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Abstract. Occludin has been identified from chick liver 
as a novel integral membrane protein localizing at tight 
junctions (Furuse, M., T. Hirase, M. Itoh, A. Nagafuchi, 
S. Yonemura, Sa. Tsukita, and Sh. Tsukita. 1993. J. Cell 
Biol. 123:1777-1788). To analyze and modulate the 
functions of tight junctions, it would be advantageous 
to know the mammalian homologues of occludin and 
their genes. Here we describe the nucleotide sequences 
of full length cDNAs encoding occludin of rat-kanga- 
roo (potoroo), human, mouse, and dog. Rat-kangaroo 
occludin eDNA was prepared from RNA isolated from 

PtK2 cell culture, using a mAb against chicken occlu- 
din, whereas the others were amplified by polymerase 
chain reaction based on the sequence found around the 
human neuronal apoptosis inhibitory protein gene. The 
amino acid sequences of the three mammalian (human, 
murine, and canine) occludins were very closely related 
to each other (~90% identity), whereas they diverged 
considerably from those of chicken and rat-kangaroo 
(~50% identity). Implications of these data and novel 
experimental options in cell biological research are dis- 
cussed. 

CCLUDIN is a N65-kD integral membrane protein 
located at tight junctions (TJ). 1 It was first identi- 
fied in chicken using monoclonal antibodies, and 

its eDNA was cloned and sequenced (Furuse et al., 1993). 
The protein comprises four transmembrane domains, a 
long carboxy-terminal cytoplasmic domain, a short amino- 
terminal cytoplasmic domain, two extracellular loops and 
one intracellular turn. One of the most characteristic as- 
pects of its sequence is the high content of tyrosine and 
glycine residues in the first extracellular loop (~60%). 

TJ are thought to play dual roles in the physiological 
functions of epithelial and endothelial cells by sealing 
them to create the primary barrier to the diffusion of sol- 
utes through the paracellular pathway and by working as a 
boundary between the apical and basolateral plasma 
membrane domains to create and maintain cell polarity 
(for reviews see Schneeberger and Lynch, 1992; Gum- 
biner, 1987, 1993). To clarify the molecular basis of--and 
to modulate--these functions, information on TJ proteins 
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1. Abbreviations used in thispaper. TJ, tight jtmction; NAIP, neuronal apop- 
tosis inhibitory protein. 

such as occludin would be important in cell biological as 
well as in medical research. 

In freeze-fracture electron microscopy, TJ appear as a 
set of continuous, anastomosing intramembrane strands 
(Staehelin, 1973, 1974). Considering that occludin is one of 
the major components of these strands (Furuse et al., 1993, 
1996; Fujimoto, 1995), it should provide a good experi- 
mental target for modulating TJ functions at the cellular as 
well as at the whole body level. However, the chicken is 
not an appropriate species for such studies, mainly be- 
cause of the lack of a good cell culture system and so far 
still poor transgenic and gene knock-out animal tech- 
niques. As up to now occludin was known only in the 
chicken, and none of our mAbs and pAbs raised against 
chicken occludin crossreacted with the murine and human 
homologues (Furuse et al., 1993), several investigators, in- 
cluding ourselves, have tried to isolate eDNA encoding 
mammalian homologues, based upon the assumption that 
evolutionally the occludin amino acid sequence is rather 
conserved due to its functional importance. However, 
these experiments have not yet been successful until very 
recently. Here, we now report the nucleotide sequences of 
cDNAs encoding rat-kangaroo (potoroo), human, mouse, 
and dog occludin. The rat-kangaroo eDNA was isolated 
using one of our mAbs against chicken occludin, and the 
other cDNAs were amplified by PCR based on the "occlu- 
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din-like" sequence found around the human neuronal apop- 
tosis inhibitory protein (NAIP) gene (Roy et al., 1995). 
We believe that this report will advance research on tight 
junction formation and function, especially as our data al- 
low gene targeting experiments (in the mouse), the use of 
well-established functional cell culture systems such as the 
canine kidney epithelial cell line MDCK, and direct analy- 
ses of the corresponding human gene(s). 

