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ABSTRACT: A soft sensor is a key component when a real-time
measurement is unavailable for industrial processes. Recently, soft
sensor models based on deep-learning techniques have been
successfully applied to complex industrial processes with nonlinear
and dynamic characteristics. However, the conventional deep-
learning-based methods cannot guarantee that the quality-relevant
features are included in the hidden states when the modeling
samples are limited. To address this issue, a supervised hybrid
network based on a dynamic convolutional neural network (CNN)
and a long short-term memory (LSTM) network is designed by
constructing multilayer dynamic CNN-LSTM with improved
structures. In each time instant, data augmentation is implemented
by dynamic expansion of the original samples. Moreover, multiple
supervised hidden units are trained by adding quality variables as part of the layer input to acquire a better quality-related feature
learning performance. The effectiveness of the proposed soft senor development is validated through two industrial applications,
including a penicillin fermentation process and a debutanizer column.

1. INTRODUCTION

In practical industry, it is necessary and important to explore
the real-time indices of product quality to ensure the safety and
efficiency of industrial processes. However, key variables
indicating the quality are often difficult to measure, while
other ordinary process variables can be routinely collected.1

These quality variables need to be inspected by laboratory
analyzers, which are costly and areunable to meet the demand
of real-time measurement. In addition, the first-principles
model is becoming extremely difficult to obtain due to the
complexity of modern industries.2−4 To alleviate the
aforementioned problems, soft sensors have been developed
to implement the online measurement of quality variables by
constructing inherent data-driven models based on those easy-
to-measure process variables.
In the past decades, virtual sensing techniques have been

successfully applied to many industrial processes, bringing
about accurate real-time prediction results of quality
variables.5,6 Principal component analysis (PCA) and partial
least squares (PLS) are typical data-driven methods to
establish soft sensor models.7−11 In order to cope with the
nonlinear feature of industrial processes, several developments
have been made on the basis of PCA and PLS for soft sensor
modeling. A typical strategy is constructing a kernel function to
establish the nonlinear mapping between the original data
space and a high-dimensional space.12,13 Therefore, a linear
regression model can be constructed in the high-dimensional

space, where nonlinear optimization can be avoided and the
data characteristic can be captured. Other methods beyond the
framework of PCA and PLS are also designed to meet the
demand of quality prediction for nonlinear processes such as
support vector regression (SVR),14,15 Gaussian process
regression (GPR),16−18 and an artificial neural network
(ANN).19,20 ANN is one of the most widely virtual sensing
modeling methods and can give a promising performance of
nonlinear approximation and adaptive learning. In terms of the
advantages, the quality prediction results by ANN for
nonlinear processes with a large data scale are fairly good.
Unfortunately, ANN-based soft sensor models often confront
the gradient vanishing and exploding problem during the
training procedure when the network structure is complicated.
To resolve this limitation and improve the robustness of

