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Simple Summary: Patients with locally advanced rectal cancer have been treated with
chemoradiotherapy followed by surgery, which results in variable therapy response. To date,
there is a lack of established predictive biomarkers to distinguish responsive from non-responsive
patients. Therefore, patients can be overtreated resulting in unnecessary toxicity, or therapy changes
can occur later when the cancer is more aggressive. We used pre-treatment biopsies to evaluate
changes in DNA methylation that could predict the chemoradiotherapy response. Data from an
external dataset were used to confirm our findings. We identified and validated a classifier, composed
of three candidates, that was able to distinguish responders from non-responders. The genomic
context of our biomarkers was explored, giving evidence that they play a role in regulating gene
expression. The biomarkers herein described can be easily evaluated in the clinical practice and can
help to guide rectal cancer patients’ treatment by identifying responders and non-responders.

Abstract: The treatment for locally advanced rectal carcinomas (LARC) is based on neoadjuvant
chemoradiotherapy (nCRT) and surgery, which results in pathological complete response (pCR) in up to

Cancers 2020, 12, 3079; doi:10.3390/cancers12113079 www.mdpi.com/journal/cancers

http://www.mdpi.com/journal/cancers
http://www.mdpi.com
https://orcid.org/0000-0001-9095-9431
https://orcid.org/0000-0003-3893-5269
https://orcid.org/0000-0002-0285-1162
https://orcid.org/0000-0002-2055-4241
https://orcid.org/0000-0001-5815-8423
http://dx.doi.org/10.3390/cancers12113079
http://www.mdpi.com/journal/cancers
https://www.mdpi.com/2072-6694/12/11/3079?type=check_update&version=3


Cancers 2020, 12, 3079 2 of 20

30% of patients. Since epigenetic changes may influence response to therapy, we aimed to identify DNA
methylation markers predictive of pCR in LARC patients treated with nCRT. We used high-throughput
DNA methylation analysis of 32 treatment-naïve LARC biopsies and five normal rectal tissues to
explore the predictive value of differentially methylated (DM) CpGs. External validation was carried
out with The Cancer Genome Atlas-Rectal Adenocarcinoma (TCGA-READ 99 cases). A classifier
based on three-CpGs DM (linked to OBSL1, GPR1, and INSIG1 genes) was able to discriminate pCR
from incomplete responders with high sensitivity and specificity. The methylation levels of the
selected CpGs confirmed the predictive value of our classifier in 77 LARCs evaluated by bisulfite
pyrosequencing. Evaluation of external datasets (TCGA-READ, GSE81006, GSE75546, and GSE39958)
reproduced our results. As the three CpGs were mapped near to regulatory elements, we performed
an integrative analysis in regions associated with predicted cis-regulatory elements. A positive
and inverse correlation between DNA methylation and gene expression was found in two CpGs.
We propose a novel predictive tool based on three CpGs potentially useful for pretreatment screening
of LARC patients and guide the selection of treatment modality.

Keywords: 5-fluorouracil; predictive biomarker; high-throughput DNA methylation analysis;
translational research

1. Introduction

Patients with locally advanced rectal carcinomas (LARC) present a high risk of recurrence and
death. Although these events can be reduced by preoperative neoadjuvant chemoradiotherapy (nCRT)
followed by surgery, the treatment results in high morbidity, including severe side effects and high
complication rates after surgery [1,2]. Patients with pathological complete response (pCR) to nCRT
show lower rates of local and distant recurrences and better survival compared to patients with an
incomplete response (pIR) [3]. Partial response to nCRT is observed from 70% to 90% of the patients,
with about 20% showing resistance to treatment [4,5].

Several efforts have been conducted to precociously predict nCRT response [6–10], aiming to
spare pCR patients of surgery [11,12], and to avoid unnecessary toxic exposure of radiotherapy in
resistant patients [13,14]. To date, clinical examination alone is not able to accurately predict pCR.
Although molecular markers have been described as potentially useful for this purpose, molecular
screening analyses of LARC have shown conflicting results [15–18]. Gene expression signatures have
been used to predict nCRT response; however, there are few or no overlapping genes amongst the
published lists [19].

Disrupted DNA regulatory elements of gene expression can also be involved in the nCRT
response and used as biomarkers [20]. Epigenetic alterations such as aberrant DNA methylation and
covalent histone modifications are detected in all stages of cancer development. DNA methylation
is considered an essential epigenetic mechanism involved in the regulation of gene expression [21].
DNA methylation-based biomarkers are useful tools to be applied in cancer diagnosis and prognosis.
They are also associated with the therapeutic response and guide treatment decisions for cancer
patients [22,23].

Genome-wide studies performed in different tumor types revealed methylome signatures able to
stratify cancer subtypes [24], predict cancer outcomes [25–28], and identify epigenetic events related to
inherent and acquired chemotherapy resistance [29]. Differential DNA methylation of specific CpG
sites has contributed to the understanding of radiotherapy response with or without chemotherapy in
a variety of cancer types, including glioblastoma, breast, gastric and colorectal cancers [30].

