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A B S T R A C T   

Background: Deep learning image reconstruction (DLIR) is a novel computed tomography (CT) 
reconstruction technique that minimizes image noise, enhances image quality, and enables radiation 
dose reduction. This study aims to compare the diagnostic performance of DLIR and iterative 
reconstruction (IR) in the evaluation of focal hepatic lesions. 
Methods: We conducted a retrospective study of 216 focal hepatic lesions in 109 adult participants 
who underwent abdominal CT scanning at our institution. We used DLIR (low, medium, and high 
strength) and IR (0 %, 10 %, 20 %, and 30 %) techniques for image reconstruction. Four experienced 
abdominal radiologists independently evaluated focal hepatic lesions based on five qualitative 
aspects (lesion detectability, lesion border, diagnostic confidence level, image artifact, and overall 
image quality). Quantitatively, we measured and compared the level of image noise for each 
technique at the liver and aorta. 
Results: There were significant differences (p < 0.001) among the seven reconstruction techniques 
in terms of lesion borders, image artifacts, and overall image quality. Low-strength DLIR (DLIR-L) 
exhibited the best overall image quality. Although high-strength DLIR (DLIR-H) had the least 
image noise and fewest artifacts, it also had the lowest scores for lesion borders and overall image 
quality. Image noise showed a weak to moderate positive correlation with participants’ body 
mass index and waist circumference. 
Conclusions: The optimal-strength DLIR significantly improved overall image quality for evaluating 
focal hepatic lesions compared to the IR technique. DLIR-L achieved the best overall image quality 
while maintaining acceptable levels of image noise and quality of lesion borders.  
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projection; HU, Hounsfield unit; IR, Iterative reconstruction; PACS, Picture Archiving and Communication System; ROI, Region of interest. 
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1. Background 

Computed tomography (CT) is essential for lesion diagnosis, treatment planning, follow-up, and complication assessment. Various 
CT image reconstruction techniques have been proposed to improve image quality and reduce scan time [1]. However, high-quality CT 
images inevitably come with high radiation exposure. This poses a potential cancer risk, particularly for young patients or those 
requiring frequent or long-term follow-up CT scans [2–5]. Abdominal CT typically has an estimated effective dose of approximately 10 
mSv or within the range of 3.5–25 mSv [5]. Radiation exposure of 10 mSv is associated with an average lifetime risk of 0.1 % for cancer 
incidence and 0.05 % for mortality [6]. 

Radiation exposure during CT examinations is influenced by device factors (scanner generation, detector array), CT protocol factors 
(multiphase acquisition, tube current, tube voltage, scan time, scan coverage, scan pitch), and patient factors (age, sex, body habitus) 
[2,6–9]. Several techniques have been proposed for radiation dose optimization, such as patient selection, reducing the number of CT 
phase acquisitions and scan coverage, and minimizing tube current and peak kilovoltage [6–11]. However, these approaches have 
trade-offs, including decreased image quality and increased noise [1]. These factors predominantly affect the visibility of low-contrast 
lesions such as those in the liver, spleen, or pancreas [12–15]. Over the past few decades, novel image reconstruction techniques have 
been developed to replace the original filtered back-projection (FBP) technique [15]. Two prominent techniques are iterative 
reconstruction (IR) [15–23] and deep learning image reconstruction (DLIR) [24–27], which aim to reduce image noise and improve 
quality [8,28]. 

Iterative reconstruction, as one of the currently mainstream CT reconstruction techniques, provides less image noise than the 
conventional FBP [1]. However, the major drawback of IR is providing super-smooth image appearances with less sharp border. Some 
radiologists describe the CT images reconstructed by IR technique as plastic-like or unnatural [23]. 

The DLIR technique [1,23,26,29] utilizes artificial intelligence (AI) and a supercomputing system trained on multiple image 
reconstruction sets to generate CT images. Two well-accepted versions currently available are TrueFidelity (GE Healthcare) and 
Advanced Intelligent Clear-IQ Engine (AiCE; Canon Medical Systems). Recent studies have demonstrated the superiority of 
TrueFidelity over the adaptive statistical iterative reconstruction-V (ASiR-V) technique (also owned by GE Healthcare) in both 
phantom and real patient scenarios. These investigations showed that DLIR effectively reduces noise, enhances image quality, and 
improves lesion detectability [27,30–35]. 

This study compared the diagnostic performance of the DLIR (TrueFidelity) and statistical IR (ASiR-V) techniques in the assessment 
of focal hepatic lesions from both qualitative and quantitative perspectives. 

