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Abstract: Despite all efforts, the treatment of breast cancer (BC) cannot be considered to be a success
story. The advances in surgery, chemotherapy and radiotherapy have not been sufficient at all. Indeed,
the accumulated experience clearly indicates that new perspectives and non-main stream approaches
are needed to better characterize the etiopathogenesis and treatment of this disease. This contribution
deals with how the new pH-centric anticancer paradigm plays a fundamental role in reaching a more
integral understanding of the etiology, pathogenesis, and treatment of this multifactorial disease. For
the first time, the armamentarium available for the treatment of the different types and phases of BC
is approached here from a Unitarian perspective-based upon the hydrogen ion dynamics of cancer.
The wide-ranged pH-related molecular, biochemical and metabolic model is able to embrace most of
the fields and subfields of breast cancer etiopathogenesis and treatment. This single and integrated
approach allows advancing towards a unidirectional, concerted and synergistic program of treatment.
Further efforts in this line are likely to first improve the therapeutics of each subtype of this tumor
and every individual patient in every phase of the disease.

Keywords: pH and breast cancer; breast cancer etiology; breast cancer pathogenesis; breast cancer
treatment; pH-centric anticancer paradigm; hydrogen ion dynamics of cancer; cancer proton reversal;
multiple drug resistance (MDR) integral approach

1. Introduction

According to The International Agency For Research on Cancer (IARC), breast cancer (BC) is the
most common malignant tumor in humans and the secondary cause of mortality of cancer in women,
just behind lung cancer [1]. BC-related morbidity is primarily due to a progressive metastatic process [2].
Many associated risk factors, either genetic, from BRCA1 and BRCA2 gene mutations, a wide array
of other genetic derangements [3], and a multiplicity of environmental factors such as age, obesity
and estrogens, among many others [4], are involved in the onset of BC. Despite significant advances
in therapy, the overall results are not too successful, especially in advanced disease [5,6]. This may
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indicate that a change towards a more comprehensive and perhaps radically different perspective is
necessary in order to incorporate more rational and less toxic treatments, and at the same time foster a
better understanding of this multifaceted disease.

A new and all-comprehensive pH-related paradigm has increasingly grown during the last few
years, notably after the realization that the cancer-selective intracellular/extracellular pH deregulation
is critical in the control of many cellular, both normal and pathological, processes [7]. One of the latest
achievements of the new pH-paradigm has been to describe the integral and unitarian mechanism
mediating the wide array of apparently unrelated factors involved in the etiopathogenesis of cancer,
a finding that we can now be applied to BC [8].

The study of the abnormal hydrogen ion (H+) dynamics of cancer started almost five decades
ago [9–13]. Since then, a rapid increase in the understanding of the deregulated H+ dynamics in
cancer and the cancer-specific proton gradient reversal (CPR) has resulted in a new and increasingly
outreaching paradigm, known as the pH-centric anticancer paradigm. This perspective embraces
many different aspects of basic, preclinical and clinical oncology, all derived from this H+-related
energetic concept that has allowed an intimate acid-base approach to the inner nature of malignancy.
Nowadays the pH or H+- related model is already able to unite different fields, from molecular biology
to biochemistry and the metabolism of cancer, having already reached up to the clinical aspects of
cancer cells and tissues [14,15]. This perspective has rapidly extended to other different collateral areas
of oncological research, incorporating within its range areas previously far apart when approached
by the old and reductionist model, such as angiogenesis, environmental carcinogenesis and cancer
immunology, also including the initiation, progression, metastatic process and even the spontaneous
regression of cancer [16–21]. In summary, this integral and comprehensive paradigm can embrace
most, if not all, aspects of cancer, and also of BC, from etiopathogenesis to treatment.

The cancer-selective abnormalities of intracellular alkalization plus extracellular acidification of all
types of solid tumors and leukemias (CPR) represent the mirror image of normality, an upside-down
disruption and tip over from normal homeostasis and allostasis [8]. Normality is exactly the opposite: a
more acidic medium inside than outside non-cancerous cells [22,23]. As a consequence of this acid-base
homeostatic disruption and energetic failure of cellular hydrogen ion (H+) dynamics, attempts to
induce intracellular acidification using proton transport and pump inhibitors (PTIs and PPIs), as well as
other intracellular acidifiers of different origins and natures (repurposed drugs), has become a new and
valuable therapeutic strategy in selective cancer treatment. In this vein, the wide-ranging applications
and potential benefits of this approach to the therapeutics of solid tumors has been recently published
in a full issue containing fourteen reviews addressing the different aspects of the new pH-centric
anticancer paradigm [24].

In the same line, we recently published an original review dealing with the pH-related possibilities
in the treatment of brain malignancies in humans [25]. To uncover further pathophysiological and
therapeutic applications of this post-traditional and non-main stream approach to cancer, this basic
to clinically oriented and translational review will also discuss the foundations of the H+-related
paradigm now applied in this contribution to the etiopathogenesis and treatment of BC [8].

2. Cancer as an Acid-Base Disease

The highest and lowest limits of pH in cellular and human life are considered to range between
6.8 and 7.8, a difference of only one unit. The normal cellular pH (pHi) is accepted to be 7.0–7.1,
while a normal interstitial and systemic pH (pHe) is considered to be 7.35–7.45. Otherwise, the pHi of
malignant cells can be as high as 7.8 [8]. Contrariwise, during malignant cells apoptosis the pHi has
been shown to be as low as to 5.0 [26]. Most importantly, seminal studies in this area demonstrated that
malignant transformation takes place at a pHi > 7.2, that is, only 0.2 units above normality, the time
period needed for the oncogenic effect of the acid-base change being inversely related to the pHi
increase [27].
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During the last few years the new pH-centric anticancer paradigm and the H+ dynamics of cancer
have helped to significantly increase the understanding of the intimate nature of human malignant
tumors. Nowadays, it is agreed that all cancer cells and tissues have deeply rooted evolutionary and
thermodynamic pH-related advantages over all normal tissues. This characteristic allows neoplastic
cells first to survive in the most hostile conditions, then to grow locally, later to invade neighboring
tissues to finally disseminate out of control, overwhelming all the defensive barriers and immune
mechanisms of the host: “the neostrategy of cancer cells and tissues”. These highly pathological
energetic and metabolic disruptions are based on a pathognomonic intracellular alkalization of
cancer cells and, secondarily, to an extracellular and intratumoral microenvironmental acidosis.
Both coordinated phenomena are facilitated by overactive membrane-bound proton transporters (PT)
and pumps (PP) extruding mechanisms, inducing an inversion of the normal cells/surrounding tissues
pH gradient (pHi to pHe), or CPR, across cellular membranes. These deregulated pH dynamics
also determine the cancerous effects on normal cells and tissues, from early tumorigenesis and
transformation to proliferation, local growth and a metastatic process that usually ends up with the
death of the host.

Such metabolic reprogramming confers to cancer cells and tissues other important thermodynamic
advantages, such as enhancing their resistance to hypoxia and to cancer therapy (MDR), allowing them
to survive under almost any conditions. Finally, these dynamic changes allow malignant cells and
tissues to avoid the pro-apoptotic intracellular acidification (IA), which would result in a selective
cancer cell death as the successful outcome of treatment. As previously mentioned, the new acid-base
approach to cancer has extended side-ways to the point that it can now provide further meaning to
most, if not all, the hallmarks previously described for cancer, and even envision new ones [28,29]. Such
a conceptual deepening into the intimate nature of malignancy allows the new H+-related paradigm
to cover under one single heading the many different areas and hallmarks of cancer research and
treatment previously disconnected to a large extent, namely:

(a) pH and the Warburg effect: Recent publications of our group and others have defended that the
Warburg effect can be fully explained by the selective pH abnormalities of cancer cells and their
effect on aerobic glycolysis [8,24,25,30–36].