quality prediction for nonlinear processes, soft sensors based
on deep-learning techniques have been developed in recent
years.21 A deep belief network (DBN),22−24 a staked
autoencoder (SAE),25−27 and a convolutional neural network
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(CNN)28−31 are practical tools to construct soft sensor models
for nonlinear processes. In comparison to conventional soft
sensor models, the deep-learning-based models can provide a
better quality prediction performance for nonlinear processes.
Further improvements have been made by scholars on the
basis of the original deep-network structures to handle other
process characteristics. For example, Sun and Ge developed a
novel soft sensor model based on a gated stacked target-related
autoencoder (GSTAE) by adding prediction errors of target
values into the loss function when the pretraining procedure
was executed, which improved the prediction performance in
comparison to the conventional SAE-based soft sensor
models.32 Yuan et al. proposed a soft sensor framework with
a multichannel CNN model to capture local correlations of
distant process variables.33 In addition, the dynamic nature of a
process is another common and important issue for soft
sensing modeling. Generally, variable trajectories of practical
processes present correlations along a time index, which results
in the coexistence of process nonlinearity and dynamics. To
address this problem, dynamic soft sensor models have been
designed to obtain an accurate prediction performance for
complex processes. For example, He et al. developed a soft
sensor model using a dynamic extreme learning machine
(ELM) by adding a special linear hidden layer node based on
the traditional ELM.34 Lately, a novel soft sensor development
using an echo state network (ESN) integrated with a singular
value decomposition was proposed and applied to complex
chemical processes.35 In addition, a recurrent neural network
(RNN) has also been introduced to construct nonlinear
dynamic soft sensors for quality prediction.36 Although RNN is
a mainstream deep-learning model, it still suffers from the
problem of gradient vanishing and exploding due to the “tanh”
activation function. For an improvement of the network
structure, a long short-term memory (LSTM) neural network
has been developed to overcome the deficiency of RNN.37 The
long-term memory is taken into consideration for LSTM,
which is able to describe the time-series model more accurately
with more parameters in comparison to RNN. So far, LSTM-
based soft sensors have been successfully designed and applied
to different industrial processes with both nonlinear and
dynamic properties.38,39 However, soft sensor models based on
the conventional RNN and LSTM structures are unsupervised,
which means that the quality information may not been
exploited in the hidden units. To make full use of the quality
data, a soft sensor model based on a dynamic neural network
named nonlinear autoregression with exogenous input
(NARX) was designed.40 Under the supervised framework,
the correlations between ordinary process variables and quality
variables can be extracted properly by hidden layers. When a
multilayer perceptron is implemented with NARX, the quality
variables are utilized as part of the model input. However, the
quality variables are not directly used for the intermediate
hidden layers that are not connected to the input layer. Further
development can be conducted under the supervised frame-
work. By stacking multiple layers in a hierarchical way and
adding quality variables to each hidden layer through
hierarchical learning, the stacked network is able to enhance
the extraction of deep quality-relevant characteristics that are
beneficial for quality prediction.41 To make full use of the
quality-relevant information, improved supervised soft sensor
models based on deep learning have been developed.42 Quality
variables are employed as part of the layer input, where the
model parameters of each hidden layer are determined by both

the quality variables and process variables. The supervised soft
sensor framework has been proved to be effective to deal with
the quality prediction problem for nonlinear dynamic
processes. Although the deep-learning-based supervised soft
sensors can provide acceptable prediction performance for
nonlinear dynamic processes, there are still some limitations
when they face complicated practical processes. First, most
dynamic soft sensor models focus on the temporal correlations
of process data, where the feature of local correlations is not
extracted adequately. As a consequence, effective information
and potential relationships of discontinuous data may be
ignored and the accuracy of soft sensor models will be
influenced. Meanwhile, the sampling interval varies between
different processes and the scale of modeling samples can be
small. Thus, data augmentation is a necessary and important
strategy to describe process characteristics thoroughly.
In light of the aforementioned problems, a supervised

dynamic CNN-LSTM (SDCNN-LSTM) network has been
designed to construct the soft sensor model for complex
industrial processes with nonlinear and dynamic features. The
major procedure and contributions of the proposed method
are demonstrated as follows. First, quality variables are
prepared for the original unsupervised layers, where the
quality-relevant features can be better captured from each
hidden layer. Second, a data augmentation strategy is designed
after the input layer by expanding the original one-dimensional
(1D) samples into two-dimensional (2D) feature maps. Hence,
the scale of modeling data is enlarged and the temporal
correlations remain, which is adopted to solve the problem of
data deficiency. Finally, the hybrid dynamic CNN-LSTM
network is constructed on the basis of the supervised
framework with data augmentation. In summary, the
advantages of both CNN and LSTM networks can be used
for nonlinear dynamic processes, where the data augmentation
strategy and the full utilization of quality information will help
to improve the accuracy of the soft sensor model.
The rest of the paper is organized as follows. Section 2

illustrates some basics of CNN and LSTM networks. Then, the
detailed framework of the SDCNN-LSTM soft sensor is
demonstrated in Section 3. Two applications are introduced to
evaluate the performance of the proposed soft sensor
development in Section 4, including a penicillin fermentation
process and a debutanizer column. Finally, conclusions are
made in Section 5.