Materials and Methods 

Isolation and Sequencing of Rat-Kangaroo 
Occludin cDNA 
To isolate rat-kangaroo occludin eDNA, a kgtl l  expression eDNA li- 
brary was made from poly(A) + RNA purified from cultured PtK2 cells, 
using the TimeSaver TM eDNA synthesis kit (Pharmacia LKB Biotechnol- 
ogy, Uppsala, Sweden) and GIGAPACK II Packaging Extract (Strat- 
agene, La Jolla, CA). The initial eDNA clone, pOcl0 (3 kbp), was isolated 
from the library using chicken occludin mAb, Oc-2, as described (Huynh 
et al., 1985). The insert was then labeled using a DIG labeling kit (Boeh- 
ringer-Mannheim Biochemicals, Indianapolis, IN) and used to screen the 
same eDNA library using a DIG detection kit (Boehringer Mannheim 
Biochemicals). The eDNA clones pOtS, poe9-1, pOe9-2, pOc9-3, and 
pOe9-5 were isolated, and inserts were subcloned into pBluescript SK( - )  
and sequenced with the 7-deaza Sequenase Version Deoxy TM Terminator 
Cycle Sequencing Kit (Applied Biosystem, Foster City, CA). 

To confirm the identity of this eDNA, pAbs were raised in rabbits 
against the GST fusion protein with the putative carboxy terminal cyto- 
plasmic domain of rat-kangaroo occludin. The eDNA encoding this do- 
main was obtained by PCR and introduced into the pGEX-2T vector 
(Pharmacia Fine Chemicals, Piscataway, N J), to express fusion proteins in 
Escherichia coll. 

Isolation and Sequencing of Human, Murine, and 
Canine Occludin cDNAs 
We noted a nucleotide sequence with significant similarity to that of the 
carboxy terminal region of chicken occludin in deleted versions of the hu- 
man NAIP gene (Roy et al., 1995). PCR was then performed using two 
oligonucleotides, TATGAGACAGACTACACAACTGGCGGCGAG- 
TCC and ATCATAGTCTCCAACCATCTTCITGATGTG, as primers 
(see Fig. 1). A kgtl l  eDNA library was made from poly(A) + RNA puri- 
fied from the cultured human intestinal cell line, T84, using the TimeSav- 
er TM eDNA synthesis kit and GIGAPACK II Packaging Extract, and used 
as template. A 363-bp eDNA fragment obtained by PCR was then labeled 
with DIG as described above and used to screen the same eDNA library. 
Three eDNA clones were isolated, and inserts of these clones were sub- 
cloned into pBluescript SK(-) .  Since inserts of two clones, phOc6 and 
phOel6, should contain the full ORF, both strands of these clones were 
sequenced. By the same PCR strategies, we isolated full-length cDNAs 
encoding murine and canine occludin. For this purpose, kgt 10 and kgtl l  
eDNA libraries were made from poly(A) ÷ RNA purified from mouse 
lung and cultured dog kidney (MDCK) cells, respectively. 

To confirm that these cDNAs encode human, murine and canine occlu- 
din, a mAb was raised in rats using the GST fusion protein with the puta- 
tive carboxy terminal cytoplasmic domain of human oecludin. To this end 
the eDNA encoding this domain was obtained by PCR and introduced 
into the pGEX-3X vector (Pharmacia Fine Chemicals) to express fusion 
proteins in E. coll. 

Results 

Rat-Kangaroo Occludin 

Under our conditions, none of our mAbs and pAbs raised 
against chicken occludin showed immunofluorescent stain- 
ing at tight junctions of mammalian cultured cells, but did 
react with the PtK2 cells, which were established from the 
kidney of a marsupial, the rat-kangaroo, and are often 

used to study mitosis and cytokinesis. Our mAb against 
chicken occludin, Oc-2, stained the cell--cell borders of 
PtK2 cells in contact, and recognized some bands around 
60 kD on immunoblots (data not shown). Using mAb 
Oc-2, we then screened ~6  × 105 plaques from a kgt l l  
eDNA library made from PtK2 cells, and finally obtained 
a full-length eDNA encoding rat-kangaroo occludin, as 
described in Materials and Methods. Two criteria con- 
firmed that this eDNA encodes the marsupial homologue 
of occludin. Firstly, the deduced amino acid sequence was 
similar to that of chicken oecludin (Figs. 1-3). Secondly, 
pAbs raised against GST fusion proteins with the putative 
carboxy terminal domain produced in E. coli showed the 
same features as mAb Oc-2 in immunofluorescence mi- 
croscopy and immunoblotting (data not shown). 