(b) pH abnormalities in the etiology and pathogenesis of BC and other tumors: Nowadays,
intracellular (IC) alkalization is increasingly recognized as a fundamental and sine qua non factor
in cellular transformation in BC and other malignant tumors [8,37–44].

(c) pH and cancer molecular biology, biochemistry and metabolism: Recent experimental data have
clearly shown that the pH-related paradigm can reinterpret the molecular biology, biochemistry
and intermediary metabolism of cancer cells and tissues from an integral and Unitarian dynamic
perspective [8,37–42,45,46].

(d) pH, tumor growth and invadopodia: Local invasion is promoted by Na+/H+ mediated low pH of
invadopodia at the advancing edge of cancer cells [37,47,48].

(e) pH and microenvironmental-intratumoral acidosis in cancer growth and dissemination: Through
different mechanisms, from biochemical to immunological, the high extrusion of lactic acid and
other metabolites from cancer cells creates a highly acidified extracellular media that stimulates
different and coordinated mechanisms strategically organized to favor local growth, invasion and
dissemination [8,22,49–54].

(f) pH and the metastatic process: The pHi/pHe gradient reversal (CPR) is fundamental in all stages
of cancer growth, from cell transformation and the initiation of tumor growth to the activity and
progression of the metastatic process [23,35,48,55].

(g) pH, proton transporters (PTs), proton pumps (PPs) and their inhibitors (PTIs and PPIs): During
the last decade the increasing interest and knowledge of the different membrane-bound PTs and
PPs in cancer pathogenesis, as well as their inhibitors in cancer treatment, has made it possible
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to approach, from a different and non-mainstream perspective, the latest therapeutic efforts in
cancer treatment, either in BC or in other human malignant tumors [15,36,40,42,54–70].

(h) pHi acidification and reverting cancer proton reversal (CPR) in cancer treatment: Attempts
to revert CPR in cancer are the fundamental therapeutic issue in the entire paradigm of the
H+-related dynamics of cancer, BC included, from the initiation stage to angiogenesis and to the
treatment of metastatic disease [8,16,23,55,63,71].

(i) pH and voltage-gated sodium channels (VGSC): The expression of Na+ channels synergically
associated with Na+/H+ antiporter activity and over-expression is important in BC pathogenesis
by stimulating local invasion and the metastatic process, while its suppression is a valuable
complementary therapeutic option [72–77].

(j) pH and environmental carcinogenesis: An integral explanation of human environmental
carcinogenesis has been recently advanced, proposing that the oncogenic activity of many different
carcinogens induce the same cancer-specific effects on cellular H+ dynamics (CPR). This recent
and highly important integration into the H+-related paradigm strongly suggests the possibility
of the existence of a universal mechanism responsible for environmental carcinogenesis [18,19].

(k) pH and cancer immunity: The acidic pHe of tumors has been considered to be the ultimate
mechanism allowing them to escape from the anti-tumor immunity of the parasitized human
organism. The final result is that this microenvironmental-intratumoral-extracellular (EC) low
pHe creates a protective shield around cancer tissues with the onset of a state of anergy and
immunosuppression mediated by the EC acidification-induced loss of function of T and NK cells.
It also helps to explain the limitations and failures of checkpoint blockade in immunotherapy.
Contrariwise, counteracting microenvironmental tumor acidity improves the antitumor responses
to immunotherapy [20,21,47,78,79].

(l) pH and apoptosis: Malignant cell apoptosis is induced by pHi acidification while intracellular
alkalization suppresses it [8,80–83].

(m) pH and drug resistance (MDR): Beyond the fact that the expression of P-glycoprotein (P-gp) leads
to an elevation of pHi in cancer cells, an integral mechanism that explains MDR-based upon the
selective changes in pHi and pHe (CPR), has been recently developed [84–90].

(n) pH, nanodrugs and liposomes: Systemic administration of nanoparticles disrupts microtubule
dynamics and can be potentially useful for treatment on its own and in the overcoming of MDR.
Some preparations of nanoparticles structure and delivery are highly pH-dependent [91–93].

(o) pH and aquaporins: Environmental pH changes either facilitate or hinder water diffusion across
membranes while a rapid drop of cytosolic pH due to anoxia leads to closure of aquaporins in the
plasma membrane [94,95].

(p) pH and autophagy: No matter that autophagy still appears to be a controversial issue, is
considered a defensive survival mechanism of cancer cells in order to overcome drug-induced
cellular stress and cytotoxicity. Acidic conditions increase autophagy in cancer cells suggesting
that autophagy is a protective mechanism for tumor cells to survive under the microenvironmental
acidic stress. Inhibiting autophagy may lead to a full cytotoxic effect [96–100] (for further details
see the text).

(q) pH and repurposed drugs in cancer treatment: There is a wide array of intracellular acidifiers
unrelated to PTIs or PPIs effects from many different origins and natures that have shown
anticancer properties and in many cases are minimally toxic or not toxic at all [8,101–103].

(r) pH and photodynamic therapy in cancer: pHi acidification using photosensitizing agents leads to
apoptosis and has been shown to suppress tumor growth and increase survival in animal tumors.
Clinical studies in different solid tumors in humans are underway [104,105].

(s) pH and the spontaneous regression of cancer (SRC): The association of spontaneous regression of
different cancers in humans with deep-seated systemic acid-base changes has been recognized for
more than half a century [106–112].
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(t) pH, evolution and cancer metabolism: From the fields of physics and chemistry to carcinogenesis,
a pH-related reverse evolutionary process have been considered even from the times of Albert
Szent-Györgyi (personal communication) [113–117].

3. All Phases of Breast Cancer Are Weaved into Each Other to Conform a Single,
All-Comprehensive and Progressive, Multistage Unity

All the above-mentioned oncological fields and subfields have in common a pivotal characteristic,
namely, the aberrant pHi/pHe regulation of hydrogen (H+) ion dynamics [118], an abnormality that
cannot be more opposed to the acid-base and energetic normality of non-cancerous cells and tissues.
In a recent publication on brain malignancies, a large number of known etiopathogenic factors from
many different natures and origins, all known to cause different human malignancies, were considered
together [8,25]. Importantly, all the cancer-inducing factors listed in that review, but also in other previous
reports of this group, act via a universal mediating mechanism, that is, an increase of cell pH secondary to
the stimulation of the activity of NHE and/or other H+-related membrane-bound PTs and PPIs (Figure 1).

Figure 1. Proton transporters and proton pumps involved in the carcinogenicity of breast cancer and
other malignant tumors. pHi: intracellular pH; CT: cell transformation; pHe: extracellular pH; PTs:
proton transporters; PPs: Proton pumps; NHE-1: Na+/H+ antiporter; H+: hydrogen ion; CAs: carbonic
anhydrases; MCT: monocarboxylate transporters; P-gp: P-glycoprotein; V-H+-ATPase: Vacuolar
ATPase; MDR: Multiple drug resistance. Blue arrows: Induction. Black arrows: Result. Yellow color:
intracellular space of a tumor cell.