2. BACKGROUND
2.1. Convolutional Neural Network. CNN is a typical

feed-forward neural network, as well as a multilayer
representative deep-learning algorithm. The core idea of
CNN is the scheme of local connection, weight sharing, and
pooling. By modeling strategies based on CNN, significant
features of the original data can be extracted spontaneously to
implement target identification, classification, and recognition.
For different CNN frameworks such as LeNet-5 and its
improved form AlexNet, the particular network structures vary
from one network to another. A common feature of these
network structures is that both networks consist of four major
layers, which are the input layer, the convolutional layer, the
subsampling layer, and the output layer.
For the input layer, usually a 2D data matrix is collected

from the raw image or sequential data set. For the
convolutional layer, the layer input is the output of the
previous layer. Then, the layer input is operated by

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c01108
ACS Omega 2022, 7, 16653−16664

16654

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c01108?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


convolution kernels to form several feature maps, while the
number of feature maps is equal to the convolutional kernels.
The size of a convolutional kernel for 2D input can be 1D or
2D with fixed kernel weights. A simple and specific case of the
convolutional operation is illustrated in Figure 1. It can be

inferred from Figure 1 that the dimension of the original input
matrix is reduced and the convolved feature is extracted after
the operation through a convolution kernel. For the convolu-
tional operation, the height ho and width wo of the output can
be denoted as

= − + +h h h p s( 2 )/ 1o i k (1)

= − + +w w w p s( 2 )/ 1o i k (2)

where hi and wi are the height and width of the input data,
respectively, hk and wk are the height and width of the
convolutional kernel, respectively, p is the padding size, and s is
the stride size.
After the convolutional operation, the rectified liner unit

(ReLU) function defined in eq 1 is adopted as the activation
function for the feature maps, which is able to remarkably
improve the learning efficiency and nonlinear representation.

= =+f x x x( ) max(0, ) (3)

For the subsampling layer, the pooling strategy is
implemented and often works after the convolutional layer.
Similarly to the convolutional layer, the feature of the local
connection is extracted in the subsampling layer. Differently,
the pooling rule is predefined and no extra parameters are
required in the model training procedure. Figure 2 shows two
types of pooling approaches as the max pooling strategy and

the average pooling strategy, which are widely used to
construct the subsampling layer. Hence, the scale of the
feature maps is reduced while the representative data features
can be preserved.
For the output layer, the feature extraction results from

different channels should be concatenated into a single vector.
By this means, the output layer is also called as connection
layer, which establishes connections among different feature
maps as well as the final model output. As a result, an
activation function is also required to achieve a specific
purpose such as classification and regression.

2.2. Long Short-Term Memory. A long short-term
memory (LSTM) network is developed on the basis of a
recurrent neural network (RNN). Although RNN has an
advantage in handling dynamic processes, the gradient
vanishing problem of RNN often influences the accuracy of
modeling. In comparison with RNN, LSTM is able to avoid
the aforementioned issue by designing the cell and gate
structure. The structure of the single-layer LSTM network is
demonstrated in Figure 3.

Three gate structures, including the input gate it, the forget
gate f t, and the output gate ot, are defined on the basis of the
LSTM cell, which are described as

σ= + +−i W x W h b( )t xi t hi t i1 (4)

σ= + +−f W x W h b( )t xf t hf t f1 (5)

σ= + +−o W x W h b( )t xo t ho t o1 (6)

where σ(·)denotes the sigmoid activation function that
σ = + −x( ) 1

1 e x , W** are the weighting parameters and b* are

the bias parameters of different gate structures, xt is the model
input at time index t, and ht−1 is the LSTM hidden state at time
instant t − 1.
Then, ct̃ defines what features of the cell input should be

kept using the tanh function as

̃ = + +−c W x W h btanh( )t xc t hc t c1 (7)

Hence, the cell state ct can be determined with the
aforementioned network structures as

= ⊙ + ⊙ ̃−c f c i ct t t t t1 (8)

where ⊙ denotes the pointwise multiplication, which indicates
that the current cell state is the weighted combination of the
previous cell state and the current cell input.
On the basis of the current cell state, the hidden state at time

instant t can be calculated as

= ⊙h o ctanht t t (9)

Figure 1. Convolutional operation with a 6 × 6 input map, 3 × 3
convolution kernel, 1 stride size, and no padding.

Figure 2. Two pooling strategies with a 4 × 4 input map, 2 × 2
pooling size, and 2 stride size.

Figure 3. Network structure of the single-layer LSTM.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c01108
ACS Omega 2022, 7, 16653−16664

16655

https://pubs.acs.org/doi/10.1021/acsomega.2c01108?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01108?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01108?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01108?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01108?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01108?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01108?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01108?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01108?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01108?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01108?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01108?fig=fig3&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c01108?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


When multiple LSTM layers are constructed to form a deep
neural network, the hidden state will become the cell input of
the next layer. To implement the regression task, the estimated
model output ŷt is usually connected with the hidden state ht
by the sigmoid activation function as

σ̂ = +y W h b( )t y t y (10)

On consideration of the particular characteristic of the
sequential data, the back-propagation through time (BPTT)
algorithm is usually used to train the LSTM-based network, as
presented in the Appendix.