In LARC, DNA methylation assays have been described with distinct purposes,
such as the identification of markers associated with the prognosis or response to therapy.
MGMT (O6-methylguanine-DNA methyltransferase) promoter hypermethylation, the most known
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epigenetic alteration, was associated with better response to treatment in LARC patients [31].
Gaedcke et al. [32] identified 20 differentially methylated regions (DMR) in 11 LARC grouped according
to the prognosis and validated the most significant 10 DMR in a larger cohort of cases (n = 113).
The described classifier predicted the patient prognosis with a high grade of accuracy. Genome-wide
DNA methylation was evaluated in 45 LARC samples classified according to the tumor regression
grade (TRG) based on the Mandard classification [33]. The authors compared nCRT responders
(TRG1-3) with non-responders [34]. From seven selected CpGs mapped in six genes (DZIP1, ZEB1,
DKK3, STL, KLHL34, and ARHGAP6), only KLHL34 methylation showed an association with response
to nCRT. Nevertheless, increased methylation was not correlated with pCR.

The methylation landscape of LARC is poorly characterized, and yet to be explored. In this study,
genome-wide DNA methylation analysis was performed in a carefully selected set of LARC cases to
identify differences according to nCRT response. A classifier based on three CpGs was trained and
validated in an independent group of cases. The correlation of the methylation levels of these three
CpGs and gene expression and the respective neighboring enhancer interaction regions associated
with predicted cis-regulatory elements were further investigated.

2. Results

2.1. Global DNA Methylation Profile of LARC Compared with Clinical Features and Gene Mutations

The genome-wide DNA methylation profiling (Infinium Methylation EPIC BeadChip microarray)
was carried out in 32 LARC biopsies and 5 normal tissue (NT) samples. After filtering, 722,807 probes
were normalized and used in the subsequent analysis. An unsupervised hierarchical clustering analysis
comprising the most variable probes (6284 probes with standard deviation >0.2 in 32 LARC biopsies)
revealed three distinct groups, with Cluster 3 being enriched with pCR cases (clusters 1 and 2: 3 pCR/18
LARCs and cluster 3: 8 pCR/14 LARCs; p = 0.0265, Fisher’s exact test) (Figure 1a). Other characteristics
such as age or the presence of specific gene variants were not enriched in any of the clusters. One case
harbored a variant in BRAF (c.1781A > G) and four cases in MMR genes (Figure 1a). Variants in TP53
were almost ubiquitous (25/30 cases), and no significant association of pCR and cases with variants in
APC, TP53, or KRAS was found, as we previously reported [35].
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Figure 1. Methylation profile of locally advanced rectal carcinomas (LARC). (a) The unsupervised 
hierarchical clustering analysis of the methylation data using the most variable probes (6284 probes 
presenting β values with Standard Deviation >0.2) in the tumor samples revealed three major groups. 
Rows indicate the CpG sites, while columns represent samples. Clinical features of each case are 

Figure 1. Methylation profile of locally advanced rectal carcinomas (LARC). (a) The unsupervised
hierarchical clustering analysis of the methylation data using the most variable probes (6284 probes
presenting β values with Standard Deviation >0.2) in the tumor samples revealed three major groups.
Rows indicate the CpG sites, while columns represent samples. Clinical features of each case are
represented below the heatmap along with targeted next-generation sequencing data for specific
genes. Metastases were identified during the follow-up and after the treatment. (b) Distribution of the
differentially methylated CpG probes in the comparison of pathological complete (pCR) or incomplete
(pIR) response and normal tissue (NT) cases. The proportion of CpGs in relation to its location relative
to the promoter, gene body, and intergenic regions; and to the CpG islands context was based on the
Illumina EPIC annotation.
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2.2. DNA Methylation Profile of LARC According to Pathological Response to nCRT and Comparison
with the TCGA Dataset

The DNA methylation profile of LARC was compared to NT samples. Figure 2 summarizes
the main results used to develop the DNA methylation classifier predictive of nCRT response.
A total of 76,095 DM probes (limma, False Discovery Rate - FDR < 5%; |∆β| > 0.15) was detected,
of which 59,044 CpGs were hypomethylated (78%) and 17,051 hypermethylated (22%) in tumors
(Supplementary Materials Table S1). We compared our DM probes (EPIC BeadChip–850k array) with
The Cancer Genome Atlas Rectal Adenocarcinoma (TCGA-READ) dataset (99 Rectal Cancer–ReCa,
versus 7 adjacent normal tissue–ANT) derived from the Infinium HumanMethylation 450k BeadChip.
The TCGA analysis resulted in 54,328 DM probes (33,297 hypomethylated and 21,031 hypermethylated
probes) (Figure S1). A total of 37.4% probes from our study overlapped with those from the TCGA
dataset and 81.2% of them were confirmed as DM (Figure 2a).Cancers 2020, 12, x   6 of 22 
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and 7 adjacent normal tissue (ANT) samples from TCGA (Infinium Human Methylation 450K 
BeadChip platform, Illumina) was assessed for comparison. The identified differentially methylated 
(DM) probes were contrasted to those detected in our study (32 ReCa vs. 5 Normal tissues evaluated 
using the Infinium Human Methylation EPIC BeadChip platform–850K, Illumina), confirming 81.2% 
of DM probes in both studies (limma, False Discovery Rate < 5%; |∆β| > 0.15). (b) The ReCa cases 
were divided according to the response (11 pCR and 21 pIR) to nCRT to identify DM probes with 
potential predictive value. After filtering, a predictive classifier was trained by Diagonal Linear 
Discriminant Analysis (DLDA) using three probes (cg13770628, cg01072658, cg03085846). This 
classifier was able to distinguish pCR from pIR cases with 100% sensitivity and 90% specificity using 

Figure 2. Sequential steps used to develop the DNA methylation classifier to predict neoadjuvant
chemoradiotherapy (nCRT) response in rectal cancer (ReCa).