The nature and evolution of any solid tumor, and also of BC, makes it possible to accept
that the deep-seated pH deregulations and/or highly disrupted H+-dynamics of malignancy are
a fundamental factor behind a predetermined, progressive and staggered strategy of growth and
dissemination (“the selective neostrategy of cancer cells and tissues”). This process begins with
cell transformation and is closely followed by local growth and invasion under a highly hostile
acid-base tumor microenvironment (TME). These initial phases are followed by neoangiogenesis,
which favors metastatic dissemination and drug resistance. Each of these closely related periods of the
natural evolution of cancer is not separated at all from the previous or subsequent ones but forms a
Unitarian and dynamically active process that can even be considered a “conscious” and organized
preprogrammed strategy. Despite this, the understanding raised by the pH-anticancer perspective
has the potential to offer the possibility of applying therapeutic methods in a unique direction in all
the phases of the malignant process, either in BC or in other solid tumors. This strategy is bound to
interfere with each and all cancer hallmarks through different procedures acting from prevention to
the treatment of advanced disease.
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4. pH/NHE, Microenvironmental Acidosis and Immunity, Insulin, Prolactin, Estrogens, Genetic
Abnormalities and Growth Factors in the Promotion of Breast Cancer

4.1. pH/NHE, H+ Extrusion and/or Intracellular Alkalization in the Etiology and Pathogenesis of Breast Cancer

In addition to NHE overexpression, H+ extrusion from cells can also be mediated by a cohort
of other membrane-bound proton transporters, pumps and ion channels [8,15]. On one hand, these
actors participate in keeping pHi normal to elevated, so preventing a low pHi-mediated therapeutic
apoptosis. Such factors are carbonic anhydrases (CAs), mainly CAIX and CAXII, vacuolar H+-ATPase
proton pumps, voltage gated sodium channels, sodium bicarbonate cotransporters, monocarboxylate
transporters (MCTs), Cl−/HCO3− exchangers and ATP-Synthase [15,48] (Figure 1). Different types of
acid extruders like NHE1, NBCn1 and MCT4 are expressed in human mammary tumors, promoting
growth of at least triple negative BC (TNBC) through synergistic and different mechanisms of action [56].
Paradoxically, the Na+/H+ exchanger regulatory factor 1 (NHERF1) presents a dual activity, either
oncosuppressant or prooncogenic in invasive BC, depending of the cellular location of its activity [119].
Also, NHE1 and NBCn1 drive cell cycle progression in human BC cells, while their knocking down
reduces proliferation and progression [70]. TME acidosis is also associated with pain in bone metastasis
in BC [120]. Unfortunately, although one or more of these H+-extrusion systems substantially applies
to all malignancies, a complete selective mapping of which PTs and PPs are overexpressed in each
particular tumor is still missing. Therefore, at the moment the concerted use of all of them in
pharmacological doses is recommended [53].

4.2. A Universal Mechanism as a Final Mediating Cause of Breast Cancer

It has been recently demonstrated that H+ efflux alone is sufficient to induce dysplasia and
potentiate cancer growth and invasion by oncogenic Ras and that inhibiting H+ efflux induces cell
death in invasive primary tumor mammary cells [38]. In the same line, the most striking results
have been obtained by the group of Fliegel, showing that NHE-mediated H+ extrusion alone has a
direct carcinogenic effect on breast cells [40]. The same alteration also plays a fundamental role in the
metastatic process and in multiple drug resistance (MDR) [41–44]. In these studies, NHE1 hyperactivity
and/or a high pHi act as an early and decisive driver in BC carcinogenesis and also in most, if not all,
other human malignancies [37,121]. Moreover, the elevated pHi is also the main responsible actor for
the secondary acidification of the extracellular/intratumoral microenvironment (TME). Importantly, H+

extrusion by itself has been implicated in the transition and progression from precancerous ductal
carcinoma in situ to invasive BC. Of note, even the precancerous lesion already shows a higher than
normal proton export rate [40,42,43]. Indeed, the invasive BC cells show a higher pHi and a higher
production and exportation of H+ into the TME than noninvasive cells [40,53,122]. (Table 1). All these
are qualitative and highly specific changes in the etiopathogenesis of BC.

Table 1. pH-related and -unrelated mechanisms in the etiopathogenesis and progression of breast
cancer. BC: Breast cancer; TME: Tumor microenvironment; MDR: Multidrug resistance; NHE: Na+/H+

antiporter: CAs: Carbonic anhydrases; ER-: Estrogen negative cells; PTIs: Proton transport inhibitors;
PPIs; Proton pump inhibitors.

Mechanisms Summary References

H+ extrusion and/or
elevated pHi

H+ extrusion from cells is sufficient to induce transformation,
growth and invasion in BC and other tumors. NHE-mediated
H+ extrusion by itself has a carcinogenic effect on breast cells

and increases MDR.

[8,23,25,37–44,48,54,59,
122–125]

Tumor
micro-environmental

(TME) acidosis, immunity
and MDR

Acidity of the TME disrupts the body immune defense
mechanisms towards malignant tumors, locally and systemically.

This allows a relentless and uncontrolled tumor progression.
TME also has an essential role in the progression of

inflammatory BC. Thus, TME is a novel therapeutic target in BC.
TME acidity also induces MDR.

[20–22,47,49–51,78,79,
84,87,116,120,126–138]
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Table 1. Cont.

Mechanisms Summary References

Insulin (INS) and
insulin-like growth

factor-1 (IGF-1)

INS and INS-resistance have a direct effect in raising pHi and are
associated with breast cancer carcinogenicity and progression.

Over-expression of insulin/insulin-like growth factor-1 is
associated with a decrease in the life span of women with BC.

[3,35,39,139–149]

Prolactin (PRL)

PRL stimulates growth, motility and invasiveness of BC cells
through NHE1 activation. In this way contributes to the

metastatic process of human BC and becomes
another therapeutic target.

[150–153]

Estrogens

Estrogens play a crucial role in breast tumorigenesis by
promoting cell proliferation and decreasing apoptosis. ER-cells
are considered to have a higher expression of NHE activity and
are preferably associated with CA-IX over CA-XII. Inhibition of

CA-IX improves the prognosis of the disease.

[4,154–157]

Ion channels
NaV1.5-Na+channels associated with NHE-1 are overexpressed

in BC, stimulating the formation of invadopodia, facilitating
local growth and the metastatic process.

[8,72,73,75–77,148]

PTs, PPs,
and Growth factors

NHE1-overexpression is stimulated by a myriad of factors,
which alone or in combination induce a carcinogenic elevation

of pHi as the oncogenic response of normal cells of different
origins and locations. Carbonic anhydrases (CAs) also have an

important role in the pathogenesis of BC, mainly in hypoxic
conditions. NHE1 levels are significantly higher in BC tissue
than in adjacent normal tissue, and also in resistant BC cells

when compared to sensitive cells.

[8,25,41,55–71]

4.3. Tumor Microenvironmental (TME) Acidosis and Immunity

There is a direct effect of tumor interstitial acidosis in hindering the antitumor immune response
of the organism, another negative effect of the CPR. A complete review of the mechanisms by which
tumor acidity disrupts the body immune defenses, locally and systemically, have been published
by Huber et al. [20] (Table 1). These authors have shown how the acidity of the TME disrupts the
immune defense mechanisms against malignant tumors, locally and systemically (Figure 1), enabling a
relentless and uncontrolled tumor progression. Similar conclusions have been reached by other groups,
relating aerobic glycolysis and lactic acid production with tumor invasion and even with MDR [126].
For all these reasons, the TME has been targeted by different methods in order to decrease, control
and, if at all possible, revert, tumor extracellular acidity, both in animals and humans, in different
malignant tumors. To this end, dietary lipids, PPIs or large daily amounts of sodium bicarbonate or
other buffers have been used [51,158], occasionally with good results. The positive and antimetastatic
effects of this strategy are secondary to the fact that acidity blocks T-cell activation and impairs tumor
immunity [78]. Therapeutically, controlling TME acidity corrects T-cell dysfunction and allows to
improve the efficacy of many other T-cell-based anticancer treatments [21,127,129]. A similar situation
arises in lymph nodes, where activated T-cells are inhibited by acidosis [47]. The different methods to
counteract TME acidity have been recently reviewed [22].

Most importantly, seminal research in this area by Marches et al. demonstrated that the
anti-IgM-mediated induction of cell death in human B lymphoma cells is dependent on NHE1
inhibition and subsequent intracellular acidification. These findings do not appear to have been
properly followed, in spite that they represent a synthesis of three different fields of modern oncology
research: biochemistry, molecular biology and cancer immunity, all under one wide-ranged embracing
unit [79].