2. Methods 

This retrospective single-center study took place in a 2200-bed university hospital in central Thailand. Institutional review board 
approval was obtained, and written informed consent was waived due to the study’s retrospective design. 

2.1. Participants 

The study included adult patients (≥18 years old) who underwent contrast-enhanced abdominal CT at the institution between July 
and November 2022. Participants with at least one focal hepatic lesion measuring ≥1 cm were eligible. Patients were excluded if they 

Fig. 1. The study flow chart of the included participants and image assessment.  
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had incomplete medical records, significant respiratory motion or beam hardening artifacts impacting image quality of the original CT 
image data set, or protocol adjustments (e.g., dual-energy CT). The study population consisted of 109 participants with 216 focal 
hepatic lesions (Fig. 1). One investigator (VJ) recorded the age, sex, body weight, height, body mass index (BMI), waist circumference, 
and underlying diseases of each participant. 

2.2. CT examination and image reconstruction 

All participants underwent contrast-enhanced abdominal CT using two 256-slice CT scanners (Revolution Apex and Revolution CT; 
GE Healthcare, Milwaukee, WI, USA). Breath-holding instructions were provided during the scan, which covered at least the upper 
abdomen with a slice collimation of 1.25 mm for both scanners. Oral or rectal contrast administration varied with patients’ clinical 
indications. All participants were administered an intravenous injection of nonionic iodinated contrast media (320–370 mgI/mL) at a 
dose of 2 mL per kg body weight, followed by a 20 mL saline flush via a power injector (3 mL/s). The portovenous phase (80-s delay 
after IV contrast administration) was obtained in all participants. Additional precontrast, arterial (40-s delay), or delayed (5- to 10-min 
delay) phases were acquired as necessary. A standard optimized radiation dose protocol was employed for participants with a body 
weight <75 kg, utilizing a peak kilovoltage of 120 kVp, tube current of 250 mA, rotation time of 0.5 s, and pitch of 0.992:1. For 
participants whose body weight was ≥75 kg, suitable adjustments were made to the tube current (up to 450 mA). The volume CT dose 
index (CTDIvol) was recorded for each participant. 

Raw data from the portovenous image set were reconstructed using 7 techniques at the CT scanner console by senior CT 
technologists (ST and WL). The techniques comprised 3 DLIR (TrueFidelity) techniques with low (DLIR-L), medium (DLIR-M), and high 
(DLIR-H) strengths, as well as 4 levels of IR (ASiR-V) techniques (0 %, 10 %, 20 %, and 30 %; Fig. 2). Each participant obtained 7 sets of 
CT images using these reconstruction protocols. The reconstructed image sets were anonymized by renaming them from “Recon 1” to 
“Recon 7” using a computer-generated random technique that was unique to each participant. Subsequently, all 7 CT image sets for 
each participant were sent to the Picture Archiving and Communication System (PACS) for review. 

2.3. Image assessment 

One to three hepatic lesions (≥1 cm) per participant were selected by a nonreader researcher (VJ) for subsequent review. In 
patients with more than three lesions, the three lesions with the largest diameters were chosen. The selected hepatic lesion(s) were 
annotated in the Recon 1 image set as a reference for the readers. 

2.3.1. Qualitative analyses 
Four board-certified abdominal radiologists (PA, KM, WT, VS) with 26, 26, 20, and 17 years of experience in abdominal CT 

evaluation, respectively, independently reviewed the 7 image sets for each participant. They were aware that each participant had 
undergone 7 reconstruction techniques, including various DLIR strengths and ASIR-V percentages, but they were blinded to the 
specific reconstruction techniques used (Recon 1 to Recon 7). The readers had access to clinical data, previous imaging studies, and 
other available CT phase acquisitions to simulate real clinical practice. They were able to freely scroll, zoom, and adjust window 
settings. The qualitative evaluations encompassed 5 aspects (Table 1). 

