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The protective effects of dioscin, a natural steroidal saponin from some medicinal plants
including Dioscorea nipponica Makino, against lipopolysaccharide (LPS)- induced acute
liver and renal damages have been reported in our previous works. However, the actions
of dioscin against LPS-induced acute lung injury (ALI) is still unknown. In the present
study, we investigated the effects and mechanisms of dioscin against LPS-induced ALI
in vitro and in vivo. The results showed that dioscin obviously inhibited cell proliferation
and markedly decreased reactive oxidative species level in 16HBE cells treated by LPS.
In addition, dioscin significantly protected LPS-induced histological changes, inhibited
the infiltration of inflammatory cells, as well as decreased the levels of MDA, SOD, NO
and iNOS in mice and rats (p < 0.05). Mechanistically, dioscin significantly decreased the
protein levels of TLR4, MyD88, TRAF6, TKB1, TRAF3, phosphorylation levels of PI3K,
Akt, IκBα, NF-κB, and the mRNA levels of IL-1β, IL-6, and TNF-α against oxidative stress
and inflammation (p < 0.05). Dioscin significantly reduced the overexpression of TLR4,
and obviously down-regulated the levels of MyD88, TRAF6, TKB1, TRAF3, p-PI3K,
p-Akt, p-IκBα, and p-NF-κB. These findings provide new perspectives for the study
of ALI. Dioscin has protective effects on LPS-induced ALI via adjusting TLR4/MyD88-
mediated oxidative stress and inflammation, which should be a potent drug in the
treatment of ALI.

Keywords: acute lung injury, dioscin, inflammation, lipopolysaccharide, oxidative stress, TLR4 signal pathway

INTRODUCTION

Acute lung injury (ALI) often poses a great threat to human health (Bhatia and Moochhala, 2004;
Rubenfeld et al., 2005). ALI is due to a large number of neutrophils into the lungs, and the release
of a large number of pro-inflammatory mediators, resulting in damage to lung epithelial cells and
endothelial cells (Sibille and Reynolds, 1990). Although significant progress has been made in the

Abbreviations: Akt, protein kinase B; iNOS, inducible nitric oxide synthase; IκBα, inhibitor of nuclear factor κB alpha; IL-1,
interleukin-1; IL-6, interleukin-6; MDA, malondialdehyde; MyD88, myeloid differentiation factor 88; NF-κB, nuclear factor
κB; NO, nitric oxide; PI3K, phosphoinositide 3-kinase; SOD, superoxide dismutase; TKB1, TANK-binding kinase 1; TLR4,
toll-like receptor 4; TNF-α, tumour necrosis factor-α; TRAF3, TNF receptor-associated factor 3; TRAF6, tumor necrosis
factor receptor-associated factor 6.
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FIGURE 1 | Dioscin inhibits proliferation of the cells treated with lipopolysaccharide (LPS) in vitro. (A) The chemical structure of dioscin. (B) Effect of
dioscin (75, 150, 300, 600, 1200, and 2400 ng/ml) on the viability of 16HBE cells for 24 h, and the effect of dioscin (150, 300, and 600 ng/ml) on the proliferation of
16HBE cells treated with LPS (100 ng/ml) for 6, 12, and 24 h. Values are expressed as the mean ± SEM (n = 5). ∗p < 0.05 and ∗∗p < 0.01 compared with model
group. ##p < 0.01 compared with control group.

pathophysiology and treatment of ALI, the mortality rate remains
unchanged (Steinberg et al., 2006). Therefore, it is urgent to
improve the effective treatment strategy for the patients. The
onset of ALI, an early symptom of organ failure, is associated
with lipopolysaccharide (LPS) or the elevated blood levels of
endotoxin (Jeyaseelan et al., 2004). Thus, LPS has been widely
used to establish experimental model for drug development
against ALI.

In recent years, lots of work have been carried out to
elucidate the mechanisms of LPS-induced ALI. However, the
good therapeutic approach remains controversial and uncertain.
Accordingly, there is an urgent need to develop effective drugs
to treat this disease. Dioscin (Dio, Figure 1A), a natural
saponin from some medicinal herbs (Dong et al., 2012), has
anti-inflammatory, anti-tumor and anti-hyperlipidaemic effects
(Kaskiw et al., 2009; Lu et al., 2011).