4.4. Insulin (INS) and Breast Cancer

After all the experience accumulated on the carcinogenic effects of Na+/H+ overstimulation and/or
an elevated pHi, it can be concluded that any factor that up-regulates this antiporter may have a
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carcinogenic activity on its target cells (Table 1). Through its stimulating effects on glycolysis INS is
one of these metabolic factors [35,145]. INS presents a direct effect in raising pHi, which at the same
time increases glycolysis, and probably these are the two reasons for its known tumor-stimulating
properties [144]. This is reasonable too, since hyperinsulinemia and obesity have been associated with
an increased incidence of BC [139,140] (Table 1).

Cancer cells are also associated with INS insensitivity (resistance), due to high oxidative stress,
especially during malignant transformation, and this could be an earlier event of carcinogenesis [141].
Recently published data show that behind the effect of INS on resistance appears to be an abnormality of
the pH/NHE-1 signaling pathway [142], with NHE-1 over-expression as the first known key event of
transformation in carcinogenesis [23,37]. Moreover, microenvironmental acidification and even systemic
metabolic acidosis in cancer are linked with INS resistance [159,160], both phenomena being a reflection
of the metabolic complications of cancer, the latter in advanced and disseminated disease [161–163]. For
these reasons, some antidiabetic drugs like sulfonylureas, known to act by stimulating the pancreatic
secretion of insulin, may have a negative impact on cancer growth [164–167]. In contrast, other antidiabetic
agents, like Rosiglitazone and Metformin, show promising anticancer properties as INS-sensitizing
agents [168,169] (Table 2). From a clinical perspective, it has also been shown that the over-expression of
INS or the IGF-1 gene is associated with a decrease in the life span of women with BC, while their deletion
improves life span and may also decrease tumorigenesis [143,146,147]. Finally, a recently published
and highly interesting contribution has shown that insulin resistance might be a secondary effect of an
abnormal NHE-1 signaling pathway [142] (Table 1).

Table 2. pH-related drugs with present and potential benefit in the treatment of breast cancer. BC:
Breast cancer; NHE: Na+/H+ antiporter; MDR: Multiple drug resistance; P-gp: P-glycoprotein; CAs:
Carbonic anhydrases; ER+: Estrogen positive cells; ER-: Estrogen negative cells; PTIs: Proton transport
inhibitors; PPIs; Proton pump inhibitors. TME: tumor microenvironment.

Drug Summary References

Amiloride (AM) (and/or
liposomal amiloride), proton

transport inhibitors (PTIs) and
intracellular (IC) acidifiers

AM is a non-specific NHE inhibitor first introduced for human use as a
K+ sparing diuretic. It works as an antiangiogenic agent and has proved

to be most effective as an antimetastatic drug in transplanted breast
tumors in animals. A positive clinical experience in an occasional patient
has been reported with its chronic use when traditional chemotherapy
had failed. Also, the many anti-cancer effects of AM have been fully
described. However, its utilization has not entered clinical trials in

bedside oncology. (For further details, see the text).

[8,16,25,26,32,53,54,60,63,
64,67–69,79,82,88,101,110,
118,129,158,165,170–183]

Proton pump inhibitors (PPIs)
and TME alkalization

PPIs are useful in the prevention of BC. Besides, the clinical utilization of
V-ATPase inhibitors is a novel therapeutic measure to counteract the
abnormal proton dynamics of BC and other tumors. PPIs also benefit

from the microenvironmental acidity of tumors. Preclinical and clinical
studies also support a direct anti-tumor effect of PPIs in BC

and other solid tumors.

[22,49,51,67,78,85,128,130,
177,184–196]

Monocarboxylate transport
(MCT) inhibitors

Quercetin is a pan-monocarboxylate transporter (MCT) inhibitor and
intracellular acidifier. Liposomal quercetin is also available, since

gastrointestinal absorption is very limited in the
non-liposomal drug form.

[101,102,137,197–199]

Acetazolamide (AZM)

AZM is a carbonic anhydrase (CA) pan-inhibitor and cell acidifier. CAIX
inhibition significantly reduces invasion of BC cells and represents a most

promising drug in the treatment of BC, alone or in combination with
different NHE inhibitors.

[63,65,165,183,200–203]

Doxorubicin (DOXO)

There is a progressive increase in resistance to DOXO by increasing
elevations of pHi, resistance that is suppressed by P-gp inhibitors, while

P-gp also increases pHi. MDR is characterized by a reversal of the pH
gradient (cancer proton reversal or CPR) across cancer cell membranes.

[8,25,84,88–90,101,179,204]

Paclitaxel
The inhibition of NHE1, which is fundamental in the chemotherapy of
triple-negative BC metastasis, improves the efficacy of Paclitaxel and

mediates in Paclitaxel-induced apoptosis of BC cells.
[40,42,44,179,180,205–208]

Cis-platinum (CDDP)

The first effect of CDDP is the induction of intracellular acidification by
inhibiting H+ extrusion secondary to downregulation of NHE-1.

Contrariwise, the activity of NHE-1 and its effect on elevating pHi
increases CDDP resistance to treatment.

[206,209–211]
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Table 2. Cont.

Drug Summary References

Antiestrogens

ER- breast cancer cells have a higher expression of NHE activity and are
preferably associated with CA-IX over CA-XII. Inhibition of CA-IX

improves the prognosis of the disease. Although the role of Tamoxifen
and Letrozole is well established, no further connections among pH

dynamics and these antiestrogens have been described.

[4,5,154–157,200,212,213]

Melatonin (MT)

MT has an antiestrogenic effect and only for this reason it should be
contemplated in BC therapy. Treatment with MT modulates tumor

aggressiveness and increases apoptosis n BC cell lines. MT also
suppresses tumor aerobic metabolism (the Warburg effect) and decreases

breast cancer angiogenesis and metastasis.

[214–225]

Cariporide (CP)
CP (HOE-642) is a powerful NHE1 inhibitor that, unfortunately, is not
available for clinical use in bedside oncology. It induces apoptotic cells

death in different malignant tumors.
[8,25,35,170]

Compound 9t (C9t)
(Unavailable)

C9t is 500-fold more potent against NHE1 than cariporide and has a
1400-fold greater selectivity for NHE1 over NHE2. Besides, C9t is orally
bioavailable, has low side-effects in mice and it presents a significantly

improved safety profile over other NHE1inhibitors.

[8,35,178]

Phx-3
Phx-3 is a potent, selective and non-toxic NHE1 inhibitor that triggers

apoptosis in a variety of cancer cell lines and is highly effective in some
animal tumor models.

[8,32,182]

Repurposed drugs

Phloretin, Lonidamine, Niclosamide, Docosaexaenoic acid, Salinomycin
and Simvastatin have been reported to be useful in the treatment of BC

because of their pH-related effects. Resveratrol also has a role as an
aromatase inhibitor. (For further details, see the text).

[8,103,226–234]

Metformin (MET)

MET has been introduced as an anticancer agent in BC. It induces
intracellular hyperacidification in tumor xenograft models. MET has been

reported to inhibit insulin and insulin/IGF-1, HIF-1α, Warburg
metabolism, gene expression, angiogenesis, cancer migration, invasion

and metastasis, apart from reducing the side effects of doxorubicin. MET
has also been reported to act synergistically with chemotherapy and

decrease its dosages, thus, its side-effects. It has also been used to target
resistant cells in BC and has been considered a radio-sensitizer.