2.3.2. Quantitative analyses 
One investigator (VJ) performed the quantitative analyses by measuring image noise (standard deviation of CT attenuation, HU) at 

four locations in all 7 reconstructed image sets. Circular regions of interest (ROIs) were carefully placed at three locations in the liver 
(right anterior, right posterior, and left hepatic lobes) and one in the aorta (Fig. 3). The hepatic ROIs were selected from the most 
homogeneous-enhancing areas away from hepatic vessels, bile ducts, and hepatic space-occupying lesions. In cases of previous hepatic 
surgery or anatomical variations, the ROIs were placed in three different areas within the visualized liver. The aortic ROI was 
positioned at the central part of the aorta to avoid atherosclerotic plaques. The liver and aortic ROIs had size ranges of 100–150 mm2 

(mean ± SD, 124.9 ± 4.6 mm2) and 60–100 mm2 (mean ± SD, 80.2 ± 5.8 mm2), respectively. The mean image noise measured from 

Fig. 2. Comparison of 7 reconstructed image sets using DLIR and ASiR-V techniques at various strengths.  

V. Jaruvongvanich et al.                                                                                                                                                                                              



Heliyon 10 (2024) e34847

4

the three hepatic ROIs was calculated for each reconstructed image set. 

2.4. Statistical analyses 

Descriptive statistics summarized the demographic and clinical data (age, sex, BMI, waist circumference, underlying disease, 
CTDIvol, and focal hepatic lesion details). 

To compare the seven reconstruction techniques, Cochran’s Q test was used for binary assessments (lesion detectability and diagnostic 
confidence level). Friedman’s test was employed for ordinal variables (lesion border, image artifact, and overall image quality) to compare 
the techniques among each reader and all readers (using the mean score of the four readers). Multivariate tests evaluated the differences in 
image noise among the techniques. Pearson’s correlation coefficient (r) was used to calculate the correlation between image noise and 
each of BMI and waist circumference, with interpretations as follows: 0–0.1 (negligible), 0.1–0.39 (weak), 0.4–0.69 (moderate), 0.7–0.89 
(strong), and 0.9–1.0 (very strong) [36]. 

The analyses were performed using IBM SPSS Statistics, version 29 (IBM Corp, Armonk, NY, USA). Significant results were defined 
as those with two-sided p values less than 0.05. 

3. Results 

3.1. Participants 

The demographic and clinical data, including the CTDIvol, for the 109 participants are summarized in Table 2. The 216 hepatic 
lesions were categorized as follows: cystic lesions (74, 34.3 %), hemangioma/vascular lesions (14, 6.5 %), benign/probably benign 

Table 1 
Details of the five aspects of qualitative assessment.  

The Qualitative Assessment Score 

Lesion detectability 0 = Undetectable 
1 = Detectable 

Lesion border 1 = Ill-defined border; significant effect to image interpretation 
2 = Less sharp border; no significant effect to image interpretation 
3 = Sharp border 

Diagnostic confidence level 0 = Not confident to give diagnosis 
1 = Confident to give diagnosis 

Image artifact 1 = Yes; significant effect to image interpretation 
2 = Yes; no significant effect to image interpretation 
3 = None 

Overall image quality 1 = Unacceptable, unable for image interpretation 
2 = Poor, interfere image interpretation 
3 = Average, with possible image interpretation 
4 = Good 
5 = Excellent 

Remarks: Lesion detectability, lesion border, and diagnostic confidence level were evaluated per lesion basis, but 
image artifact and overall image quality were evaluated per reconstructed image set basis. 

Fig. 3. Measurement of image noise at the aorta (single ROI) and the liver (three ROIs at right anterior, right posterior, and left hepatic lobes).  
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lesions (4, 1.9 %), hepatocellular carcinoma (12, 5.6 %), other primary malignant tumors (7, 3.2 %), metastases (64, 29.6 %), 
posttreatment lesions (36, 16.7 %), calcification (1, 0.5 %), and indeterminate lesions (4, 1.9 %). The lesion sizes ranged from 1 cm to 
15.3 cm, with a mean size of 2.9 ± 2.47 cm. Among the lesions, 148 (68.5 %) were smaller than 3 cm (1–2.9 cm), while 68 (31.5 %) 
were 3 cm or larger. 

3.2. Image assessment 

3.2.1. Qualitative analyses 
Table 3 presents the details of the 5 aspects analyzed in the qualitative assessment: lesion detectability, lesion border, diagnostic 

confidence level, image artifact, and overall image quality. 
There were no significant differences in the lesion detectability and diagnostic confidence levels of the seven reconstruction 

techniques for all four readers. However, there were significant differences in the scores for lesion borders, image artifacts, and overall 
image quality among the techniques for all reviewers (p < 0.001). Some variations in scores were noted among readers based on their 
preferences and opinions. Nevertheless, the scores from all readers (mean score from four readers) indicated that increasing the 
strength of DLIR or IR resulted in images with fewer sharp borders and artifacts. 