In our previous study, we have reported that dioscin has
significant effects on l LPS-induced liver injury (Yao et al.,
2016), LPS-induced kidney injury (Qi et al., 2016), non-alcoholic
fatty liver disease (NAFLD) (Xu et al., 2014), hepatic ischemia-
reperfusion damage (Tao et al., 2014), and hepatic fibrosis (Zhang
et al., 2015). In our knowledge, dioscin has played significant roles

on liver (Zhang et al., 2015; Yao et al., 2016), kidney (Qi et al.,
2016), bone (Tao et al., 2016), and brain (Tao X.F. et al., 2015).
Nevertheless, the effects and mechanisms of dioscin against LPS-
induced ALI rmains un-known.

The purpose of our work was to test the actions of dioscin
on ALI caused by LPS and then to elucidate the possible
mechanisms.

MATERIALS AND METHODS

Chemicals
Dioscin was prepared from Dioscorea nipponica Makino
in our laboratory with the purity over 98% analyzed
by high-performance liquid chromatography (Yin et al.,
2010; Hu et al., 2013). Dioscin was dissolved with 0.1%
dimethylsulfoxide (DMSO) for in vitro experiments, or with
0.5% carboxymethylcellulose sodium (CMC-Na) solution for
in vivo tests. CMC-Na, 4’,6’-diamidino-2- phenylindole (DAPI),
sodium dodecyl sulfate (SDS), and Tris were purchased from
Sigma (St. Louis, MO, USA). A tissue protein extraction kit
was obtained from Keygen Biotech. Co., Ltd. (Nanjing, China).
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TABLE 1 | The primer sequences used for real-time PCR assay in the present work.

Gene GenBank accession Forward primer (5’–3’) Reverse primer (5’–3’)

Mouse GAPDH NM_008084.2 TGTGTCCGTCGTGGATCTGA TTGCTGTTGAAGTCGCAGGAG

Mouse TNF-α NM_013693.2 TATGGCCCAGACCCTCACA GGAGTAGACAAGGTACAACCCATC

Mouse IL-1β NM_008361.3 TCCAGGATGAGGACATGAGCAC GAACGTCACACACCAGCAGGTTA

Mouse IL-6 NM_031168.1 CCACTTCACAAGTCGGAGGCTTA CCAGTTTGGTAGCATCCATCATTTC

Rat GAPDH NM_017008.3 GGCACAGTCAAGGCTGAGAATG ATGGTGGTGAAGACGCCAGTA

Mouse IL-1β NM_031512.2 CCCTGAACTCAACTGTGAAATAGCA CCCAAGTCAAGGGCTTGGAA

Rat IL-6 NM_012589.1 ATTGTATGAACAGCGATGATGCAC CCAGGTAGAAACGGAACTCCAGA

Rat TNF-α NM_012675.3 TCAGTTCCATGGCCCAGAC GTTGTCTTTGAGATCCATGCCATT

Human GAPDH NM_002046.3 GCACCGTCAAGGCTGAGAAC TGGTGAAGACGCCAGTGGA

Mouse IL-1β NM_000576.2 CTGAGCACCTTCTTTCCCTTCA TGGACCAGACATCACCAAGCT

Human IL-6 NM_000600.3 TGGCTGAAAAAGATGGATGCT TCTGCACAGCTCTGGCTTGT

Human TNF-α NM_000594.3 TGTAGCCCATGTTGTAGCAAACC GAGGACCTGGGAGTAGATGAGGTA

TABLE 2 | The information of the antibodies used in the present work.