The complete nucleotide sequence encoded by this 
eDNA and the deduced amino acid sequences are shown 
in Fig. 1. The reading frame of the sequence starts at nu- 
cleotide 76 and extends until nucleotide 1542, thereby en- 
coding a protein of 489 amino acids with a molecular mass 
of 54 kD. 

Human, Murine, and Canine Occludin 

We produced a GST fusion protein with the cytoplasmic 
domain of rat-kangaroo occludin and raised rabbit pAbs 
against it. One of these antisera immunofluorescently 
stained the junctional complex region of the human intes- 
tinal epithelial cell line, T84. We then attempted to isolate 
eDNA clones encoding human occludin, using this pAb. 
During this study, we learned from the GenBank data- 
base, using a biological sequence search program, MPsrch 
(IntelliGenetics, Inc.), that a 675-nucleotide sequence show- 
ing similarity to a part of the carboxy terminal domain of 
chicken and rat-kangaroo occludin had been found in 
close proximity to the human neuronal apoptosis inhibi- 
tory protein gene (Roy et al., 1995). To determine whether 
or not this sequence really encodes part of the human ho- 
mologue of occludin, we then performed PCR with two 
oligonucleotides (see Fig. 1) as primers, using the kgt l l  
eDNA library made from T84 cells as templates. We ob- 
tained a DNA fragment that allowed us to isolate a full- 
length eDNA encoding human occludin (see Materials 
and Methods). Its deduced amino acid sequence showed 
similarity to those of chicken and rat-kangaroo occludin 
(Fig. 3). Furthermore, mAbs raised against this gene prod- 
uct specifically stained tight junctions in T84 cells (Fig. 4). 
We then concluded that this eDNA encodes human homo- 
logue of occludin. The cDNAs encoding murine and ca- 
nine occludin homologues were also isolated and se- 
quenced by the same procedure, using mouse lung and 
MDCK cell eDNA libraries, respectively. ' 

The complete nucleotide and amino acid sequences en- 
coded by these cDNAs are shown in Fig. 1. They encode 
polypeptides of 522 (human) and 521 (mouse, dog) amino 
acids, with a molecular mass of 59 kD. 

Discussion 
In this study, we describe the cDNAs of rat-kangaroo, hu- 
man, mouse, and dog occludin and the corresponding 
amino acids deduced therefrom. Hydrophilicity plots show 
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Figure 1. Nudeotide se- 
quences of ocdudin cDNAs 
and deduced amino acid se- 
quences of rat-kangaroo, hu- 
man, murine, and canine oc- 
cludins. The ORFs of these 
occludins encode 489, 522, 
521, and 521 amino acids, re- 
spectively. The 675-nuclei- 
tide sequence found in dose 
proximity to the human neu- 
ronal apoptosis inhibitory 
protein gene (Roy et al., 
1995) is underlined, and two 
nucleotide sequences used 
for PCR are boxed. These se- 
quence data are available 
from EMBL/GenBank/DDBJ 
under accession numbers 
U49183 (rat-kangaroo), 
U49184 (human), U49185 
(mouse), and U49221 (dog). 

that, like chicken occludin, all these occludins contain four 
transmembrane domains in their amino terminal half (Fig. 
2). The amino acid sequences of  human, murine, and ca- 
nine occludin were highly homologous (~90% identity), 
and these sequences had considerably diverged from the 
avian (chicken) and marsupial sequence (Fig. 3). The per- 
centages of  identical amino acids between chicken and 
rat-kangaroo, rat-kangaroo and human, and human and 
chicken ocdudins were 58.4, 45.0, and 45.6%, respectively. 

We considered possible reasons why chicken, rat-kan- 
garoo, and human (mouse, dog) occludins have so strongly 

diverged in their amino acid sequences. Two possible func- 
tional domains have so far been identified in chicken oc- 
cludin. One is the first extracellular domain, which may be 
involved in cell-cell interaction. This domain is character- 
ized by a high tyrosine and glycine content (~60%) (Fu- 
ruse et al., 1993), and this feature is conserved among all 
the occludins identified here (Fig. 3). In this domain of hu- 
man occludin, for example, 29 out of  46--amino acid resi- 
dues were tyrosine or glycine, suggesting that at least some 
glycine and tyrosine residues are involved in the specific 
function of this domain, i.e., probably tight cell-cell cou- 
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Figure 2. Hydrophilicity plots for occludin from human, chicken, 
and rat-kangaroo occludins using the Kyte and Doolittle pro- 
gram. The plot records the average hydrophilicity along the se- 
quence over a window of 10 residues. Hydrophilic and hydropho- 
bic residues are in the lower and upper part of the frames, 
respectively. The axis is numbered in amino acid residues. At the 
amino terminal half of each occludin, there are four major hydro- 
phobic, potentially membrane-spanning regions (arrows). 