Cancers 2020, 12, 3079 6 of 20

(a) The methylation status of 99 ReCa and 7 adjacent normal tissue (ANT) samples from TCGA (Infinium
Human Methylation 450K BeadChip platform, Illumina) was assessed for comparison. The identified
differentially methylated (DM) probes were contrasted to those detected in our study (32 ReCa vs. 5
Normal tissues evaluated using the Infinium Human Methylation EPIC BeadChip platform–850K,
Illumina), confirming 81.2% of DM probes in both studies (limma, False Discovery Rate < 5%; |∆β|

> 0.15). (b) The ReCa cases were divided according to the response (11 pCR and 21 pIR) to nCRT
to identify DM probes with potential predictive value. After filtering, a predictive classifier was
trained by Diagonal Linear Discriminant Analysis (DLDA) using three probes (cg13770628, cg01072658,
cg03085846). This classifier was able to distinguish pCR from pIR cases with 100% sensitivity and 90%
specificity using the Leave-One-Out Cross-Validation (LOOCV) model. (c) The methylation status of
these three probes was confirmed by bisulfite pyrosequencing in a set of 68 samples (32 array-dependent
and 36 array-independent). * Only high-quality pyrosequencing results were included in the validation
set. Sensitivity and specificity were calculated using LOOCV. FF: fresh frozen; FFPE: Formalin-fixed
paraffin-embedded; DM: differentially methylated; ReCa: Rectal Cancer; NT: Normal Tissue; ANT:
Adjacent Normal Tissue; pCR pathological Complete Response; pIR: pathological Incomplete Response.

The comparison between pCR and pIR versus NT revealed 24,428 and 75,398 DM probes,
respectively. Among these probes, 20,958 were DM in both groups, while 3470 probes were DM only
in pCR and 54,440 in pIR (Figure 2b). The DM probes unique to each group were used to better
characterize the methylome of LARC according to the nCRT response. Tumors from pCR patients
presented a higher proportion of hypermethylated probes (44% compared to 18% in pIR), which were
mainly located in the promoter regions (49% vs. 37% in pIR) and CpG islands (66% vs. 36% in pIR),
while biopsies from pIR patients predominantly showed a hypomethylated profile (82% of the DM
CpGs) (Figure 1b).

2.3. Three Hypomethylated CpGs are Predictive of nCRT Response in LARC

The assessment of locus-specific altered by methylation in treatment-free biopsies is a potential
tool to unravel biomarkers of nCRT response. To identify these candidates, we selected the exclusive
DM probes of each group (3470 and 54,440 CpGs in pCR and pIR groups, respectively) and between
both groups (194 probes in pCR vs. pIR) (Figure 3a; Table S2). Next, the probes were filtered
based on the highest area under the receiver operating characteristic (ROC) curves (AUC) and linear
regression analysis. Three hypomethylated CpGs (CpG-A: cg01072658, CpG-B: cg03085846, and
CpG-C: cg13770628) predictive of nCRT response were trained by DLDA (Score = CpG-A X − 19.3 +

CpG-B X − 11.2 + CpG-C X − 24.6; pathological response prediction threshold > −35.9). The classifier
was able to distinguish 11 pCR from 21 pIR cases with 100% sensitivity and 90% specificity using the
LOOCV approach (Figure 3b). Five NT samples tested using this classifier were categorized as pCR.
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2.4. Bisulfite Pyrosequencing Analysis Confirmed the Performance of the Classifier 

To evaluate the performance of the three-CpGs DNA methylation-based classifier, BS-
pyrosequencing was performed in 77 LARC (32 from discovery and 45 from validation set) and five 

Figure 3. Development and performance of the classifier associated with response to treatment.
(a) Venn diagram showing the number of differentially methylated probes overlapping among the
group comparisons (pCR vs. NT, pIR vs. NT, and pCR vs. pIR) that were used for developing a predictive
model based on Diagonal Linear Discriminant Analysis (DLDA). (b) Tridimensional distribution of
samples according to the methylation values of the three probes included in the classifier and their
performance in discriminating patients with pCR or pIR tested using Leave-One-Out Cross-Validation
(LOOCV). Normal tissue (NT) samples were also tested using the classifier. (c) Methylation status
of three CpGs (CpG-A: cg01072658, CpG-B: cg03085846, CpG-C: cg13770628) identified as potential
biomarkers of response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer evaluated
by bisulfite pyrosequencing. BS-pyroseq: bisulfite pyrosequencing, pCR: pathological complete
response, pIR: pathological incomplete response.
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2.4. Bisulfite Pyrosequencing Analysis Confirmed the Performance of the Classifier

To evaluate the performance of the three-CpGs DNA methylation-based classifier,
BS-pyrosequencing was performed in 77 LARC (32 from discovery and 45 from validation set)
and five NT samples (Figure 2c). DNA methylation levels determined by BS-pyrosequencing and
methylation microarray for each CpG-A, CpG-B, and CpG-C showed high concordance (r = 0.956,
r = 0.968, and r = 0.932, respectively, p < 0.001 for all comparisons) (Figure 4).
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Figure 4. Correlation between the methylation levels of the three CpGs of LARC samples determined
by microarray (Infinium MethylationEPIC BeadChip array, Illumina) and bisulfite (BS) pyrosequencing
analysis. The scatterplots show a high positive correlation for three CpGs identified as a predictive
classifier of response to neoadjuvant chemoradiotherapy. (r) Pearson’s correlation coefficient, (p) p-value
from Pearson’s correlation test.