Antibody Source Dilutions Company

GAPDH Rabbit 1:2000 Proteintech Group, Chicago, IL, USA

TLR4 Rabbit 1:1000 Santa Cruz, CA, USA

MyD88 Mouse 1:1000 Santa Cruz, CA, USA

TRAF6 Rabbit 1:1000 Proteintech Group, Chicago, IL, USA

TKB1 Rabbit 1:1000 Proteintech Group, Chicago, IL, USA

TRAF3 Rabbit 1:1000 Proteintech Group, Chicago, IL, USA

p-PI3K Rabbit 1:1000 Santa Cruz, CA, USA

PI3K Rabbit 1:1000 Proteintech Group, Chicago, IL, USA

p-Akt Rabbit 1:1000 Proteintech Group, Chicago, IL, USA

Akt Rabbit 1:1000 Proteintech Group, Chicago, IL, USA

p-IκBα Rabbit 1:1000 Proteintech Group, Chicago, IL, USA

IκBα Rabbit 1:1000 Proteintech Group, Chicago, IL, USA

p-NF-κB Rabbit 1:1000 Proteintech Group, Chicago, IL, USA

NF-κB Rabbit 1:1000 Proteintech Group, Chicago, IL, USA

A bicinchoninicacid (BCA) protein assay kit was purchased from
the Beyotime Institute of Biotechnology (Jiangsu, China). MDA,
SOD, NO, and iNOS assay kits were obtained from the Nanjing
Jiancheng Institute of Biotechnology (Nanjing, China). RNAiso
Plus, a PrimeScript R© RT Reagent Kit with gDNA Eraser (Perfect
Real Time) and SYBR R© Premix Ex TaqTM II (Tli RNase H Plus)
were purchased from TaKaRa Biotechnology Co., Ltd. (Dalian,
China).

Cell Culture
The human bronchial epithelial (16HBE) cells were obtained
from American type culture collection (ATCC) (Manassas, VA,
USA) and maintaind in RPMI medium 1640 (Gibco, Carlsbad,
CA, USA) with 10% fetal bovine serum (FBS) (Gibco, Carlsbad,
CA, USA) in humidified atmosphere containing 5% CO2 and
95% O2 at 37◦C.

Dioscin Toxicity Assay
The 16HBE cells were seeded into 96-well plates at a density
of 5 × 104 cells/ml per well for 24 h before treatment,
and then incubated for another 24 h in the presence of

different concentrations of dioscin (75, 150, 300, 600, 1200, and
2400 ng/ml). The cell proliferation was measured using the MTT
method.

Cell Proliferation Assay
The 16HBE cells were plated into 96-well plates at a density of
5× 104 cells/ml for 24 h and then incubated for 6, 12, and 24 h in
the presence of various concentrations of dioscin (150, 300, and
600 ng/ml) caused by LPS (100 ng/ml). The cells were measured
according to the MTT method.

Detection of Intracellular ROS Level
The 16HBE cells were plated in 6-well plates at a density of
5 × 104 cells/ml and treated with dioscin at the concentrations
of 150, 300 and 600 ng/ml for 24 h, then exposed to LPS
for 24 h. The cells were harvested and re-suspended in 1 ml
dichloro -dihydrofluorescein diacetate (DCFH-DA) (10 µM) for
the detection of ROS level, which was imaged by fluorescence
microscope (Olympus, Tokyo, Japan).

LPS-Induced ALI In vivo
Male C57BL/6J mice weighing 18–22 g and male Wistar rats
weighing 180–220 g were obtained from the Experimental
Animal Centre of Dalian Medical University, Dalian, China
(SCXK (Liao): 2013–0003). All experiments were approved
by the Animal Care and Use Committee of Dalian Medical
University, and the experimental procedures were performed in
strict accordance with Legislation Regarding the Use and Care
of Laboratory Animals of China. Before the experiments, the
animals were allowed to suit the new environment for 7 days,
and housed in a room under 12 h light/dark cycle, a controlled
temperature at 23± 2◦C and a relative humidity at 60± 10%. The
mice and rats were randomly divided into five groups (n = 8 per
group): control, model (LPS-treated) and dioscin-treated groups,
respectively. The animals were oral administered with dioscin for
7 consecutive days at the doses of 80, 40, and 20 mg/kg for mice,
and 60, 30, and 15 mg/kg for rats. Lung injury in mice and rats
were induced by intraperitoneal (i.p.) LPS at the doses of 8 mg/kg
and 5 mg/kg 2 h before the last administration. After 7 days, the
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FIGURE 2 | Dioscin rehabilitates LPS-induced injury in vitro and in vivo. (A) Effect of dioscin (150, 300, and 600 ng/ml for 24 h pretreatment) on the cellular
morphology and structure of 16HBE by bright image (200 × magnification) investigation. (B) Effects of dioscin on LPS-induced lung injury in mice and rats based on
H&E staining (200 × original magnification).

animals were sacrificed after an overnight fast. Then, blood and
lung tissue were collected and stored for further analysis.

Histological Assay
The lung tissues were fixed in 10% formalin, embedded in
paraffin, and sectioned into Five-micron-thick slices. The slices
were then stained with haematoxylin-eosin (H&E). Images were
captured using a light microscopy (Nikon Eclipse TE2000-U,
Nikon, Japan) at 200× magnification, and the degree of lung
injury was quantified using Image-Pro Plus 6.0 software.