The overall image quality scores ranged from 2 to 5 for each reader, with only one reader assigning a score of 2 in a single case. 
Among the seven reconstruction techniques, DLIR-L achieved the highest mean scores for all readers. 

3.2.2. Quantitative analyses 
Descriptive statistics of mean image noise measured at the liver and aorta for the seven image reconstruction techniques are 

detailed in Fig. 4. There were significant differences in image noise among the techniques at both the liver and aorta (p < 0.001). 
Increasing the strength of DLIR or the percentage of IR led to lower image noise. The DLIR technique exhibited lower image noise than 
the ASiR-V technique. 

Table 4 presents the Pearson’s correlation coefficients (r) between image noise and two variables: BMI and waist circumference. 
Both liver and aorta image noise showed a weak to moderate positive correlation with BMI and waist circumference, with waist 
circumference showing a slightly stronger correlation. 

4. Discussion 

To optimize the radiation dose without compromising image quality, novel CT reconstruction techniques have been proposed. DLIR 
is one such technique that reduces image noise, allowing for a potential reduction in radiation dose [37–43]. This is particularly 
beneficial in certain clinical situations, for example, oncologic patients requiring regular follow-up or pediatric patients. In a study by 
Cao et al., DLIR demonstrated a reduction in radiation dose of up to 76 % [37]. TrueFidelity, the vendor-specific DLIR in our study, 
utilizes a deep neural network-based engine trained with high-quality filtered back-projection data, resulting in excellent images with 
suppressed noise [44]. 

Consistent with previous studies [30,31,42,45,46], our study showed that DLIR achieved lower image noise than the IR technique. 
However, excessively reducing image noise may lead to an unnaturally smooth image, adversely affecting image quality due to the loss 
of spatial resolution and blurred borders, as supported by some researches [30,46–48]. This issue was evident in our study, where the 
DLIR-H technique received the lowest overall image quality score, while DLIR-L achieved the best score in overall image quality. 

Our findings align with previous studies [30,32,38,48,49] that reported that higher DLIR or IR strength leads to reduced image 
noise. We also observed a weak to moderate positive correlation between image noise and both BMI and waist circumference, 
consistent with prior studies [50,51]. In overweight or obese patients, increased body circumference or thickness hinders photon 
penetration, resulting in elevated image noise [52,53]. 

Our study showed that as the strength of DLIR and IR increased, there was a tendency for less-sharp borders. This can be attributed 

Table 2 
Demographic and clinical data of 109 participants, including CTDIvol.  

Patient Data Number (%) 

Age (years) * 65.0 ± 11.2 (34–87) 
Gender: 

Female 60 (55.0) 
Male 49 (45.0) 

BMI ** (kg/m2) * 23.6 ± 4.3 (16.4–39.7) 
Waist circumference (cm) * 84.0 ± 10.5 (66–121) 
Underlying diseases 

Cirrhosis 25 (22.9) 
Chronic hepatitis B infection 14 (12.8) 
Chronic hepatitis C infection 6 (5.5) 

CTDIvol *** (mGy) * 9.07 ± 1.33 (5.9–15.5) 

Remarks: * Mean ± SD (range), ** BMI = Body mass index, *** CTDIvol = Volume CT 
dose index. 
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Table 3 
Qualitative analysis of 7 image reconstruction techniques in 5 aspects.  

A) Lesion detectability (0 = undetectable, 1 = detectable) 

Reconstruction Techniques Lesion Detectability: number (%) 

Reader 1 Reader 2 Reader 3 Reader 4 

DLIR-L 216 (100) 214 (99.1) 216 (100) 216 (100) 
DLIR-M 216 (100) 214 (99.1) 216 (100) 216 (100) 
DLIR-H 216 (100) 214 (99.1) 216 (100) 216 (100) 
ASiR-V 0 % 216 (100) 214 (99.1) 216 (100) 216 (100) 
ASiR-V 10 % 216 (100) 214 (99.1) 216 (100) 216 (100) 
ASiR-V 20 % 216 (100) 214 (99.1) 216 (100) 216 (100) 
ASiR-V 30 % 216 (100) 214 (99.1) 216 (100) 216 (100) 
p-value 1.000 1.000 1.000 1.000  

B) Lesion border (1 = ill-defined border, 2 = less sharp border, 3 = sharp border) 