Pyrosequencing yielded good quality results for 5 NT samples and 73, 69, and 77 LARC for
CpG-A, CpG-B, and CpG-C, respectively. There was no difference in the methylation values of FFPE
(Formalin-Fixed Paraffin-Embedded ) and FF (Fresh Frozen) samples for the CpGs-B and C, but higher
methylation in the FFPE samples for the CpG-A (Figure S2a) was found. The comparison between the
methylation levels in the discovery and validation samples showed no difference (Figure S2b).

All three CpGs were hypomethylated in pIR compared to pCR (p < 0.05) (Figure 3c), and
their AUC showed promising results as predictive markers (AUC: CpG-A = 0.706; CpG-B = 0.754;
and CpG-C = 0.697) (Figure S3). The classifier based on three CpG (pyrosequencing classifier threshold
adjusted to −3621.9) was able to distinguish pCR (n = 16) from pIR (n = 52) with 93.8% sensitivity and
67.3% specificity.

2.5. Prediction of the Impact of DNA Methylation Changes of the CpG-A, CpG-B, and CpG-C on Gene
Expression in LARC

Combining DNA methylation and gene expression can bring insights to explain the predictive
impact on the response to therapy of LARC patients. We integrated the DNA methylation used in the
discovery phase of our study with our previous study of gene expression levels (GSE123390) of 27
LARC [36]. The CpG-A, CpG-B, and CpG-C are associated with OBSL1 (Obscurin Like Cytoskeletal
Adaptor 1), GPR1 (G Protein-Coupled Receptor 1), and INSIG1 (Insulin-induced gene 1) loci, respectively.
The inferred target genes mapped across the predicted interaction regions were further investigated in
pCR and pIR groups.

The CpG-A is mapped within the gene body of OBSL1. This gene is associated with a distal
cis-regulatory element (regulatory enhancer element for OBSL1 gene/GH02J218908 located at 648 kb
upstream to CpG-A) that presents multiple predicted interactions across a region spanning ~0.66 Mb
on chromosome 2 (nucleotide position of the target region, chr2:220,436,581–220,436,581). This genomic
region contains 25 predicted target genes, 276 inferred transcription factor (TF) binding sites, and it
is represented by 880 CpGs in the Infinium MethylationEPIC 850k array, 50 of them identified as
DM in our LARC cases. This target region is characterized by focal hypermethylation segments
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embedded in long-range regions of hypomethylation (Figure S4a,b,d). The OBSL1 gene is covered by 45
gene-body probes, 12 of which are DM, including the CpG-A and 11 other CpGs that presented lower
levels of DNA methylation in pIR compared with pCR (Figure 5a–c). The CpG-A hypomethylation
was significantly correlated with OBSL1 gene expression in 27 LARC samples (Spearman r = 0.5178,
p = 0.0057) (Figure 5d). This finding was confirmed in an independent set of 33 LARC samples from the
TGCA-READ dataset (Spearman r = 0.5465, p = 0.0010) (Figure 5e). Decreased OBSL1 gene expression
levels were found in pIR compared to pCR cases (Figure 5f). The expression levels of eight genes
mapped on the enhancer interaction region were also significantly different between pCR and pIR
groups: while CNOT9, ZNF142, and TTLL4 showed increased expression, the genes PLCD4, PRKAG3,
CFAP65, NHEJ1, and GBL1 were downregulated in pIR compared to pCR cases (Figure S4c). Only two
DM CpGs (cg09791753 and cg14909250) were associated with the GBL1 gene. The cg09791753 is located
within a CpG island spanning the transcription start site (TSS), and the 5’UTR of the GBL1 gene and its
methylation level was negatively correlated with the gene expression levels (Spearman r = −0.4658,
p = 0.0143).
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Figure 5. DNA methylation levels of 45 CpGs mapped in the region of the OBSL1 gene in (a) normal
rectal tissue and LARC samples classified according to nCRT response (b) pCR—complete response
and (c): pIR—incomplete response). The symbol * indicates significant differences between the groups;
the CpG-A (cg01072658) is highlighted in pink. (d) Correlation between the DNA methylation levels of
the CpG-A and the OBSL1 gene expression levels in 27 LARC from our cohort and (e) in a set of LARC
from TCGA-READ data collection. (f) The expression levels of the OBSL1 gene were lower in the pIR
group (p < 0.05).
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The CpG-B is located at 2175 pb and 132.4 Kb upstream to two enhancer regulatory elements
associated with the GPR1 gene (GH02J206211, nucleotide position chr2:207,076,106–207,078,770 and
ZDBF2/GH02J206081 nucleotide position chr2:206,945,799–206,952,525). The GPR1 interaction region is
associated with 56 inferred TF binding sites and three predicted target genes. The region overlapping
with the enhancer’s target region for ZDBF2 gene (ZDBF2/GH02J206081) is associated with 243 inferred
TF binding sites and ten predicted target genes. The expression levels of the SNORD51 gene and the
antisense long non-coding RNA (lncRNA) GPR1-AS were downregulated in pIR compared to pCR
group (Figure S5c). However, the methylation level of CpG-B (intronic to the lncRNA GPR1-AS) was
not correlated to the GPR1 and GPR1-AS expression levels.

The CpG-C is the only DM CpG located at 3554pb downstream to the regulatory enhancer element
for the INSIG1 gene (GH07J155282, nucleotide position chr7:155,074,428–155,074,660) and 11,504 pb
upstream to the TSS of this gene. The predicted interaction region contains four genes and one cis
binding site for the transcription factor EBF1. The DNA methylation changes of CpG-C are negatively
correlated with the INSIG1 gene expression (Spearman r = −0.4249, p = 0.0153). INSIG1 gene expression
levels were higher in pIR compared to pCR patients (Figure S6).