Antioxidant Assay In vivo
The levels of MDA, SOD, NO, and iNOS in lung tissues were
detected using commercial kits according to the manufacturer’s
instructions.

Immunofluorescence Assay
For the immunofluorescence staining of TLR4 and MyD88,
the tissue slices or formal in-fixed cells were preformed using
primary antibodies (Santa Cruz, California, USA) in a humidified
chamber at 4◦C overnight. After washing twice in PBS, the
tissue slices or the cells were incubated with a fluorescein-labeled
secondary antibody for 1 h. Eventually, cell nuclei were stained
with DAPI (5 µg/ml). The immunostained images were captured
using a fluorescence microscope (Olympus, Tokyo, Japan).

Quantitative Real-Time PCR Assay
Total RNA samples from lung tissues were extracted using
RNAiso Plus reagent following the manufacturer’s protocol.
Reverse transcription for cDNA synthesis and quantitative

real-time PCR were performed as previously described. The
forward (F) and reverse (R) primers for the tested genes are
provided in Table 1. A no-template control was analyzed
in parallel for each gene, and a GAPDH gene was selected
as the housekeeping gene in our study. Eventually, the
unknown template was calculated through the standard curve for
quantitative analysis.

Western Blotting Assay
The protein samples from the cells and lung tissues were isolated
using the protein extraction kit (Beyotime Biotechnology,
Haimen, China), and the protein content was determined using
a BCA Protein Assay Kit. The protein samples were loaded
on to the SDS-PAGE gel (8–15%), separated electrophoretically,
and transferred on to a PVDF membrane (Millipore, USA).
After blocking nonspecific binding sites for 1 h with 5 % dried
skim milk in TTBS at 37◦C, the membrane was individually
incubated for overnight at 4◦C with the primary antibodies
listed in Table 2. Then the membrane was incubated at room
temperature for 2 h with horseradish peroxidase-conjugated
antibodies at a 1:2000 dilution. Protein expression was detected
by the enhanced chemiluminescence (ECL) method. Protein
bands were imaged using a Bio-Spectrum Gel Imaging System
(UVP, Upland, CA, USA) and normalized with GAPDH as an
internal control (IOD of objective protein versus IOD of GAPDH
protein).

TLR4 Gene Transfection in Cells
Overexpressed DNA transfection was used to upregulate
TLR4 expression levels. The 16HBE cells were transfected
with pPICZA-TLR4 plasmid DNA using Lipofectamine Plus
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FIGURE 3 | Dioscin attenuates oxidative stress in vitro and in vivo. (A) Effect of dioscin (150, 300, and 600 ng/ml for 24 h pretreatment) on the ROS level in
16HBE cells by immunofluorescence assay (200 × magnification). (B) Effect of dioscin on the levels of MDA, SOD, NO, and iNOS in mice and rats. Values are
expressed as the mean ± SEM (n = 8). ##p < 0.01 compared with control group; ∗p < 0.05 and ∗∗p < 0.01 compared with model group.

Reagent (Invitrogen Life Technologies, CA, USA) according
to the manufacturer’s instructions. Twenty-four hours after
transfection, the cells were subjected to serum deprivation for
24 h before treated by LPS (100 ng/ml) in the presence or absence
of dioscin (600 ng/ml) for an additional 24 h. Then, the level
of ROS, and the protein levels of TLR4, MyD88, TRAF6, TKB1,
TRAF3, p-PI3K, p-Akt, p-IκBα, and p-NF-κB were determined.

Statistical Analysis
Data were presented as the mean ± standard error of the mean
(mean ± SEM). One-way ANOVA or two tailed student’s t-test
was used where appropriate. Statistical significance was set at
p < 0.05 or p < 0.01.

RESULTS

Dioscin Inhibits Proliferation of the Cells
Treated with LPS In vitro
As shown in Figure 1B, dioscin at the concentrations of 75, 150,
300, and 600 ng/ml for 16HBE cells under 24 h treatment showed
no statistically significant difference in cell viability. Compared
with LPS group, dioscin at the concentrations of 150, 300, and

600 ng/ml under 6, 12, and 24 h treatment significantly changed
cell viability. Under these conditions, dioscin effectively inhibited
cell proliferation treated by LPS with time- and dose- dependent
manners.