[235–255]

4.5. Prolactin and Breast Cancer

The role of prolactin (PRL) in the pathogenesis and progression of human BC is generally
accepted [151]. Through NHE1 activation, this hormone stimulates growth, motility and invasiveness
of BC, in this way contributing to the progression of the disease in a similar fashion that estrogens
do [48,150] (Table 1). We agree with these authors that because of the effects of PRL, its inhibition
should play a preventive, therapeutic and adjuvant role in the treatment of BC, as has already been
suggested for other tumors [8].

Furthermore, there seems to exist a protumoral and synergistic interaction between PRL and
growth hormone (GH) in stimulating the growth of certain tumors, BC among them [152]. In this
vein, Clevenger et al. advanced that antagonists of PRL/PRL receptor interaction can be useful in
the treatment of human BC, either alone or in combination with traditional antiestrogenic agents
like tamoxifen and letrozole [151]. For all these reasons, PRL inhibitors such as bromocriptine or
cabergolide (dopaminergic agonists drugs) should be taken into account as part of the armamentarium
of repurposed drugs in BC therapy, even as a drug sensitizer [153].

4.6. Estrogens and Breast Cancer

Human BC is a heterogeneous disease classified in three major subtypes based on the expression of
estrogen and progesterone receptors and human epidermal growth factor receptor-2 [256,257]. Among
these BC subtypes, triple-negative BC results in a higher risk of metastatic dissemination and early
death (Table 1).

Estrogens frequently play a crucial role in breast tumorigenesis by promoting cellular proliferation
and decreasing apoptosis [154]. Interestingly, a recent study discussed why some tumors express ER+

(estrogen receptors) and not ER- [155]. One of the suggested explanations is that while ER+ tumor cells
are highly vascularized ER- cells are better characterized by a higher expression of:
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(a) NHE1 activity.
(b) Hypoxia-inducible Factor activity (HIF).
(c) Carbonic Anhydrases (CAs) activity: CA-XII expression relies on estradiol activity [156]. Therefore,

ER+ is more likely to be associated with CA-XII rather than with CA-IX, while CA-IX is more
frequently associated with ER- cells [212]. It has been shown that the selective inhibition of CA-XI
improves the prognosis of the disease [200]. Although estrogens are growth factors, their effects
or relations with the H+ dynamics of BC cells have not been well established. However, ER-
BC cells seem to be associated with NHE1 activity [157] (Table 1). ERs show a high degree of
heterogeneity in BC [156], as first reported by Puddefoot et al. in 1993 [258], and further confirmed
by Leclercq some years later [259]. This heterogeneity implies, among other aspects, that at least
four isoforms of ER alpha may exist, migrating to different isoelectric points in isoelectric focusing
gels. Whether one or more of these different isoelectric points may be related or even contribute
to changes in the pHi of mammary cells leading to BC remains to be established.

4.7. Ion Channels

It has been previously shown that ion channels are an important factor in the etiopathogenesis
of cancer and neurodegenerative diseases, both pathologies staying at opposite ends of a pH-related
metabolic spectrum [8]. It is also been demonstrated that NaV1.5-Na+ channels are in a close association
with NHE-1, both being overexpressed in BC, where they contribute together to degrade the tumoral
microenvironment, stimulate the formation of invadopodia and foster the metastatic process in a
similar manner that CPR does [54,74–76,149] (Table 1). Furthermore, ion channels are activated at
low microenvironmental tumor pH in BC and other tumors, thus promoting cell proliferation and
migration. In this context, ion channels become relevant therapeutic targets [148].

4.8. PTs, PPs and Growth Factors

NHE1-overexpression is stimulated by a myriad of factors, all of which induce a pathological
and carcinogenic elevation of pHi as a response of cells of many different origins and locations [25]
(Table 1). Hence, the possibility of a cause–effect relationship between BRCA1 and BRCA2 genetic
mutations in BC and pH/NHE1 and/or other PTs upregulation, has been recently pointed out by these
authors. Among hormones, growth factors and cytokines that have been shown to be protumoral,
either in BC or in other solid tumors, apart from estrogens, human growth hormone (hGH), prolactin,
insulin and EGF and its receptor, are VEGF, PDGF, certain interleukins and sex steroids, some of which
up-regulate NHE1 (Figure 1) [8].

To this already extensive list, PPs should be added, as well as certain oncogenes, virus and gene
products such as Bcl-2 [124], a dysfunctional p53 and many chemical products known to play a role in
carcinogenesis [80,82]. Other carcinogenic NHE-related factors are chronic hypoxia and the hypoxia
inducible factor (HIF) [260]. Even high glucose loads stimulate Na+/H+ activity [261].

It can be concluded that if so many unrelated etiopathogenic factors are known to be carcinogenic,
the up-regulation of any of them, or several ones at the same time in a synergistic combination
with other stimulators in the same direction, indicates that the pHi/pHe abnormalities exert their
carcinogenic effect through the same acid-base intracellular (IC)/extracellular (EC), or pHi/pHe,
deregulated dynamics. In addition, this suggests the existence of a universality of phenomenon
involved in human carcinogenesis and cancer etiopathogenesis, BC being no exception to this rule [25].

4.9. NHE1-Related Genetics of Breast Cancer

The Na+/H+ exchanger isoform 1 (NHE1) is nowadays increasingly recognized as one of the
most important factors involved in the etiology and pathogenesis of BC [38,40–43]. NHE1 has been
found to be produced from the APNH gene located on chromosome 1p35-36, whose deletion has been
blamed to be involved in the development of different tumors, BC among them [26]. Other genes
have also been described to have a role in the genetic abnormalities behind BC metastasis [3]. These
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authors have screened 4200 target genes and discovered 133 and 113 migratory modulators of Hs578T
and MDA-MB-231 cells, which are predictive of BC progression and bad prognosis. Other genetic
mutations, like BRCA1 and BRCA2, are known to be strongly associated with familial breast and
ovarian cancers [262]. The possibility that these two genetic abnormalities can be dependent on NHE1
hyperactivity has recently been proposed. However, no factual evidence is available at the present time
that can ascertain such cause–effect relationships [25]. Finally, other pathways known to be involved
in the pathogenesis of BC seem to act via different mechanisms and linked to other genes [263]. It is
important to realize, as we have previously suggested, that in order to exert their role on cellular
metabolism, genetic aberrations do so through the mediation of the microenvironmental changes they
secondarily induce, and not directly on their own [264].

Since there is no formal proof of a relationship between H+ -dynamics and BRCA1 and BRCA2
genetic abnormalities in BC, this important issue remains to be investigated. In the same line, it is
most surprising the total lack of information relating inflammatory breast cancer (IBC) with PTs, PPs
and H+-dynamics. Despite the known importance of TME in this aggressive kind of BC, the few
reviews available on TME in IBC completely ignore such more than possible relationships or any other
reference to the H+-related paradigm in BC and IBC etiopathogenesis [265].

5. Hydrogen Ion Dynamics in Multiple Drug Resistance (MDR) in Breast Cancer and Other
Malignant Tumors: An Integral Approach to Its Etiopathogenesis and Mediating Mechanisms

Resistance of BC cells to drugs like doxorubicin (DOXO), paclitaxel and cis-platinum depends
on pH regulation [89,125,179] (Table 2). DOXO resistance is related to a progressive increase of pHi,
and could be suppressed by the addition of P-glycoprotein inhibitors like verapamil [204]. These
findings, apart from showing the close relationship of P-gp and pHi, have made it possible to conclude
that P-gp behaves as a proton (H+) extrusion pump [84].