3. Discussion

The highly variable response to nCRT in rectal cancer requires a better understanding of the
disease and the identification of biomarkers capable of precociously stratifying patients according
to the treatment response. The DNA methylation profile of these tumors has not been thoroughly
explored, and to our knowledge, only one study has evaluated the global methylation status of LARC
concerning the response to nCRT [34].

We initially compared the overall methylation status of ReCa in relation to normal tissues found
in our study with the data available in public databases [37,38]. To gain insights on the methylation
profile of LARC, the probes were classified according to their genomic context as CpG islands,
shores, shelves, or open sea [39]. In agreement with two previous studies [37,38] that used the
Illumina 450K platform, we found high levels of hypomethylation, especially in intergenic regions
and open sea, while hypermethylation was mostly detected within promoters and CpG islands.
In 25 ReCa paired with adjacent normal tissues, Vymelkova et al. [40] reported 5929 DM CpGs with a
prevalence of hypomethylation in intergenic and open sea regions and CpG islands hypermethylation.
These findings demonstrate the reproducibility of our results and corroborate the previous data on the
DNA methylation profile of ReCa.

We showed a higher proportion of hypermethylated probes in pCR (44%) compared to pIR
(18%). The hypomethylated probes presented similar distribution throughout the genome, while
the hypermethylated probes were mostly detected in CpG islands in pCR (66%) compared to pIR
(36%). Overall, these findings support that ReCa is characterized by focal hypermethylation segments
embedded in long-range regions of hypomethylation, as previously reported in colorectal cancer
(CRC) [41]. Parallel analysis with the previously published study in DNA methylation profile in LARC
and response to nCRT [34] was precluded because the authors did not compare tumors with NT.

Most of the studies describing DNA methylation in LARC evaluated a small panel of genes as
biomarkers of nCRT response. Hypermethylation of ATM (ATM serine/threonine kinase), CRBP1
(RBP1 retinol binding protein 1), MGMT, TFAP2E (transcription factor AP-2 epsilon), and TIMP3
(metallopeptidase inhibitor 3) genes was associated with response to radiotherapy and/or 5-FU
(5-fluorouracil) based chemotherapy in ReCa [17,20,31,42,43]. In our study, five probes hypermethylated
in TFAP2E and one hypomethylated in TIMP3 were found in both groups (pCR and pIR) compared
to NT. In circulating tumor cells, MGMT promoter hypermethylation was associated with a better
response to nCRT [31]. Contrarily, we identified DM probes in CpGs within the MGMT gene body
in pIR cases. Although alteration in gene expression due to DM regions in gene bodies has been
previously reported [44,45], we found no correlation of the abovementioned DM probes and MGMT
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expression, evaluated in our previous transcriptomic data performed in the same group of cases
(GSE123390) [36].

We built a classifier predictive of nCRT response based on the DNA methylation levels of three
CpG dinucleotides. Subsequent analyses of these three CpGs using BS-pyrosequencing showed a high
positive correlation with the DNA methylation values determined by microarray analysis. These three
CpGs were confirmed as DM in pCR compared to pIR in array-dependent and independent samples,
reinforcing their relevance in predict the response to therapy in LARC.

Four datasets presenting available data on rectal tumors (TCGA-READ, GSE75546, and GSE39958)
or CRC cell lines treated with 5-FU (GSE81006) were assessed to verify the methylation pattern of
our three CpGs. These studies used the Infinium Human Methylation 450K BeadChip platform
(Illumina), and only the CpG-A (cg01072658) was observed in both platforms (850k platform used in
our study). Lower methylation values for CpG-A (p < 0.01) (Figure S7a), and a significant correlation
with OBSL1 gene expression was observed in the TCGA cohort (Figure 5e). Similarly, the methylation
levels of this probe in the GSE75546 study were lower in six LARC compared to paired ANT samples
(Figure S7b) [37]. The GSE39958 study described high-throughput DNA methylation analysis of
45 LARC associated with response to nCRT [34] based on the Mandard et al. [33] classification system.
However, no difference was observed in the CpG-A probe methylation regarding the response to
therapy (7 cases TRG1 and 38 TRG2-5, Figure S7c). Of note, two TRG1 cases presented much lower
methylation levels than all pCR cases from our cohort, strengthening the need to evaluate this CpG in
a larger group of cases.

Shen and colleagues [46] have established a 5-FU resistant cell line from its parental wild type CRC
HCT-8 cell line. The authors treated both cell lines with 5-FU for 0 and 72 h and evaluated three replicates
of each condition using the Illumina 450k Methylation Beadchip (GSE81006). The methylation status
of the CpG-A probe in resistant cells was significantly lower compared to wild type cells (Figure S7d),
suggesting that this CpG could be a useful marker of 5-FU response. This finding reinforces the
involvement of the CpG-A as a marker of nCRT response.

Interestingly, the three CpGs of the classifier are located in known regulatory elements. The CpG-A
is mapped in the OBSL1 gene body, CpG-B is located in the lncRNA GPR1-AS (GPR1 antisense RNA),
and the CpG-C is within the intergenic region of chromosome 7. Therefore, the surrounding CpGs
and the genes predicted as regulated by these regions were further investigated. We identified 50 DM
CpGs flanking the CpG-A, 10 of which were associated with the OBSL1 gene (Figure 5). Nine genes
(including the OBSL1) were differentially expressed between pCR and pIR. These genes were predicted
as regulated by the OBSL1 enhancer region, which presented a significant correlation to the methylation
levels of the CpG-A. The OBSL1 gene encodes a component of the 3M complex, which is required to
regulate microtubule dynamics and genome integrity [47]. It is well known that genomic instability is
one of the hallmarks of cancer development [48], and many studies have also shown its association
with response to therapy [49]. However, the specific involvement of OBSL1 in cancer is insufficiently
explored. Only an association with the endocytosis pathway of human papillomavirus (HPV) has been
reported [50].