3. SOFT SENSOR DEVELOPMENT BASED ON
SUPERVISED DCNN-LSTM NETWORK
3.1. Hybrid Dynamic CNN-LSTM Network. Although

CNN is a useful technique to extract the latent features of the
original data and reduce the data complexity, it is usually
applied to image processing such as image classification and
recognition. As a widely used deep-learning algorithm, CNN is
able to deal with process nonlinearity effectively. Due to this
advantage, the problem of the nonlinear property of industrial
processes can be automatically resolved by the CNN modeling
strategy. However, a single CNN soft sensor model may
neglect the time-series correlations of sequential data while the

prediction task is conducted. To address the problem, the
LSTM network is concatenated to the CNN layer. Different
from the existing literature, which takes the 1D sequential
samples as the model input of the hybrid CNN-LSTM
network, a deep DCNN-LSTM structure is developed in this
work.
The proposed DCNN-LSTM network structure is illustrated

in Figure 4. It can be inferred that there are two parts involved
in the hybrid network. The DCNN layers are designed to
extract the features of sequential data, while the LSTM layers
are developed to predict the process quality. The original 1D
samples are expanded to 2D feature maps through a data
augmentation step. To improve the reliability of the down-
sampling stage, both the max pooling and average pooling
strategies are adopted with a concatenating operation. After the
pooling layer, a flatten layer is connected to the network to
unfold the data into 1D form. Then, two LSTM layers are
added after the DCNN network. In addition, both LSTM
layers are followed by a dropout layer to avoid the overfitting
problem during the training procedure. After the LSTM
structures, a fully connected layer is designed as the weighted
sum of the previous network output. Finally, a regression layer
is generated as the model output.
The “dynamic” characteristic of the proposed network is

reflected in two aspects. First of all, a deep neural network with

Figure 4. Design procedure of the hybrid DCNN-LSTM network.
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the LSTM structure has the capacity to extract the dynamic
feature of processes, which means that a CNN-LSTM-based
network is a dynamic model in essence. Meanwhile, it is noted
that the model input of this network in each time instant is a
2D feature map instead of the conventional 1D sample vector
for sequential data modeling. The moving window strategy is
used to expand the original 1D vector x(t) = [x1(t), x2(t), ...,
xn(t)]

T to the 2D dynamic matrix as

∂

= [ − + − ··· ]

=

− + − ···

− + − ···

− + − ···

t t l t l t

x t l x t l x t

x t l x t l x t

x t l x t l x t

X x x x( ) ( 1), ( ), , ( )

( 1), ( ), , ( )

( 1), ( ), , ( )

( 1), ( ), , ( )n n n

1 1 1

2 2 2

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ (11)

where n is the number of process variables and l is the
expanding length of the original vectors. Thus, the model input
of the DCNN-LSTM network can be denoted as {X (t − k +
1), X (t - k), ..., X (t)}, where k is the modeling length of the
sequential data.
3.2. Soft Sensor with Supervised DCNN-LSTM Model.

The LSTM network has been proven to be an excellent
framework for the soft sensor modeling of nonlinear dynamic
processes. To implement the quality prediction scheme, the
values of process variables are usually collected as the model
input, while the key variable that is difficult to directly measure
is regarded as the model output. However, the feature of the
quality variable is often ignored during the prediction process,
since most of the soft sensor models are unsupervised. To
overcome the aforementioned deficiency and make full use of
the obtained quality data, it is necessary to construct a
supervised soft sensor model, where the state of the quality
variable should be exploited as part of the model input.
A case of the overall network structure of the proposed

SDCNN-LSTM model with one CNN layer and three LSTM
layers is presented in Figure 5. To implement the supervised
framework, the quality variables are first introduced to form
the 2D feature maps with other input variables during the data
augmentation procedure. Thus, the quality information is
preserved in the CNN layer when local correlations of variables
are extracted. Moreover, in the LSTM structure, the quality
variables are utilized as part of the cell input in each LSTM
unit. The LSTM network structure of this model can be
modified as

σ= + +−i W h W y b( )t hi t yi t i1 (12)