Levels of the proton transporter (PT) NHE1 are significantly higher in BC and in resistant cancer
cells when compared to adjacent normal tissues and selective cells [165]. A proton transport inhibitor
(PTI) like cariporide (CP, HOE-642), induces apoptosis in MCF-7/ADR cells in vitro and in vivo and is
associated with the intracellular accumulation of DOXO and G0/G1 cell cycle arrest. CP also induces
tumor growth attenuation and diminishes tumor volume. This strongly suggests that NHE1 should be
a promising adjuvant therapeutic target, not only in BC but also in a wide array of other malignant
tumors [170]. Other PTs, like the HCO3

−-cotransporter NBCn1 (Slc4a7), show similar effects, delaying
BC development [58]. Finally, the association of PTIs with PPIs of the omeprazole family offers the
possibility of further improving the effects of chemotherapy in metastatic BC [187], as well as in other
malignant tumors [177]. Bringing all these findings together, it can be concluded that the association
of PTIs and PPIs can have a synergistic effect in overcoming MDR in BC, apart from having a strong
antitumoral effect on their own, from prevention to the treatment of advanced disease.

6. pH-Related Armamentarium in the Treatment of Breast Cancer

6.1. NHE Inhibitors and/or Intracellular Acidifiers

A fundamental therapeutic aim of the pH-related anticancer paradigm is directed to the concerted
inhibition of NHE1 and other PTs and PPs in order to induce a progressively deep intracellular
acidification (IA), which first would decrease glycolysis, then lead to tumor cell growth arrest,
and finally induce selective apoptosis [54,176,266,267].

Amiloride (AM) was the first Na+/H+ antiporter introduced in medical oncology. However,
AM is a weak and non-specific Na+/H+ antiporter inhibitor, but at least it is still commercially
available as a diuretic (Table 2). Seminal research with AM showed a complete inhibition of lung
metastasis of BC in animals. Such an effect was initially reported to be secondary to its inhibitory
effects on urokinase-type plasminogen activator (UPa) [175]. AM has clearly shown antitumoral,
antiangiogenic and antimetastatic effects [268,269]. Also, when decreasing pHi values with AM, VEGF
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mRNA expression and tumor growth are inhibited, at least in gastric and leukemic cells [17,172].
An occasional patient with advanced cancer has benefited for the chronic utilization of AM after
mainstream chemotherapy had failed [171]. Finally, for a review on the positive effects of AM on basic
cell behavior, see [118].

Among the more modern, potent and selective NHE1 inhibitors, cariporide (CP, HOE-642)
induces apoptosis through lowering pHi [174]. CP also decreases angiogenesis and induces selective
apoptosis mediated through Na+/H+ exchange inhibition [170]. Furthermore, CP induces apoptosis
by overcoming paclitaxel resistance through NHE inhibition [180], and works synergistically with
erlotinib in reducing metastasis in pancreatic cancer [208].

An even more potent NHE1 inhibitor than CP is the so called “Compound 9t” (C9t). C9t is five
hundred times more potent against NHE1 than CP, apart from having a 1400-fold greater selectivity
for NHE1 over NHE2 [178] (Table 2). Similarly, Phx-3, is a non-toxic NHE1 inhibitor that through
selective apoptosis and intracellular acidification induces tumor growth regression after leukemic cell
transplantation [32,182].

All available data indicate that these new and selective NHE1 inhibitors have a great potential as
potent and selective anticancer agents in patients with different pathologies [170]. Additionally, it is
difficult to understand why AM itself has not managed to find a place in bedside oncology, mainly
in BC treatment, either as a preventive measure, as a complement of orthodox chemotherapy and/or
as an antimetastatic factor. There can be two reasons for this: a) AM is not patentable, and b) in all
areas of scientific research and medical life, sometimes the answers that are looked for in the future are
waiting hiding in the past (Table 2).

6.2. Proton Pumps (PPs) and Their Inhibitors (PPIs) in Cancer and Breast Cancer

The over-expression of proton pump V-ATPases promote growth advantages to cancer cells of any
origin, also disrupting pH homeostasis in the same CPR line of action [69,270]. Different publications
have illuminated the crucial role of V-ATPases in tumor invasion and chemoresistance in several
cancers, including BC. Therefore, as it happens with PTs inhibition, PPs inhibition of V-ATPases has
recently become a novel therapeutic avenue for thwarting the highly abnormal H+ dynamics either
in BC but also in other tumors of different origins and locations [15,49,194] (Table 2) Pretreatment
with PPIs strongly enhances the in vitro efficacy of chemotherapeutic drugs against human BC cells
and other malignancies [177,188,195,271,272]. Niikura showed that oral administration of a V-ATPase
inhibitor to SCID mice carrying orthotropic BC xenografts resulted in delayed tumor growth and a
decrease in bone metastasis [189]. Another in vitro report has shown the therapeutic effectiveness of
PPIs in triple negative BC cell lines [69]. Finally, different preclinical studies support a direct anti-tumor
effect of PPIs independently from cancer histology [190–192,273].

Two studies have been conducted in pets with spontaneous neoplasms using PPIs in combination
with standard chemotherapy. The first one evaluated the ability of high dose lansoprazole to reverse
chemoresistance in dogs and cats with cancers not responding to chemotherapy. In this study, the drug
was used off-label with a three-day loading dosage of 5 mg/kg followed by a four-day maintenance
regimen at 1 mg/kg as a chemosensitizer, combined with standard veterinary chemotherapy protocols.
The results showed a reversal of chemoresistance in 23 out of 34 treated animals (67% response rate)
(Table 2). A further study combined PPI with water alkalization and metronomic chemotherapy [184].
The cohort receiving alkalization showed enhanced tumor response, both in terms of the number
of responders and the quality of response, when compared to the group receiving metronomic
chemotherapy alone.

The application of this strategy to humans has led to the publication of two clinical trials. These
studies evaluated the tolerability and effectiveness of high-dose PPIs in patients with osteosarcoma
or metastatic BC [187,196]. One of these studies showed that the addition of PPIs to chemotherapy
increased the effectiveness of chemotherapy in osteosarcoma patients. The second trial recruited
women with metastatic BC that were randomized to receive either conventional chemotherapy or
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chemotherapy with alkalization [187]. In the latter study, patients receiving high dosage PPIs obtained
the highest response rates and the longest survivals. Furthermore, there is a statistically significant
survival advantage for women who continued their proton pump inhibition therapy (PPIT) after the
completion of chemotherapy [271]. This in vivo data are also supported by in vitro investigations
showing the effectiveness of PPIs in triple negative BC cell lines [69].

An indirect confirmation of the validity of PPIs and alkaline therapy as antitumor agents was
provided by a published meta-analysis in head and neck tumor patients that found a better outcome
for patients receiving PPIs [274]. A more recent study describes the outcome of a few patients with
metastatic colorectal cancer who were refractory to standard chemotherapy and targeted therapies.
The combination of high-dose rabeprazole (a PPI inhibitor) and metronomic capecitabine overcame
drug resistance [275]. Despite of the very small number of patients studied, the association of
rabeprazole and capecitabine resulted in long-lasting stable disease with good quality of life and
relatively minor side effects.

More recent reports have shown that women affected by medical conditions suitable for PPIT
treatment, e.g., peptic diseases, have a reduced risk for developing BC [67,194]. Both studies were
performed in a very large cohort of patients with very convincing results. The data obtained also show
that the beneficial effects of PPIT increases with age, the BC risk being reduced to a greater extent
in older PPIT users, getting to 83.0% in the 50 to 64 years old cohort. These data are of particular
importance in women with a higher risk of developing BC, like those with a family history of BC,
as well as women treated with long term hormone replacement therapy during and after menopause.
These studies also support the results obtained in women with metastatic BC, particularly those with
triple negative BC when exclusively treated with high dosage PPIs, while intermittent high dose PPIs
also enhances the antitumor effects of chemotherapy in metastatic BC [187]. Another three articles
recently suggested reconsidering the use of PPIs in cancer therapy [186,276,277]. Their conclusions are
highly convincing and important for the treatment of a disease like BC that is becoming an increasing
killer worldwide.