The region involving the CpG-B also presented four other DM probes. The expression of GPR1-AS
and SNORD51 (small nucleolar RNA, C/D box 51) predicted as regulated by the same enhancer was
significantly different between pCR and pIR. The function of GPR1-AS is currently unknown, but
this lncRNA was shown to be located within an imprinted region, expressed only in the placenta,
with biallelic promoter hypermethylation in adult tissues [51]. The consequences of changes in DNA
methylation or expression patterns of this lncRNA has not been reported.

The CpG-C is mapped within the INSIG1 enhancer interaction region, with no other DM CpG in
the flanking regions. However, a significant negative correlation was found between the beta values of
CpG-C and the INSIG1 gene expression (Figure S6c). This gene presented higher expression levels
in pIR compared to pCR cases (Figure S6d). INSIG1 has been implicated in epithelial-mesenchymal
transition, which is also one of the hallmarks of cancer [52,53]. Besides, its increased expression seems
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to be stimulated by cell-free DNA from colorectal cancer cells [54], and by treating cell lines with
chemotherapy agents. Increased expression of the INSIG1 gene was described in breast cancer cell
lines after treatment with gemcitabine and 5–FU [55], while decreased expression was detected after
treating a laryngeal cancer cell line with low doses of paclitaxel [56], and after anacardic acid treatment
in breast cancer cell lines [57].

We verified that most of the DM CpGs mapped in regulatory regions were hypomethylated,
including the three-CpG identified as predictive of nCRT response. It is known that DNA
hypomethylation and active enhancer signatures show a high degree of cell-type specificity [58].
Therefore, we used the available data of the chromatin states of two normal rectal mucosae [59]
to identify active genes overlapping the DM probes and the active TSS across the enhancer region
for the OBSL1 gene (Figure S4a). Among the eight inferred genes differentially expressed in pCR
and pIR cases, two DM CpGs were associated with the GLB1L (galactosidase beta 1 like) gene, and
only one showed correlation with its expression level. It is notorious that the network among DNA
methylation, cis-regulatory elements, and the variety of potential TFs involved in this process is
complex. The underlying mechanisms by which alterations in specific CpGs affects gene expression
are not thoroughly unveiled. While the correlation between gene expression and DNA methylation
in promoter regions is well described and explored, the effect of DNA methylation in other genomic
regions remains poorly understood. A positive correlation, providing evidence of a causal association
between gene body methylation and gene expression, was described in cancer [44,60]. However,
subsequent studies demonstrated that DM CpGs located in the gene body could have both positive and
negative correlation with gene expression, disclosing other regulatory mechanisms [61,62]. The impact
of DNA methylation changes on differential gene expression between pCR and pIR herein reported
could be due to an indirect effect in which DNA methylation avoid the binding of TF to its cognate site,
or the TFs are drivers of the hypomethylated state [63]. Although these mechanisms need to be better
evaluated in the context of response to treatment, our findings suggest that DNA methylation changes
of the three-CpGs are implicated in the nCRT response in LARC.

Our results demonstrate that the methylation status of three CpGs is a potential predictive tool
for nCRT response. Although promising, some limitations need to be considered. We used normal
tissues obtained from cancer-free individuals (autopsies) for comparison to LARC biopsies, while
others used adjacent normal tissues. Several concerns have been reported in using surrounding normal
tissues as a control to identify molecular alterations in tumors. It has been demonstrated that ANT
presents characteristics that differentiated them from healthy tissues [64]. We used FFPE and FF
samples in our confirmation dataset, which could be questioned. For instance, one of the CpGs (CpG-A)
showed higher methylation levels in FFPE compared to FF samples. However, we observed significant
hypomethylation in pIR cases indicating that our results are not biased by sample preservation.
The platform used in our study interrogates the methylation status of almost twice as many probes
used elsewhere, which brings new information about these tumors but restricts the number of studies
available for comparison and data confirmation.

In the present study, we described a classifier composed of three differentially methylated CpGs
able of distinguishing LARC cases according to nCRT response, which has the potential to be used in
the clinical practice.

4. Materials and Methods

4.1. Patients

We selected strictly 53 patients of a large retrospective cohort of 556 diagnosed with LARC (based
on the American Joint Committee on Cancer 7th Ed.) [65] admitted at A.C. Camargo Cancer Center
and Barretos Cancer Hospital, São Paulo-Brazil, between 2006 and 2015. The biopsies were collected
during the colonoscopy and before nCRT. All patients were referred to nCRT with continuous infusion
of 5-FU (fluorouracil) or oral capecitabine and radiotherapy (total dose of 50.4 Gy) followed by surgery.
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Further eligibility criteria include no other cancer and/or metastases at diagnosis, biopsies available in
the biobanks, and complete surgical histopathological information. A cohort of 24 patients treated
at the University Hospital of Southern Denmark, Vejle, DK, between 2016 and 2020, was recruited
following the same inclusion/exclusion criteria,. Thirty-two LARC cases were used for a discovery
screening and 45 for data confirmation. Twenty-eight FFPE out of these 45 tumor samples were
included due to the difficulty of finding available FF biopsies.