Dioscin Rehabilitates LPS-Induced ALI
As shown in Figure 2A, dioscin at the concentrations of 150,
300, and 600 ng/ml under 24 h treatment was selected to protect
LPS-induced ALI in vitro. As shown in Figure 2B, with the
challenge of LPS, lung tissues were significantly damaged with
the histopathologic changes including interstitial edema and
hemorrhage, alveolar wall thickening, and notable infiltration
of neutrophils and macrophages in the lung parenchyma
and alveolar spaces. However, these symptoms were markedly
reversed by dioscin.

Dioscin Attenuates Oxidative Stress
In vitro and In vivo
As shown in Figure 3A, compared with model group, dioscin
markedly decreased ROS level in 16HBE cells. As shown in
Figure 3B, the levels of MDA, SOD, NO, and iNOS in mice and
rats were significantly reversed by dioscin compared with model
groups.
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FIGURE 4 | Dioscin adjusts TLR4/MyD88 signal in vitro. (A) Effect of dioscin on the protein levels of TLR4 and MyD88 in 16HBE cells. (B) Effect of dioscin on
the expression levels of TLR4 and MyD88 in 16HBE cells based on immunofluorescence assay (400 × original magnification). (C) Effect of dioscin on the expression
levels of TRAF6, TKB1, TRAF3, p-PI3K, p-Akt, p-IκBα, and p-NF-κB in 16HBE cells. (D) Effect of dioscin on the mRNA levels of TNF-α, IL-1β, and IL-6 in 16HBE
cells. Values are expressed as the mean ± SEM (n = 3). ##p < 0.01 compared with control group; ∗∗p < 0.01 compared with model group.

Dioscin Adjusts TLR4/MyD88 Signal
In vitro
As shown in Figures 4A,B, compared with model group,
the protein levels of TLR4 and MyD88 in 16HBE cells were
significantly down-regulated by dioscin in a dose-dependent
manner based on western blotting and immunofluorescence
assays. As shown in Figure 4C, the expression levels of TRAF6,
TKB1, TRAF3, p-PI3K, p-Akt, p-IκBα, and p-NF-κB in model
group were markedly increased compared with normal group,
which were all significantly down-regulated by dioscin in 16HBE
cells. The mRNA levels of IL-1β, IL-6 and TNF-α were also
significantly decreased by dioscin in vitro (Figure 4D).

Dioscin Adjusts TLR4/MyD88 Signal
In vivo
As shown in Figures 5A,B, compared with model groups, the
protein levels of TLR4 and MyD88 in mice and rats were
significantly down-regulated by dioscin in a dose-dependent
manner based on western blotting and immunofluorescence
assays. As shown in Figure 5C, the expression levels of TRAF6,
TKB1, TRAF3, p-PI3K, p-Akt, p-IκBα, and p-NF-κB in model
groups were markedly increased compared with normal groups,
which were all significantly down-regulated by dioscin in mice

and rats. The mRNA levels of IL-1β, IL-6, and TNF-α were also
significantly decreased by dioscin (Figure 5D).

TLR4 DNA Abrogates the Protective
Effect of Dioscin
As shown in Figures 6A,B, dioscin markedly suppressed ROS
level, and the protein levels of TLR4 and MyD88 in cells were also
decreased by the compound based on immunofluorescence assay.
Compared with LPS group, the over-expressed level of TLR4 was
down-regulated by dioscin after transfection. In addition, the
protein levels of TLR4, MyD88, TRAF6, TKB1, TRAF3, p-PI3K,
p-Akt, p-IκBα, and p-NF-κB were markedly decreased by dioscin
after transfection (Figure 6C).

DISCUSSION

Acute lung injury is a direct and indirect damage caused by
diffuse pulmonary interstitial and alveolar edema, and acute
hypoxic respiration (Olleros et al., 2010; Singh et al., 2013).
LPS, one ligand of TLR4 receptor, can induce the production of
inflammatory cytokines and cause lung injury (Shi et al., 2013).
There are evidences that TLR4 mediates microbial infection
of immune and inflammatory responses and is involved in
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FIGURE 5 | Dioscin adjusts TLR4/MyD88 signal in vivo. (A) Effect of dioscin on the protein levels of TLR4 and MyD88 in mice and rats. (B) Effect of dioscin on
the expression levels of TLR4 and MyD88 based on immunofluorescence assay in mice and rats (200 × original magnification). (C) Effect of dioscin on the expression
levels of TRAF6, TKB1, TRAF3, p-PI3K, p-Akt, p-IκBα, and p-NF-κB in mice and rats. (D) Effect of dioscin on the mRNA levels of TNF-α, IL-1β, and IL-6 in mice and
rats. Values are expressed as the mean ± SEM (n = 3). ##p < 0.01 compared with control group; ∗p < 0.05 and ∗∗p < 0.01 compared with model group.

