internal knots in the log scale in each cross-basis function, accounting for up to 14 days of lag to tem-
perature to examine the period between infection to illness onset, i.e., incubation period which has previously 
been explored elsewhere43. We considered the 99% upper bound of the incubation period. We also adjusted for 
the days of the week ( DOW ), holidays (holiday) , and calendar days for seasonality and long-term trend ( time ). 
The smooth function of date ( time ), to allow for changes due to seasonal effects and demographic shift or other 
slow change not captured in the covariates, comprised a natural cubic spline of date with five degrees of freedom 
per 299 days (Supplementary Fig. S6). β is the intercept. The median value of temperature for calculating RR was 
18.6 °C. Daily age distribution of infected cases with an illness onset day is also critical for CFR as a confounder, 
i.e., age and age-specific infection fatality risk has an exponential relationship44. Because only age distribution 
with reported dates was publicly available, we back-projected the illness onset date of cases who were over 
70 years and in all age groups from the reported dates of cases to calculate the proportion of the daily number 
of cases over 70 years out of the daily number of cases in all age groups. The time delay between illness onset to 
reporting is fit as Weibull distribution and the parameters were adopted from the previous study41. In addition, 
we used the time-series data describing the pressure on medical institutions as hospitalt because whether the 
healthcare system is overloaded or not is a critical factor for CFR.

We conducted sensitivity analysis corresponding to the length of lag and possible meteorological confounders 
to assess the robustness of the models. As for the lag, the maximum lag day of temperature was set to 5 and 6 to 
examine the sensitivity of the effect in DLNM for the analysis of transmissibility. For the severity, the maximum 
lag day of temperature was set to 10 and 12. Regarding meteorological factors as confounders, relative humidity, 
wind speed, and ultraviolet were included for the analysis of transmissibility, while we considered only relative 
humidity for the analysis of severity.

(2)πti ∼ Beta
(

shape1 = δti + 1, shape2 = jti − δti + 1
)
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