Finally, since PPIs are prodrugs requiring activation in the acidic microenvironment of solid
tumors, they appear particularly suitable to be used as anticancer drugs in the very acidic tumor
microenvironment [22], this obviously being the case of BC as well. Moreover, while it is not entirely
scientifically supported, it appears conceivable that PPIs may also affect the systemic pH by buffering
the stomach, that is their main target [185].

6.3. Melatonin (MT) in Breast Cancer

Melatonin (MT) has been shown to function as an antiestrogenic agent, and only for this reason
should be strongly considered for BC treatment [215,219] (Table 2). Sonehara et al. showed that
treatment with MT modulates tumor aggressiveness, increasing apoptosis under microenvironmental
acidosis in BC cell lines [220]. Importantly, MT has been shown to be a significant antiangiogenic agent
by downregulating VEGF expression in human BC cells [214,221,225]. Previous studies have also
indicated that MT suppresses tumor aerobic metabolism (Warburg effect) and cell-signaling pathways
that are key for the proliferation and survival of BC cells as well as for metastasis and resistance to
anti-cancer drugs [215,222,223,278]. MT treatment of breast tumor cells decreases the HIF-1α gene,
HIF-1α expression and regulates glucose metabolism as well as the expression of protumoral factors like
GLUT1, GLUT3, CA-IX and CA-XII, indicating that MT controls hypoxia and tumor progression [279].

Otherwise, traditional oncology has clearly shown that antiestrogens are an effective measure in
the treatment of ER + BC, using either Tamoxifen or Letrozole. In this vein, MT, as well as resveratrol,
also appears to function as aromatase inhibitors, so becoming further candidates in the adjuvant
treatment of ER + BC [226]. In addition to these mechanisms, MT shows many other anticancer
and oncostatic effects in BC [216]. Among them, MT enhances the sensitivity to classical anti-cancer
agents [215].
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Interestingly, a recent in vitro study provides evidence about the positive effects of a novel
MT-TMX drug combination in the treatment of BC. It is known that TMX use may eventually lead to
resistance. However, this seems to be overcome by the novel MT-TMX conjugates [217]. Furthermore,
an inverse correlation between nocturnal melatonin levels and the development of BC has been
confirmed [213,219]. This appears to be related to the loss of the day/night MT circadian rhythm,
increasing the risk of BC development in female night workers. In fact, it has been shown that women
with BC had lower plasma levels of MT than normal women, and these levels are even lower in nurses
working shifts [218].

In summary, it is beyond doubt that MT plays an important role in the prevention and
treatment of BC. Although its primary effect seems to be exerted at a mitochondrial level by
regulating aerobic metabolism, MT also decreases angiogenesis and proliferation while promoting
apoptosis [214,215,220,221,224].

6.4. Cisplatin (CDDP) and pH/NHE in Breast Cancer

Cisplatin (CDDP) has been used in the treatment of BC and other malignant tumors for a long
time, and it continues to be widely used nowadays [205,206,280]. From its first introduction in bedside
oncology, different and unrelated mechanisms of action for CDDP have been described [210,281]. Most
importantly, an almost completely disregarded issue has been the fact that CDDP can significantly
modify the intracellular pH of cancer cells by inducing cytoplasmatic acidification through a
CDDP-mediated inhibition of H+ extrusion secondary to downregulation of NHE-1 [206,209–211]
(Table 2). Most recently, this has been considered the first effect of CDDP [209]. Contrariwise, the activity
of NHE-1 and its effect on elevating pHi increases CDDP resistance to treatment [209]. Apart from
inducing pHi acidification, CDDP shifts cervical cancer cells from glycolysis to oxidative metabolism,
and this is accompanied by inhibition of cancer cell growth. In these studies, cancer cells either recover,
maintaining an alkaline pHi to survive and proliferate, although at reduced growth rates, or die [282].

6.5. pH and MDR in Breast Cancer: An Integrated Approach to Treatment

For many years, P-glycoprotein (P-gp) has been held to be the main responsible mechanism
for multidrug resistance (MDR) in solid tumors. However, seminal research in this area initially
showed that a progressive increase in pHi was correlated with the level of doxorubicin (DOXO)
resistance in human lung tumor cells. In this case, drug resistance was counteracted upon the addition
of verapamil, an inhibitor of P-gp activity [204]. At that time, the fact that P-gp affected pHi was
already suggested. Furthermore, during the last two decades pH alterations have been shown to
be behind the most fundamental aspects of MDR [84,90,130,283,284]. Indeed, it has been recently
shown that P-gp needs a pH gradient in order to function [86,285] and an integrated mechanism to
explain MDR has been developed based upon the H+-dynamics of the microenvironment of tumors
(CPR) [49,84,86,89,130,131,179,286]. This new and integral model demonstrates that in MDR the CPR
of cancer cells and tissues and the P-gp expression are related in a direct cause-effect relationship and
cannot be separated from each other.

This integral approach to MDR has proposed that the therapeutic failure to induce cytoplasmic
acidification and/or reverse CPR is the main underlying factor for drug resistance, which suggests
that MDR and resistance to the induction of the low pHi-mediated therapeutic apoptosis are also
one and the same thing. Furthermore, the expression of P-gp leads to an elevation of pHi [87,287],
while intracellular acidification down-regulates the MDR transporter [87,288,289]. Finally, extracellular
acidification increases the activity of P-gp, inducing MDR in different cancer cells and tissues [49,130,134].
In summary, all these findings perfectly fit into each other, meaning that the therapeutic induction of a
reversion of CPR is also the key and fundamental target in overcoming MDR, probably in all malignant
tumors, like it is in pH-related cancer treatment. This is in line with all the other integrations made
possible when approached through the all-comprehensive pH-centric anticancer paradigm [8,24,133].
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6.6. Repurposed Drugs in Breast Cancer Treatment

TME acidification makes BC more aggressive [135,290]. This intratumoral but extracellular
acidosis, mainly caused by lactic acid production, is related to an increased aerobic glycolysis (Warburg
effect) (Figure 1), being fundamental in promoting invasiveness of BC cells [136]. On the contrary,
chronic administration of sodium bicarbonate to nude mice implanted with human BC reduces the
number and size of metastases [51] (Table 2).

Among the many mechanisms responsible for the regulation of the protoplasmic acid-base balance
(Carbonic anhydrases (CAs), Monocarboxylate Transporters (MCT), ATP synthase, V-ATPases and
Na+/H+ exchanger isoform 1(NHE1), CAIX appears to be a critical mediator for the expansion of BC in
hypoxic niches, sustaining the mesenchymal and ‘stemness’ phenotypes of these cells [202]. CAIX
activity affects the uptake and toxicity of anticancer drugs and is associated with a bad prognosis.
Also, Erb-2 expression is associated with bad prognosis [201]. The CA inhibitor Acetazolamide (AZM)
enhances DOXO toxicity but reduces Melphalan toxicity in BC cell lines that express CAIX, which is
also a target for BC anticancer treatment [101]. In hypoxic BC tumor cells, the inhibition of different
H+-extruding mechanisms has been proposed as a therapeutic strategy, while among them CAIX is
considered to represent the most promising target [203].

Furthermore, V-ATPase and MCT4 are both major microenvironmental acidifying mechanisms in
human BC cell lines [137]. Indeed, MCTs are often upregulated in BC tissue [197], while MCT4 is a
clear therapeutic target, at least in certain subtypes of BC [59]. Thus, it is logical that targeting lactate
transport with MCT inhibitors such as Quercetin suppresses BC growth and improves tumor immune
response [102,181,198,291]. Other MCT inhibitors such as Simvastatin and Phloretin have also been
found to be active against BC cells [103,227] (Table 2).

Lonidamine was first introduced in 1979 as an antispermatogenic agent. It inhibits L-lactate
transport through activity on MCT1, MCT2 and MCT4, causing selective intracellular acidification of
tumors. It has been active in metastatic BC patients, but is not commercialized any more [230].