σ= + +−f W h W y b( )t hf t yf t f1 (13)

σ= + +−o W h W y b( )t ho t yo t o1 (14)

̃ = + +−c W h W y btanh( )t hc t yc t c1 (15)

Therefore, the quality information is involved in the training
procedure of LSTM layers, where the feature extraction
performance of quality-relevant features for nonlinear dynamic
processes can be improved significantly.
It is worth mentioning that the current state of the quality

variable is unable to be obtained during the online prediction
procedure, since it is definitely the model output at the same
time. To conduct the supervised modeling and real-time
prediction process, an initialization step has been carried out to

estimate the current output as ỹ(t) = y(t − 1). Therefore, the
complete procedure of the proposed supervised DCNN-
LSTM-based soft sensor framework can be summarized as
Figure 6.
According to Figure 6, the training stage of the proposed

method can be summarized as
(1) collect the training data set {x(t),y(t)} and conduct

variable-wise normalization
(2) augment the original 1D training samples to the 2D

dynamic matrices
(3) determine the network structures and model hyper-

parameters
(4) train the SDCNN-LSTM soft sensor model with the

predefined hyperparameters and the training data set

Then, the prediction stage can be implemented on the basis
of the trained soft sensor model as

(1) collect the testing data set {x(t),ỹ(t)}, where ỹ(T) = y(T
−1) is the estimated output at time instant T

(2) conduct the data normalization step on the basis of the
result of the training samples

(3) expand the original 1D testing samples to the 2D
dynamic matrices

(4) predict the current quality variable ŷ(T) on the basis of
the trained SDCNN-LSTM soft sensor model

(5) move to the next online prediction stage with T = T + 1

To train the proposed soft sensor model, the mean squared
error (MSE) is utilized as the cost function

∑= ̂ −
=

y i y i nMSE ( ( ) ( )) /
i

n

1

2

(16)

where n is the number of the training samples, i is the index of
the training samples, y(i) is the actual value of the key variable,
and ŷ(i) is the prediction result of the key variable. In this

Figure 5. Network structure of the SDCNN-LSTM soft sensor.
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work, the Adam algorithm is used to minimize the cost
function during the training stage.
To evaluate the performance of the soft sensor model, the

root-mean-squared error (RMSE) is calculated for the testing
data set

∑= ̂ −
=

y j y j kRMSE ( ( ) ( )) /
j

k

1

2

(17)

where k is the number of the testing samples, j is the time
index, and y(j) and ŷ(j) are the actual and predicted values of
the testing quality variables, respectively. A smaller value of
RMSE will indicate that the general error of prediction is
simultaneously less.
In addition, the coefficient of determination R2 is also

calculated for the testing data set

= −
∑ ̂ −

∑ − ̅

=

=

R
y j y j

y j y j
1

( ( ) ( ))

( ( ) ( ))
j
k

j
k

2 1
2

1
2

(18)

where the statistical analysis of the residual space is carried out
and a larger value of R2 will indicate a more accurate prediction
performance. The calculation result of R2 is able to reveal the
total variance in the residual space and the related information
carried in the testing output.
From the advantages of the original CNN-LSTM network

and other dynamic soft sensor models, the proposed
supervised network provides two main developments. The
first improvement is the data augmentation strategy expanding
the original 1D samples to the 2D feature maps, by which the
problem of data deficiency can be resolved.31 By construction
of the 2D feature maps, two types of correlations are involved.
One is the variablewise correlations between variables. The
other is the temporal autocorrelations of variables along the
time index. Thus, both local nonlinear spatial and dynamic
feature hierarchies can be learned from the massive unlabeled
data using local patches with convolution and pooling
operators layer by layer. Therefore, the scale of the modeling
data is enlarged, where both the variablewise and temporal
correlations that are difficult to learn for the 1D-data-based
model can now be extracted properly. Another contribution is
the design of the supervised network, where the quality
variables are fully used as the input of each hidden layer. In
comparison to the traditional supervised dynamic networks
such as NARX, the quality information is permeated into the
entire network structure by the proposed model, which is able
to extract more abundant quality-related information within

the hidden units. The determination of the hyperparameters is
conducted by trial and error. The limitation of the current
work is that the selected hyperparameters may not reach the
optimal values.