The pathological response to the nCRT, defined as the absence or presence of reminiscent viable
tumor cells in the surgical specimens on hematoxylin and eosin evaluation, was used to classify the
patients into two groups: pCR (ypT0N0) or pIR. Clinical and epidemiological data are summarized
in Table 1. Histopathological normal rectal tissues were also collected from five individuals with the
same median age (autopsies). The study was conducted in accordance with the ethical guidelines and
regulations of the Declaration of Helsinki. The Ethics Committees from A.C. Camargo Cancer Center
(#1884/14), Barretos Cancer Hospital (#1030/2015), Regional Committee on Health Research Ethics of
Southern Denmark, and the Danish Data Protection Agency (Protocol # S20160097) approved the study.
Written informed consent was obtained from all patients or family members before sample collection.

Table 1. Clinical and histopathological features of locally advanced rectal cancer patients included in
this study.

Characteristics Number of Patients
(Total: 77)

Median age at diagnosis 60
Gender
Female 45
Male 32

Response to Neoadjuvant therapy
pCR 17
pIR 60

cT stage
Tx 1
T2 9
T3 57
T4 10

cN stage
N0 20
N+ 57

ypT stage
T0 19
T1 5
T2 24
T3 25
T4 4

ypN stage
N0 55
N+ 22

TNM: tumor-node-metastasis clinical (c) and histopathological assessment after neoadjuvant treatment (yp) for
classification of malignant tumors (American Joint Committee on Cancer 7th edition [65]), pCR: pathological
complete response, pIR: pathological incomplete response.

4.2. DNA Isolation and Bisulfite Conversion

Genomic DNA was extracted from 54 FF (49 tumors LARC and 5 NT) tissue specimens using
phenol-chloroform-isoamyl alcohol (25:24:1) solution-based protocol, and 28 FFPE tumor specimens
using RecoverAll™ Total Nucleic Acid Isolation Kit for FFPE (ThermoFisher, Waltham, MA, USA).
The DNA was quantified using Qubit®dsDNA BR Assay (Life Technologies, Carlsbad, CA, USA).
Bisulfite conversion was performed with the EZ DNA Methylation-Gold™ Kit (Zymo Research, Irvine,
CA, USA), according to the manufacturer recommendations.



Cancers 2020, 12, 3079 14 of 20

4.3. High-Throughput DNA Methylation Profiling

The genome-wide DNA methylation profiling of 32 tumor biopsies (discovery set: 11 pCR
and 21 pIR) and five NT samples was assessed using the Infinium Human MethylationEPIC
BeadChip platform (Illumina, San Diego, CA, USA), according to the manufacturer recommendations.
The large-scale methylation data is available at the Gene Expression Omnibus database
(GSE132668 https://www.ncbi.nlm.nih.gov/geo/). The original data can also be obtained from the
authors upon request. The microarrays were scanned using the Illumina HiScan system, and the
data were processed using R language. Briefly, quality control, p-value detection for all probes,
background noise detection, and adjustment were performed using the package minfi [66]. The Beta
MIxture Quantile dilation (BMIQ) model was used to adjust for differences of Type-I and Type-II
probes and to normalize the β values [67]. Batch effects were removed using the package SVA [68].
Probes with low quality (detection p-value > 0.05), mapped in X/Y chromosomes, and cross-reactive
were filtered out, as previously described [69]. Probes mapped to Single Nucleotide Polymorphisms
were removed using the package minfi [66]. Unsupervised hierarchical clustering analysis was
performed using BRB array tools v.4.4.0 (Biometric Research Branch, National Cancer Institute,
USA—https://brb.nci.nih.gov/BRB-ArrayTools/index.html). Differentially methylated (DM) probes,
contrasting pCR or pIR and NT, were identified using the limma package [70]. Probes with FDR < 5%
and |∆β| > 0.15 were considered significant and annotated using the Illumina manifest file. The study
design is illustrated in Figure 2.

4.4. DNA Methylation-Based Algorithm Predictive of Response to Neoadjuvant Treatment in LARC

The DM CpGs identified exclusively in pCR or pIR cases and also different between them (limma
p < 0.05; |∆β| > 0.15) were used to develop a predictive classifier. The most informative probes in
distinguishing pCR from pIR were filtered based on the AUC (top 10 higher AUC). Redundant markers
were eliminated using linear regression analysis (stepwise selection method). The potential CpG
markers were submitted to a Diagonal Linear Discriminant Analysis (DLDA), and the classifier
performance was estimated using Leave-One-Out Cross-Validation (LOOCV) (BRB array tools v.4.4.0).

4.5. Data Confirmation by Quantitative Bisulfite Pyrosequencing

Seventy-seven LARC biopsies (17 pCR and 60 pIR cases) were evaluated using bisulfite
(BS)-pyrosequencing to confirm the DNA methylation levels of the selected CpGs. Primers sequences
and PCR conditions used in the BS-pyrosequencing for each CpG (cg01072658, cg03085846,
and cg13770628) are described in Table S3. After bisulfite conversion, 10ng of DNA was amplified
using the PyroMark PCR kit (Qiagen, Germantown, MD, USA), according to the manufacturer protocol.
The PCR products were sequenced on the PyroMark Q24 system (Qiagen, Germantown, MD, USA).

To corroborate the performance of the response predictive model designed using the large-scale
method, the same mathematical model was adopted in the BS-pyrosequencing analysis. However,
because of the different quantification scales obtained by microarray and BS-pyrosequencing,
the threshold was adjusted to achieve the best overall accuracy.