Reconstruction Techniques Lesion Border: mean ± SD 

Reader 1 Reader 2 Reader 3 Reader 4 All readers 

DLIR-L  2.57 ± 0.58  2.74 ± 0.53  2.69 ± 0.52  3.00 ± 0  2.75 ± 0.36 
DLIR-M  2.53 ± 0.60  2.71 ± 0.55  2.72 ± 0.50  2.93 ± 0.26  2.72 ± 0.39 
DLIR-H  2.45 ± 0.61  2.62 ± 0.61  2.72 ± 0.50  2.74 ± 0.44  2.63 ± 0.44 
ASiR-V 0 %  2.64 ± 0.55  2.73 ± 0.52  2.67 ± 0.55  3.00 ± 0.07  2.76 ± 0.36 
ASiR-V 10 %  2.62 ± 0.56  2.75 ± 0.51  2.67 ± 0.55  3.00 ± 0  2.76 ± 0.36 
ASiR-V 20 %  2.63 ± 0.55  2.75 ± 0.51  2.67 ± 0.54  3.00 ± 0  2.76 ± 0.35 
ASiR-V 30 %  2.61 ± 0.56  2.73 ± 0.53  2.68 ± 0.54  3.00 ± 0  2.75 ± 0.36 
p-value <0.001 <0.001 <0.001 <0.001 <0.001  

C) Diagnostic confidence level (0 = not confident to give diagnosis, 1 = confident to give diagnosis) 

Reconstruction Techniques Diagnostic Confidence Level: Number (%) 

Reader 1 Reader 2 Reader 3 Reader 4 

DLIR-L 180 (83.3) 209 (96.8) 211 (97.7) 216 (100) 
DLIR-M 180 (83.3) 207 (95.8) 211 (97.7) 216 (100) 
DLIR-H 180 (83.3) 206 (95.4) 211 (97.7) 216 (100) 
ASiR-V 0 % 180 (83.3) 208 (96.3) 211 (97.7) 216 (100) 
ASiR-V 10 % 180 (83.3) 207 (95.8) 211 (97.7) 216 (100) 
ASiR-V 20 % 180 (83.3) 208 (96.3) 211 (97.7) 216 (100) 
ASiR-V 30 % 180 (83.3) 208 (96.3) 211 (97.7) 216 (100) 
p-value 1.000 0.353 1.000 1.000  

D) Image artifact (1 = yes, significant effect, 2 = yes, no significant effect, 3 = none) 

Reconstruction Techniques Image Artifact: mean ± SD 

Reader 1 Reader 2 Reader 3 Reader 4 All readers 

DLIR-L  2.97 ± 0.21  2.95 ± 0.21  2.99 ± 0.10  3.00 ± 0  2.98 ± 0.09 
DLIR-M  2.98 ± 0.14  2.97 ± 0.16  3.00 ± 0  3.00 ± 0  2.99 ± 0.06 
DLIR-H  2.98 ± 0.14  2.99 ± 0.10  3.00 ± 0  3.00 ± 0  2.99 ± 0.05 
ASiR-V 0 %  2.55 ± 0.52  2.61 ± 0.49  2.31 ± 0.47  2.61 ± 0.49  2.52 ± 0.30 
ASiR-V 10 %  2.70 ± 0.48  2.79 ± 0.41  2.33 ± 0.47  2.83 ± 0.38  2.66 ± 0.27 
ASiR-V 20 %  2.73 ± 0.46  2.88 ± 0.33  2.44 ± 0.50  2.97 ± 0.16  2.76 ± 0.22 
ASiR-V 30 %  2.78 ± 0.44  2.87 ± 0.34  2.51 ± 0.50  2.96 ± 0.19  2.78 ± 0.22 
p-value <0.001 <0.001 <0.001 <0.001 <0.001  

E) Overall image quality (1 = unacceptable, 2 = poor, 3 = average, 4 = good, 5 = excellent) 