4. RESULTS AND DISCUSSION
4.1. Penicillin Fermentation Process. The fed-batch

penicillin fermentation process is a typical biochemical process

with both nonlinear and dynamic characteristics, which is
widely used as a benchmark platform for research on soft
sensor modeling, fault diagnosis, real-time control, and
production optimization of industrial processes. The flowchart

Figure 6. Flow diagram of the SDCNN-LSTM soft sensor.

Figure 7. Flowchart of the penicillin fermentation process.

Table 1. Process Variables of the Penicillin Process

variable description

x1 aeration rate
x2 agitator power
x3 substrate feed rate
x4 substrate temperature
x5 substrate concentration
x6 dissolved oxygen concentration
x7 biomass concentration
x8 culture volume
x9 CO2 concentration
x10 pH
x11 generated heat
x12 cooling water flow rate
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of the penicillin fermentation process is presented in Figure 7.
The penicillin fermentation process consists of three operating
phases. During the preculture phase, the biomass reactants are
growing for the preparation of the reaction up to the critical
concentration. Then, the penicillin concentration begins to
increase rapidly at the second phase, where the penicillin

production rate reaches its peak. At the final stage, the
production rate of penicillin decreases due to the consumption
of the biomass reactants until the end of a batch.
The PenSim v2.0 simulator developed by the research group

of the Illinois Institute of Technology is widely used in many
studies for performance evaluation. On the basis of the PenSim
benchmark, our research group redeveloped the simulator in
MATLAB/Simulink with the same kinetic model. The
improved simulator allows users to customize the trajectories
of manipulated variables freely, which brings about adequate
flexibility. In this simulator, the penicillin concentration is
regarded as the process quality and the key variable. Twelve
other process variables as given in Table 1, including
manipulated variables and state variables, are collected as the
input of soft sensor models. In practical industry, it is
important to predict the penicillin concentration according
to these easy-to-measure variables to ensure the production
safety and quality.

Figure 8. Variable trajectories of the penicillin process.

Figure 9. RMSEs of the penicillin process with different maximum
epochs.

Table 2. Hyperparameters of the Penicillin Process by Different Methods

LSTM DCNN-LSTM NARX SLSTM SDCNN-LSTM

maximum epochs 50 70 100 60 50
gradient threshold 6 6 6 6
sequence 30 30 30 30
length
input 10
delays
minimum batch size 24 24 24 24
hidden layers [50 20 100] [50 20 100] [60 30] [50 20 100] [50 20 100]

Table 3. RMSEs of the Penicillin Process by Different
Methods

LSTM
DCNN-
LSTM NARX SLSTM

SDCNN-
LSTM

RMSE 0.0573 0.0219 0.0390 0.0263 0.0122
R2 0.6772 0.8790 0.8273 0.9055 0.9761
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The total operation time of the penicillin fermentation
process is 400 h, where the sampling interval of process
variables is 1 h. Thus, 400 samples can be collected for one
batch. The first 300 samples are collected as the training
samples, while the remaining 100 samples are regarded as the
testing samples. The trajectories of process variables are
presented in Figure 8, where strong dynamic characteristics are
involved in the process.
According to the process variables in Table 1, the

dimensions of x(t) and y(t) of the SDCNN-LSTM network
are 12 and 1, where 1 convolutional layer and 2 LSTM layers
are constructed. In the convolutional layer, the filter size is set
as [2 1] and the filter number is 15. The pool sizes of the max
pooling layer and the average pooling layer are both set as [3
1]. The numbers of hidden units in each LSTM layer is set as
[50 20 100]. The sequence length for training and prediction is
set as 10. The prediction performance of the soft sensor can
vary due to different training algorithms. In this work, the
Adam algorithm is adopted to train the proposed network.

During the training procedure with the Adam algorithm, the
value of the gradient threshold is 6 and the minimum batch
size is 24. In addition, the number of maximum epochs has a
great influence on the prediction result as well. The number of
maximum epochs is selected as [10 20 30 40 50 60 70 80 90
100] for both the training data and testing data. The detailed
prediction results of the proposed soft sensor under each
epoch number are presented in Figure 9. It can be inferred that
the best performance of quality prediction occurs under the
circumstance of 50 maximum epochs, since the RMSEs of both
the training data and testing data reach a low level. Hence, the
number of the maximum epochs is determined to be 50 in this
case.
Although the proposed soft sensor framework provides a

promising result, it is still insufficient to prove its effectiveness.
Therefore, prediction results of the penicillin concentration
based on the LSTM, DCNN-LSTM, NARX, and SLSTM soft
sensors were carried out as comparisons, where the hyper-

Figure 10. Penicillin concentration prediction results: (a) LSTM; (b) DCNN-LSTM; (c) NARX; (d) SLSTM; (e) SDCNN-LSTM.