4.6. External Data Analysis

Methylation data from TCGA-READ (7 ANT and 99 ReCa) were downloaded from UCSC Xena
repository (http://xena.ucsc.edu, last accessed 6 May 2020). The DM probes (FDR < 5% and |∆β| >

0.15) were used for confirming the ReCa global methylation profile. Specific CpGs were investigated
in a subgroup of 38 LARC from TCGA-READ cases. The beta values from studies reporting DNA
methylation data of LARC (GSE75546, and GSE39958) [34,37] and colorectal cell lines (GSE81006) [46]
were downloaded from the Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/)
and analyzed using GraphPad Prism 8.0 (GraphPad Software Inc., San Diego, CA, USA).
Targeted next-generation sequencing data of a panel with 105 cancer-related genes from 30 of

https://www.ncbi.nlm.nih.gov/geo/
https://brb.nci.nih.gov/BRB-ArrayTools/index.html
http://xena.ucsc.edu
https://www.ncbi.nlm.nih.gov/geo/
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the 32 LARC cases were retrieved from our previous study [35] (deposited at Sequence Read
Archive–SRA: PRJNA535396) to assess variants in key CRC-related genes. To evaluate the correlation
between CpG-specific methylation levels and gene expression, we used the matched microarray-based
transcriptomic data from 27 of 32 LARC cases previously reported by our group (GSE123390) [36].
To further explore these correlations in an independent set of LARC cases, we retrieved the matching
methylation (Infinium HumanMethylation450k BeadChip) and transcriptomic (RNA-Seq) data publicly
available from 33 LARC cases from TCGA-READ study using the Wanderer interactive online tool
(http://maplab.imppc.org/wanderer/) [71].

4.7. Integrative Analysis of the Predicted Cis-Regulatory Elements Associated with the Flanking Regions
of the Predictive Classifier

A detailed in silico analysis was performed to gain a comprehensive understanding of the impact of
the DNA methylation changes of the three CpGs (CpG-A: cg01072658, CpG-B: cg03085846, and CpG-C:
cg13770628) on gene expression. The sequence of these probes was aligned with the human reference
genome (Genome Reference Consortium Human Build 37—GRCh37/hg19, UCSC Genome Browser
platform at https://genome.ucsc.edu/). The genome location and epigenetic context were evaluated by
overlapping these probes with predicted cis-regulatory elements such as promoter-associated CpG
islands, distal enhancers, and DNA motifs harboring TF binding sites. The clustered interactions
of predicted regulatory elements and inferred target genes by GeneHancer (GeneHancer database,
available at http://www.genecards.org/) was used to integrate DNA methylation, chromatin status,
and gene expression data (Appendix A).

4.8. Statistical Analysis

Statistical analyses were performed using R (v.3.5.1), SPSS (SPSS v. 21.0, IBM - Armonk, NY,
USA), BRB array tools v.4.4.0 (Biometric Research Branch, National Cancer Institute, Bethesda,
MD, USA–https://brb.nci.nih.gov/BRB-ArrayTools/index.html), and GraphPad Prism 8.0 (GraphPad
Software Inc., San Diego, CA, USA). The methylation values of each CpG assessed by microarray and
BS-pyrosequencing were compared using the Pearson correlation test. Mann-Whitney test was used
to evaluate the differences between methylation values. Fisher exact test was applied to verify the
distribution of the values between the two groups. The ability to predict response to nCRT of each
marker was verified by the AUC. The correlation between the beta-values of each of the three CpGs
and gene expression was calculated using the Spearman’s correlation test. Statistical significance was
considered with p < 0.05.

5. Conclusions

We identified and confirmed that three differentially methylated CpGs were capable of classifying
LARC cases according to nCRT response. The methylation assessment of these genomic regions can be
performed in a clinically compatible setting, using a low-cost technique such as BS-pyrosequencing.
We also identified the regulatory regions associated with each CpG, suggesting their role in regulating
gene expression.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/11/3079/s1,
Table S1: Probes differentially methylated (76,095) in locally advanced rectal cancer compared to normal tissues
(limma p < 0.001; FDR < 5%; |∆β| > 0.15) (EPIC BeadChip platform, Illumina), Table S2: Candidate probes (n = 194)
used to predict pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal
carcinomas, Table S3. Primer sets used in the pyrosequencing reaction for three CpGs that compose the predictive
classifier of neoadjuvant chemoradiotherapy response in locally advanced rectal cancer, Figure S1: Schematic
representation of the genomic distribution and the CpG context of the differentially methylated (DM) probes
identified in rectal cancer (ReCa) samples in the internal and external (The Cancer Genome Atlas, TCGA, and Wei
et al., 2016) datasets compared to non-neoplastic rectal mucosa samples, Figure S2: Quality control assessment of
the samples evaluated by pyrosequencing, Figure S3: Performance of the three CpGs in discriminating response
to neoadjuvant treatment in rectal cancer patients (pCR versus pIR),Figure S4: Genomic context and expression
of the genes involved in the expanded interaction region of OBSL1 enhancer, Figure S5: Physical map of the
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expanded interaction region of GPR1 enhancer, Figure S6: Physical map of the interaction region of the enhancer
INSIG1, Figure S7: External independent datasets containing the methylation status of the CpG-A (cg01072658
probe, Infinium Human Methylation 450k BeadChip platform, Illumina) in rectal cancer samples or colorectal
cancer cell lines sensitive (HCT8_WT) or resistant (HCT8_resistant) to 5-fluorouracil (5-FU).
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regulatory regions to the CpG-A, CpG-B, and CpG-C.
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