The n-3 polyunsaturated Docosahexaenoic acid (DHA, 22:6n-3), is effective in increasing survival
and chemotherapy efficacy in BC patients with metastasis [231], inhibiting NaV1.5 current and NHE-1
activity in human BC cells [232]. The daily doses used in the clinical trials were in the range of 1,800
mg DHA/day, while a single case report showed a positive result in a BC patient that only used 480 mg
DHA/day as part of a more extensive supplementary cocktail using a multitargeted approach [228].

Drug screening has identified an FDA approved drug, Niclosamide as an inhibitor of BC stem-like
cells [233]. Another group of compounds known to induce cytosolic acidification are the K+ ionophores.
These compounds promote the outflow of K+ from the mitochondria as well as from the cytoplasm,
mediating an H+/K+ exchange across lipid membranes. The result is the induction of an intracellular
accumulation of protons [8]. One such K+ ionophore is the antibiotic Salinomycin. Promising results
from a few clinical pilot studies indicate that Salinomycin is able to induce partial clinical regression
of heavily pretreated and therapy-resistant cancers, including BC [234] (Table 2). Finally, for a more
complete exposure of repurposed drugs in preclinical and clinical oncology, see [8].

6.7. Metformin (MET) in Breast Cancer

Boosting glycolysis with mitochondria inhibitors such as Metformin (MET) have been proposed as
a method to decrease pHi in various cancer cell lines, BC among them [52], alone and/or in combination
with the MCT inhibitor Simvastatin [53] (Table 2). MET has been considered to be a viable anticancer
drug since it induces intracellular hyperacidification in tumor xenograft models through inhibition of
Wnt signaling, a feature found to be selective for cancer cells [52]. MET was introduced as an anticancer
agent in clinical oncology after it was reported to decrease mortality of BC patients [235,236,245–247],
increasing the survival of triple-negative BC patients [247]. MET can act as an anticancer drug through
its activity on several glucose transporters [292] known to be associated with BC [237,238,293,294].
Some of the anticancer-related effects of MET are:
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(i) It reduces circulating insulin and insulin/IGF-1 receptor-mediated activation of the PI3K
pathway [245].

(ii) MET inhibits the expression of the Hypoxia Inducible Factor 1 alpha (HIF-1α) gene expression,
increases Pyruvate Dehydrogenase (PDH) gene expression [249] and decreases Warburg
metabolism [35]. Additionally, HIF-1α is fundamental in tumoral angiogenesis and induces
the expression of VEGF in BC [134,252,260,295]. Through this and other mechanisms MET also
inhibits cancer growth, including triple-negative BC (TNBC) [254]. VC REMOVE:

(iii) As an inhibitor of tumor angiogenesis [239,248,250,251], a recent study revealed the impact of
MET inhibitory effect on microvasculature [296]. Through this antiangiogenic effect MET can also
improve tumor prognosis [155,252].

(iv) MET can reduce tumor progression through AMPK inactivation [297,298], although the opposite
effect has also been reported [299].

(v) MET can inhibit cancer migration, invasion and metastasis in BC and other tumors [240,300–303].
(vi) MET is also active via the inhibition of the hedgehog signaling pathway in tumors like BC [241,242].

Finally, MET has not only been used as an anticancer agent by itself, but is also useful as an
adjuvant to other cancer chemotherapy agents, particularly being able to reduce the side-effects
of DOXO [304]. Moreover, MET has been reported to act synergistically with chemotherapy, also
decreasing its dosages [243], and has even been used to target resistant cells in BC and other tumors [244].
MET has even been considered to be a radio-sensitizer agent [255].

6.8. Autophagy and Cannibalism in Breast Cancer

Autophagy; however still a controversial issue, has been shown to represent an adaptive survival
mechanism to overcome drug-induced cellular stress and cytotoxicity. This was demonstrated using
PPIs, which induced early accumulation of autophagosomes, also reducing the autophagic flux.
Notably, the inhibition of autophagy by knockdown of Atg5 and Beclin-1 expression significantly
increased PPIs cytotoxicity [305], suggesting that autophagy may exert a protective role in cancer
cells treated with PPIs, and that inhibiting the autophagic process may lead to higher cytotoxic effects
and improve therapeutic efficacy. Furthermore, TME acidic conditions increase autophagy in cancer,
suggesting that it may protect tumor cells allowing them to survive under microenvironmental acidic
stress [96]. This was shown in BC cell lines [97], suggesting that PPIs can help in improving anticancer
therapeutic efficacy in a broad spectrum of cancers.

In the same line, Salinomycin exerts a potent inhibition activity of the autophagic flux, mainly
when cells are cultured in acidic conditions. This has been shown in tumor cells obtained from BC
patients [98]. Functioning as a potassium ionophore, Salinomycin has been shown to contribute in
further inhibiting lysosomal degradation, supporting the idea of using a broad panel of other ion
inhibitors in modulating autophagy in cancer [306]. From these studies it appears that H+/K+ ATPases
or V-ATPases may represent preferential targets to inhibit autophagy. However, from other studies
it appears that the mechanism malignant tumor cells use to face off nutrient starvation, in acidic
conditions as well, is cannibalism [307,308]. Cannibalism has been shown in BC as well [309], implying
that autophagy may exert a different role in cancer cells than a mechanism of self-feeding in nutrient
low supply conditions, inasmuch BC cells feed on other cells that within the tumor are in fact siblings
cells, i.e., cells from the same individual. This implies the existence of an entirely new phenomenon
than can be called self-cannibalism, or even auto-cannibalism, and that may be considered a specific
characteristic of malignant tumors [308]. In fact, it has been shown that self-cannibalism is a feature of
cells mainly derived from metastatic lesions rather than from the primary tumor [307].

7. Conclusions

If many unrelated etiopathogenic factors of so many different natures and origins cause cancer,
the upregulation of any or several of them, alone or in a synergistic combination with other stimulators
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of cellular hydrogen ion (H+) extrusion, indicates that the pHi/pHe abnormalities selectively induced
in cancer cells and tissues mediate in the behavior of malignant tumors like breast cancer in all its
phases of development. This also suggests the existence of a universality of phenomenon involved in
the carcinogenesis of breast cancer and other human tumors. In this contribution, the multifactorial
etiological and etiopathogenetic factors in breast cancer are considered all together, which allows to
propose an integrated and unidirectional approach to the therapeutics of this deadly disease. It is also
shown that all the areas and hallmarks of cancer research, perhaps with the exception of radiotherapy,
can be integrated under the same Unitarian acid-base paradigm. Interestingly, there is a surprising
lack of information relating to the pH/NHE-related paradigm and genetic abnormalities like BRCA1
and BRCA2 positive tumors and of H+-dynamics with inflammatory breast cancer, despite the known
importance of tumor microenvironment in this aggressive form of the disease.

The ultimate goal of this integral approach to malignancy is to target the selective molecular
and metabolic-dependent acid-base disruptions specific to cancer cells using different and concerted
synergistic methods. The final aim of therapy is to take advantage of the H+-related selective
abnormalities that cancer cells and tissues possess over their normal counterparts, in order to exploit
such differences in treatment. It is concluded that any attempts to induce a low pHi-mediated apoptosis
can be the cancer-specific and fundamental strategy to treat breast cancer as well as other human
malignant tumors. The pH-centric anticancer paradigm recognizes that any attempts to selectively
induce an intracellular hyperacidification incompatible with the life of cancer cells, and/or reverting
cancer proton reversal (CPR), are its main therapeutic targets. The pending issue nowadays is to find
that old Ehrlich′s magic bullet that can selectively achieve that, if such a weapon exists. Otherwise,
the concerted utilization of some of the measures conceptualized and described here, is likely to become
a useful and integrated alternative, both nowadays and in the near future, to more efficiently treat all
forms of breast cancer.
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