Figure 11. Boxplot of the testing penicillin prediction errors by different methods: (1) LSTM; (2) DCNN-LSTM; (3) NARX; (4) SLSTM; (5)
SDCNN-LSTM.
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parameters were determined by the trial-and-error technique as
given in Table 2.
Table 3 shows the RMSEs of these methods with the same

training data and testing data. Comparatively, the SDCNN-
LSTM soft sensor provides smaller prediction errors and larger
R2 values among these methods, which demonstrates the
advantage of the proposed method over the existing methods.
As complements, the detailed penicillin concentration

prediction results of these methods are presented in Figure
10 and a boxplot of the testing prediction error distributions by
different methods is shown in Figure 11. It can be inferred
from Figure 10 that the prediction trajectory of the SDCNN-
LSTM soft sensor is able to track the real trajectory more
precisely in comparison to the rest of methods. Furthermore,
Figure 11 illustrates that the prediction errors of the proposed
soft sensor (method 5) are much smaller since the median
value is closer to zero. In addition, no exception value that
exceeds the maximum or minimum threshold is found in the
boxplot of the proposed method.

4.2. Debutanizer Column. The debutanizer column is an
important part of the desulfuring and naphtha splitter plant, as
shown in Figure 12. Propane and butane are removed in the
debutanizer column from the top, while stabilized gasoline is
separated in the bottom as well as the remaining part of
butane. To obtain a good separation effect, the butane

Figure 12. Block scheme of the debutanizer column.

Table 4. Process Variables of the Debutanizer Column

variable description

u1 top temperature
u2 top pressure
u3 reflux flow
u4 flow to next process
u5 sixth tray temperature
u6 bottom temperature A
u7 bottom temperature B

Figure 13. RMSEs of the debutanizer column with different
maximum epochs.

Table 5. Hyperparameters of the Penicillin Process by
Different Methods

LSTM
DCNN-
LSTM NARX SLSTM

SDCNN-
LSTM

maximum
epochs

50 60 100 50 50

gradient
threshold

2 2 2 2

sequence 30 30 30 30
length
input 15
delays
minimum
batch size

32 32 32 32

hidden layers [80 50] [80 50] [40 30] [80 50] [80 50]

Table 6. RMSEs of the Debutanizer Column by Different
Methods

LSTM
DCNN-
LSTM NARX SLSTM

SDCNN-
LSTM

RMSE 0.1907 0.1554 0.0620 0.0435 0.0376
R2 0.4770 0.5337 0.8943 0.9556 0.9610
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concentration is required to be minimized in the bottom of the
debutanizer column. Several sensors are installed around the
debutanizer column, as shown by gray circles in Figure 12.
Hence, it is necessary and feasible to predict the butane
concentration with those easy-to-measure process variables for
a further process optimization and control scheme.
The process variables collected by the physical sensors are

given in Table 4, which are utilized as x(t) values of the virtual
sensor. As was already mentioned, the butane concentration is
regarded as the quality variable y(t). Therefore, the dimensions
of x(t) and y(t) are 7 and 1, respectively.
In total, 2394 samples are collected during the entire

process, where the numbers of training samples and testing
samples are 1556 and 838, respectively. One convolutional
layer and 2 LSTM layers are constructed in this case. In the
convolutional layer, the filter size is set as [2 2] and the filter
number is 30. The pool sizes of the max pooling layer and the
average pooling layer are both set as [3 3]. The numbers of
hidden units in each LSTM layer is set as [80 50]. The
sequence length for modeling is set as 30. The value of the

gradient threshold is 6, and the minimum batch size is 32 for
the Adam algorithm. Similar to the first case, the number of
maximum epochs is selected between 10 and 100 with an
interval of 10 for both the training data and testing data. The
prediction results of the SDCNN-LSTM soft sensor with
diverse epoch numbers are provided in Figure 13. With
reference to the curve, 50 maximum epochs are adopted in the
debutanizer column case due to the smallest predicted RMSE
of the butane concentration.
For comparison, quality prediction was carried out on the

basis of LSTM, DCNN-LSTM, SLSTM, and the proposed
SDCNN-LSTM soft sensors for the debutanizer column. The
hyperparameters were also determined by the trial-and-error
technique, as given in Table 5.
Table 6 displays the prediction results of each method. With

respect to the prediction RMSEs of the training and testing
data, the proposed method shows its merit with the smallest
prediction error among all of the methods. Meanwhile, the
detailed butane concentration prediction results are presented
in Figure 14 with curves of prediction trajectories and the real

Figure 14. Butane concentration prediction results: (a) LSTM; (b) DCNN-LSTM; (c) NARX; (d) SLSTM; (e) SDCNN-LSTM.

