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Abstract
Introduction: Gestures characterize individuals' nonverbal communicative ex-
changes,	taking	on	different	functions.	Several	types	of	research	in	the	neuroscien-
tific field have been interested in the investigation of the neural correlates underlying 
the	observation	and	 implementation	of	different	gestures	categories.	 In	particular,	
different studies have focused on the neural correlates underlying gestures obser-
vation,	 emphasizing	 the	presence	of	mirroring	mechanisms	 in	 specific	brain	 areas,	
which appear to be involved in gesture observation and planning mechanisms.
Materials and methods: Specifically,	the	present	study	aimed	to	investigate	the	neu-
ral	mechanisms,	through	the	use	of	functional	Near-Infrared	Spectroscopy	(fNIRS),	
underlying	the	observation	of	affective,	social,	and	informative	gestures	with	posi-
tive and negative valence in individuals' dyads composed by encoder and decoder. 
The	variations	of	oxygenated	(O2Hb)	and	deoxygenated	(HHb)	hemoglobin	concen-
trations of both individuals were collected simultaneously through the use of hy-
perscanning	paradigm,	allowing	the	recording	of	brain	responsiveness	and	interbrain	
connectivity.
Results: The results showed a different brain activation and an increase of interbrain 
connectivity	according	to	the	type	of	gestures	observed,	with	a	significant	increase	of	
O2Hb	brain	responsiveness	and	interbrain	connectivity	and	a	decrease	of	HHb	brain	
responsiveness	for	affective	gestures	in	the	dorsolateral	prefrontal	cortex	(DLPFC)	
and	for	social	gestures	in	the	superior	frontal	gyrus	(SFG).	Furthermore,	concerning	
the	valence	of	the	observed	gestures,	an	increase	of	O2Hb	brain	activity	and	inter-
brain	 connectivity	was	observed	 in	 the	 left	DLPFC	 for	positive	 affective	gestures	
compared to negative ones.
Conclusion: In	conclusion,	the	present	study	showed	different	brain	responses	under-
lying	the	observation	of	different	types	of	positive	and	negative	gestures.	Moreover,	
interbrain connectivity calculation allowed us to underline the presence of mirroring 
mechanisms involved in gesture-specific frontal regions during gestures observation 
and action planning.
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1  | INTRODUC TION

Gestures are configured as a communicative vehicle that character-
izes	verbal	and	nonverbal	communication	(McNeill,	1992).	Studies	in	
the	psychological,	social,	and	linguistic	fields	have	been	interested	in	
the	investigation	of	gestures	trough	different	perspectives,	analyzing	
the	relationship	between	thought,	language,	and	action	(Kong,	Law,	
Kwan,	Lai,	&	Lam,	2015).	On	the	contrary,	studies	 in	the	neurosci-
entific field have been interested in observing the neural correlates 
underlying the perception and the implementation of gestures with 
different	functions	(Bates	&	Dick,	2002;	Green	et	al.,	2009;	Willems	
&	Hagoort,	2007).	Action	observation,	recognition,	and	interpreta-
tion,	indeed,	appears	to	be	a	fundamental	ability	for	communication	
and	 social	 perception	 processes	 (Chong,	Williams,	 Cunnington,	 &	
Mattingley,	2008).

In	 particular,	 several	 neuroimaging	 studies	 have	 investigated	
the neural correlates underlying the observation and the reproduc-
tion	of	different	gesture	categories	 (Chong	et	al.,	2008;	Molnar-
Szakacs,	 Wu,	 Robles,	 &	 Iacoboni,	 2007;	 Mühlau	 et	 al.,	 2005),	
highlighting	 the	 presence	 of	 different	 brain	 areas,	 such	 as	 the	
frontal and intraparietal cortex and the dorsal and ventral pre-
motor	 cortex	 (PMC),	 which	 constitute	 a	 wide	 network	 impli-
cated	in	the	observation	(Caspers,	Zilles,	Laird,	&	Eickhoff,	2010;	
Molenberghs,	Cunnington,	&	Mattingley,	2012)	of	different	types	
of	gestures:	 familiar	or	not	 (Liew,	Han,	&	Aziz-Zadeh,	2011),	 sig-
nificant	 and	 not	 significant	 (Lui	 et	 al.,	 2008;	 Newman-Norlund,	
van	 Schie,	 van	Hoek,	 Cuijpers,	 &	 Bekkering,	 2010)	 and	 directed	
or	 not	 to	 an	 object	 (Decety	 et	 al.,	 1997;	 Grèzes,	 Costes,	 &	
Decety,	 1999;	 Villarreal	 et	 al.,	 2008).	 In	 addition	 to	 this	 exten-
sive	 neural	 network,	 other	 studies	 have	 demonstrated,	 through	
the	use	of	different	methodologies	(Buccino	et	al.,	2001;	Filimon,	
Nelson,	Hagler,	&	Sereno,	2007;	Kilner,	Neal,	Weiskopf,	Friston,	&	
Frith,	2009;	Mukamel,	Ekstrom,	Kaplan,	 Iacoboni,	&	Fried,	2010;	
Pokorny	et	al.,	2015;	Rizzolatti	&	Fogassi,	2014),	the	involvement	
of	 the	 fronto-parietal	 network	 in	 action	 observation,	 highlight-
ing the presence of mirroring mechanisms in these cerebral re-
gions	 (Crivelli,	 Sabogal	 Rueda,	 &	 Balconi,	 2018;	 Gallese,	 Fadiga,	
Fogassi,	&	Rizzolatti,	1996;	di	Pellegrino,	Fadiga,	Fogassi,	Gallese,	
&	Rizzolatti,	1992;	Rizzolatti,	Fadiga,	Gallese,	&	Fogassi,	1996).