Reconstruction Techniques Overall Image Quality: mean ± SD 

Reader 1 Reader 2 Reader 3 Reader 4 All readers 

DLIR-L  4.96 ± 0.23  4.02 ± 0.27  4.93 ± 0.35  4.98 ± 0.14  4.72 ± 0.15 
DLIR-M  4.92 ± 0.31  4.01 ± 0.25  4.95 ± 0.32  4.88 ± 0.33  4.69 ± 0.18 
DLIR-H  4.27 ± 0.46  3.83 ± 0.42  4.95 ± 0.32  4.24 ± 0.45  4.32 ± 0.24 
ASiR-V 0 %  4.56 ± 0.52  3.95 ± 0.39  4.23 ± 0.50  4.92 ± 0.28  4.41 ± 0.27 
ASiR-V 10 %  4.70 ± 0.48  3.96 ± 0.36  4.26 ± 0.50  4.96 ± 0.19  4.47 ± 0.25 
ASiR-V 20 %  4.70 ± 0.48  3.98 ± 0.33  4.36 ± 0.55  5.00 ± 0  4.51 ± 0.26 
ASiR-V 30 %  4.76 ± 0.45  4.02 ± 0.27  4.43 ± 0.55  5.00 ± 0  4.55 ± 0.23 
p-value <0.001 <0.001 <0.001 <0.001 <0.001 

Remarks: DLIR-L, DLIR-M, DLIR-H = deep learning image reconstruction at low, medium, and high strengths; ASiR-V = adaptive statistical iterative 
reconstruction-V at 0 %, 10 %, 20 %, and 30 %. 
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to the reduction in image noise and the resulting smoother appearance of the images. In our study, DLIR showed a less-sharp border 
than IR and received a better score for reducing image artifacts. However, our findings differ from Jensen et al. [30], who reported 
significantly improved lesion conspicuity with DLIR than with 30 % ASiR-V. In their study, DLIR-H achieved the highest score for 
lesion conspicuity, followed by DLIR-M and DLIR-L. A higher score for lesion border indicated improved lesion conspicuity against the 
hepatic background; this aids lesion detection in the liver, which is well known as a low-contrast organ [12–15]. In our study, DLIR-H 
received the lowest score in the lesion border aspect, probably related to its unnaturally smooth images. Despite providing the least 
image noise and fewest artifacts, DLIR-H achieved the lowest score for overall image quality. 

Lesion detectability and diagnostic confidence level were similar among the seven reconstruction techniques, although slight 
variations were observed among readers. This may be attributed to the design of our study, which allowed readers access to clinical data, 
prior imaging studies, and other CT phase acquisitions, simulating real-world clinical practice. Our findings support the practicality of 
DLIR in clinical settings compared to commercially available IR. 

Our study demonstrated that DLIR-L is the optimal reconstruction technique, offering the best overall image quality and producing 
an optimally smooth image while maintaining acceptable levels of image noise, artifacts, and lesion borders. 

This retrospective study had limitations. First, it was conducted at a single institution in central Thailand. Second, it was also 
vendor-specific (GE Healthcare) with a focus on hepatic lesions ≥1 cm in size. Third, the significant proportion of the lesions in this 
study were cystic lesions, which had sharp border and were easily detected and diagnosed. Hence, further prospective study performed 
in several hospitals and utilizing several CT vendors should be designed with an emphasis on more solid and/or smaller hepatic lesions. 
These would provide additional information and confirm its generalizability and clinical applicability. Additionally, image noise 
measurements in our study were limited to the liver and aorta regions. Finally, although the readers were blinded to the CT 
reconstruction techniques, they were not blinded to other clinical information, prior imaging studies, or other CT phase acquisitions. 

5. Conclusions 

In summary, DLIR with optimal strength significantly improved overall image quality for evaluating focal hepatic lesions compared 
to the statistical IR technique. DLIR-L demonstrated the best overall image quality while maintaining image noise, artifacts, and lesion 

Fig. 4. Box plots depicting image noise (HU) across 7 image reconstruction techniques (p-value <0.001). A: Mean image noise measured at the liver 
from 3 hepatic ROIs. B: Image noise measured at the aorta. 

Table 4 
Pearson’s correlation coefficient (r) between image noise and both BMI and waist circumference.  

Reconstruction Techniques Image Noises (Liver) Image Noises (Aorta) 

BMI Waist Circumference BMI Waist Circumference 

DLIR-L 0.511 0.606 0.340 0.506 
DLIR-M 0.472 0.524 0.312 0.469 
DLIR-H 0.357 0.428 0.246 0.399 
ASiR-V 0 % 0.463 0.595 0.358 0.506 
ASiR-V 10 % 0.467 0.592 0.314 0.492 
ASiR-V 20 % 0.508 0.620 0.353 0.494 
ASiR-V 30 % 0.500 0.637 0.330 0.478 

Remarks: BMI = body mass index; DLIR-L, DLIR-M, DLIR-H = deep learning image reconstruction at low, medium, and high strengths, respectively; 
ASiR-V = adaptive statistical iterative reconstruction-V. 
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borders within acceptable levels. 
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