Figure 15. Boxplot of the testing butane prediction errors by different methods: (1) LSTM; (2) DCNN-LSTM; (3) NARX; (4) SLSTM; (5)
SDCNN-LSTM.
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values. Intuitively, the prediction curve of the proposed
method is more accurate from the perspective of the tight
trajectory tracking. The results of the R2 calculation also
indicate that the soft sensing modeling with the proposed
method can describe better correlations in the residual space.
Furthermore, a boxplot of the error distributions of the testing
data by different methods is presented in Figure 15, which
illustrates that the prediction result of the proposed SDCNN-
LSTM soft sensor (method 5) has the ability to contribute
great effort to the accurate prediction of the key variable with
fewer large errors that exceed the boundary of the boxplot. In
conclusion, the additional DCNN layer is able to extract the
dynamic feature of the process more effectively in comparison
to the original LSTM network. In addition, the supervised
modeling framework significantly improves the prediction
accuracy of the key variable.

5. CONCLUSION
In this paper, a hybrid supervised dynamic CNN-LSTM
network is proposed to construct a soft sensor model for
complex industrial processes with nonlinear and dynamic
characteristics. In comparison to the traditional stacked LSTM
network, the hybrid dynamic CNN-LSTM network is designed
to implement data augmentation by expanding the original 1D
samples into 2D feature maps, which makes the virtual sensor
more efficient to cope with strong process dynamics.
Furthermore, the quality variable is utilized as the labeled
data to meet the demand of supervised modeling and
prediction. The well-established supervised dynamic CNN-
LSTM network is able to provide an accurate and reliable
prediction result for nonlinear dynamic processes. Two
applications, including a penicillin fermentation process and
a debutanizer column case, were tested to evaluate the
performance of the SDCNN-LSTM-based soft sensor. The
experimental results in comparison with other soft sensor
methods provide solid evidence of the effectiveness of the
SDCNN-LSTM model. It is also noted that the determination
of model parameters is crucial to the prediction performance of
deep-learning-based soft sensor models. Therefore, future work
will focus on the development of a general parameter
optimization approach with the proposed soft sensor model
to further improve the prediction performance.

■ APPENDIX
The BPTT algorithm is described as

∑= ̂ −
=

L y y N( ) /
t

T

t t
1

2

(19)

δ δ δ δ δ= ∂
∂

+ + + + ̃+ + + + ̃h
L
h

i W i W o W c Wt
t

t hi
T

f hf
T

t ho
T

t hc
T

1 1 1 1

(20)

δ δ= ⊙ ⊙ − ⊙ ⊙ · −−i h o c c i i( ) (1 tanh ) ( (1 ))t t
T

t t t t t
2

1
(21)

δ δ= ⊙ ⊙ − ⊙ ̃ ⊙ · −f h o c c f f( ) (1 tanh ( )) ( (1 ))t t
T

t t t t t
2

(22)

δ δ= ⊙ ⊙ · −o h c o o( ) tanh ( (1 ))t t
T

t t t (23)

δ δ̃ = ⊙ ⊙ − ⊙ ⊙̃ − ̃c h o c i c( ) (1 tanh ) (1 tanh )t t
T

t t t t
2 2

(24)

∑ δ∂
∂

= ⟨ * ⟩
* =

E
W

x,
x t

T

t t
1 (25)

∑ δ∂
∂

= ⟨ * ⟩
* =

−
E

W
h,

h t

T

t t
1

1
(26)

∑ δ∂
∂ *

= *
=

E
b t

T

t
1 (27)

where L denotes the loss function, N is the number of the
training samples, and * can be i, f, o, and c.̃ Then, the model
parameters can be estimated by gradient descent algorithms
such as the Adam algorithm.
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