FIGURE 6 | TLR4 DNA abrogates the protective effect of dioscin. (A,B) Effect of dioscin on the level of ROS, and the expression levels of TLR4 and MyD88
based on immunofluorescence assay (400 × original magnification). (C) Effect of dioscin on the protein levels of TLR4, MyD88, TRAF6, TKB1, TRAF3, p-PI3K,
p-Akt, p-IκBα, and p-NF- κB in 16HBE cells after transfection.
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the pathogenesis of LPS-induced ALI (Coant et al., 2011; Jing
et al., 2015). The TLR4 signaling pathway is involved in MyD88
dependent and non-dependent pathways, and the development
of LPS-caused ALI may be one potent mediator to activate
inflammation (Tao A. et al., 2015). The TLR4 signaling pathway
includes a variety of downstream genes. Endogenous PI3K/Akt
signaling pathway is one of the important downstream pathway,
which can regulate the negative feedback of LPS stimulation
(Ding et al., 2013). LPS activates TLR4/MyD88-dependent
signaling pathways, leading to the phosphorylation of PI3K and
Akt, which subsequently leads to nuclear translocation of NF-κB
(Rana et al., 2015). NF-κB can regulate the levels of inflammatory
cytokines including TNF-α, IL-6, and IL-1β (Gandoura et al.,
2013).

Although inflammation is common in almost all patients
with lung injury, the molecular link between inflammation and
progression of lung injury and pneumonia remains unclear.
Studies have shown that excessive release of ROS may lead to over
activation of innate immune cells, overproduction of cytokines,
and even the damage of the end organ in the process of LPS
induced shock (Goodman et al., 2003; Krause and Bedard, 2008).
TLR4 signal enhances ROS level, followed by the increased levels
of MDA, iNOS, NO, and the reduced SOD level. High levels of
SOD can protect ALI (Kong et al., 2010), and over-production of
free radicals can increase MDA level (Powers et al., 2006). In the
course of the development of ALI induced by LPS, the activation
of pulmonary macrophages and inflammatory cell infiltration are
the basic events of lung parenchyma damage (Abraham et al.,
2006; Rittirsch et al., 2008). The excessive inflammatory response
further leads to vascular injury and diffuse alveolar damage,
which can aggravate lung injury and acute respiratory distress
syndrome (Martin, 1997). For these reasons, these inflammatory
mediators play a key role in ALI, and low levels of them may
reduce LPS-induced ALI. As the main feature of inflammation
in ALI, increased levels of inflammatory mediators can aggravate
lung injury (Yeh et al., 2014). More importantly, LPS through
TLR4 signal can produce proinflammatory cytokines to promote
LPS-induced ALI (Imamura et al., 2009; Stoyanoff et al., 2014).

Dioscin has potent effects against LPS-induced liver and
kidney injury in our previous studies (Qi et al., 2016; Yao et al.,
2016). In our work, dioscin markedly protected LPS-induced

16HBE cell injury, and obviously alleviated the histopatholo-
gical changes in mice and rats, suggesting that dioscin showed
good action against ALI caused by LPS. We found that dioscin
markedly suppressed the ROS level in 16HBE cells. In addition,
PLS-caused high levels of MDA, NO, iNOS, and low level of
SOD in mice and rats were all inhibited by dioscin, indicating
that the anti-oxidant activity of the natural product may be one
potential mechanism against LPS-induced ALI. What’s more,
dioscin markedly decreased TNF-α, IL-1β, and IL-6 levels in
mice and rats, suggesting that the anti-inflammatory effect of the
natural product may be one potential mechanism against LPS-
induced ALI. The mechanism results showed the action of dioscin
on LPS-induced ALI may be via adjusting TLR4/MyD88 signal
pathway.

CONCLUSION

Our results demonstrated that dioscin conferred direct protective
effects on LPS- induced ALI by inhibitiing oxidative stress and
inflammation responses, which also provide new insights on the
mechanisms of dioscin to treat ALI.
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