piing. The second domain is the carboxy terminal 150 
amino acids, which, at least in chicken occludin, is respon- 
sible for its association with ZO-1, a major plasmalemmal 
undercoat protein at TJ (Furuse et al., 1994). As shown in 
Fig. 3, the amino acid sequence of this domain is also re- 
markably conserved as compared to other domains. Con- 
formation predictive analysis has further revealed that in 
all the different species studied the center of this domain 
can form a typical a-helical coiled--coil structure. This 
might suggest that the amino acid sequence of this domain 
has diversified during phylogenetic evolution only with the 
limitation of keeping an important segment in the coiled- 
coil structure to interact with ZO-1. 

Occludin was first identified by producing mAbs in rats 
using isolated junctional fractions from the chick liver as 
the antigen-containing material (Furuse et al., 1993). 
When we, however, injected isolated rat liver junctional 
fractions into mice to obtain mAbs, occludin antibodies 
were not identified (Itoh et al., 1991; Tsukita et al., 1992, 
1994). Retrospectively, these successes and failures can 
perhaps be explained by the diversity of the occludin se- 
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Figure 3. Comparison of amino acid sequences of occludins of 
human, mouse, dog, chicken, and rat-kangaroo aligned by the 
GENETYX program. The four transmembrane domains are 
boxed. Conserved amino acids shared by all occludins are indi- 
cated by asterisks; and gaps, introduced to maximize alignment, 
are indicated by dashes. The first extracellular domain (serrated 
line) is characterized by a high tyrosine and glycine content. The 
carboxy terminal protein ZO-1 binding domain is underlined. 
The amino acid sequence of this domain is rather conserved be- 
tween species, and in the center of this domain hydrophobic 
amino acid residues are clustered in a pattern to allow the coiled- 
coil configuration (arrows). 

quence between chicken and rodents. On the identifica- 
tion of chicken occludin it was expected that this information 
would soon lead to answers to many of the key questions 
about the structure and functions of TJ at the molecular 
level (for review see Gumbiner, 1993). However, as men- 
tioned in the Introduction, the necessary identification of 
mammalian occludin homologues proved rather difficult. 
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Figure 4. Double immunofluorescence staining of cultured hu- 
man intestinal epithelial T84 cells with a rat mAb against human 
occludin HOC 119 (A) and a mouse mAb against a TJ-associated 
protein, ZO-1 (B). The human occludin mAb was raised against 
the GST fusion protein with the putative carboxy terminal cyto- 
plasmic domain of human occludin. Both photographs were 
taken at the same apical focal plane of polarized T84 cells. Note 
that occludin and ZO-1 are precisely colocalized. Bar, 10 t~m. 

Now that this obstacle has been overcome, TJ organiza- 
tion and function can be structurally and functionally ex- 
amined at the molecular level. 

Using various types of cultured human, murine, and ca- 
nine (MDCK) cells, the barrier and fence functions of TJ 
and the regulation mechanisms involved can be experi- 
mentally analyzed by modulating occludin gene expres- 
sion or by blocking with anti-sense probes or with antibod- 
ies. For example, it can now be determined whether on 
overexpression of occludin eDNA the number of TJ strands, 
as seen in freeze-fracture replicas, will increase, with con- 
comitant up-regulation of the barrier function. Through 
the production of various types of transgenic and occludin 
gene knock-out mice, we will learn how TJ formation is in- 
volved in the morphogenesis of various organs and whether 

TJ dysfunction is related to various pathological states 
such as inflammation and tumor metastasis. The possible 
modulation of TJ functions, especially its barrier function, 
is also interesting in relation to drug delivery. Thus, it 
should be possible to modulate the blood-brain barrier 
through up- or down-regulating occludin synthesis in brain 
endothelial cells. The modulation of TJ functions in intes- 
tinal epithelial cells is required to regulate the absorption 
of drugs from the intestine. Studies are currently being 
conducted along these lines in our laboratory. 
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