Mirroring	 mechanisms,	 in	 particular,	 allow	 the	 visual	 input	 in-
volved in the observed motor act to reach and activate the same 
fronto-parietal circuits involved in the same action execution 
(Nelissen	&	Vanduffel,	2011),	allowing	individuals,	thanks	to	a	rep-
resentational	level,	to	plan	their	actions	(Freedberg	&	Gallese,	2007;	
Gallese,	2006)	and	to	understand	the	meaning	of	observed	actions	
(Rizzolatti	&	Craighero,	2004;	Rizzolatti,	Fogassi,	&	Gallese,	2001),	
creating a direct link between action observation and execution 
(Holle,	 Gunter,	 Rüschemeyer,	 Hennenlotter,	 &	 Iacoboni,	 2008;	
Huxham,	Dick,	&	Stringer,	2009).

Moreover,	 the	 fronto-parietal	 mirror	 neuron	 and	 other	 brain	
structures,	such	as	the	posterior	inferior	frontal	gyrus,	the	precen-
tral	gyrus,	and	the	rostral	part	of	the	inferior	parietal	lobule,	appear	
to	be	 involved	 in	mirroring	mechanisms,	 (Lepage	&	Théoret,	2006)	

and	 socially	 relevant	 functions	 and	 processes,	 such	 as	 empathy	
(Carr,	Iacoboni,	Dubeaut,	Mazziotta,	&	Lenzi,	2003;	Molnar-Szakacs	
et	al.,	2007),	intention	comprehension	(Iacoboni	et	al.,	2005;	Molnar-
Szakacs	 et	 al.,	 2007),	 and	 communication	 (Iacoboni	 et	 al.,	 2005;	
Molnar-Szakacs	 et	 al.,	 2007),	 leading	 individuals	 involved	 in	 the	
exchange to develop greater resonance and interbrain coupling 
mechanisms	(Balconi	&	Vanutelli,	2017;	Lindenberger,	Li,	Gruber,	&	
Müller,	2009;	Vanutelli,	Nandrino,	&	Balconi,	2016).

Specifically,	interbrain	coupling	or	connectivity	can	be	defined	as	
the	correlation	between	two	time	series	(Friston,	2011)	which	reflects	
the	agents'	neuronal	activations	(Balconi,	Crivelli,	&	Vanutelli,	2017;	
Chaudhary,	Hall,	DeCerce,	Rey,	&	Godavarty,	2011)	providing	infor-
mation about neuropsychological events spatially remote. In partic-
ular,	 interbrain	 connectivity,	 allowing	 the	 simultaneous	 recording	
of	 brain	 activity	 during	 joint	 actions	 execution,	 provides	 informa-
tion	 about	 interpersonal	 coupling	 dynamics,	mechanisms	 of	 social	
comprehension	(Balconi	&	Vanutelli,	2017;	Crivelli	&	Balconi,	2017;	
Knoblich,	 Butterfill,	 &	 Sebanz,	 2011)	 and	 synchronic	 mechanisms	
underlying	 gestural	 communication	 (Balconi	 &	 Pagani,	 2015;	
Hasson,	Ghazanfar,	Galantucci,	Garrod,	&	Keysers,	2012;	Liu,	Saito,	
&	Oi,	2015;	Vanutelli	et	al.,	2016).

In	light	of	this	evidence,	in	the	present	study,	in	order	to	investi-
gate the brain correlates underlying the observation of different posi-
tive	and	negative	types	of	gestures	(affective,	social,	and	informative),	
the neural responses of encoders and decoders were recorded 
through	the	use	of	 fNIRS	 in	hyperscanning,	 that	 is	a	very	effective	
neuroimaging technique for the recording of individuals' neural activ-
ity	underlying	emotional	or	social	processes	(Balconi	&	Cortesi,	2016;	
Balconi,	 Vanutelli,	 &	 Grippa,	 2017;	 Crivelli	 et	 al.,	 2018)	 under	 nat-
ural	 or	 maximally	 ecological	 conditions	 (Balconi	 &	 Molteni,	 2016;	
Crivelli	&	Balconi,	2017),	providing	information	on	interbrain	tuning	
and	“resonance”	and	implicit	coupling	mechanisms	(Balconi,	Gatti,	&	
Vanutelli,	2018;	Balconi	&	Vanutelli,	2017;	Vanutelli	et	al.,	2016).

Specifically,	the	present	study	aimed	to	observe	possible	differ-
ences in individuals' neural responses underlying the observation of 
different	types	of	gestures:	affective,	social,	and	informative	of	dif-
ferent valence: positive and negative.

In	 particular,	 affective	 gestures	 are	 aimed	 to	 express	 their	
moods and share their emotional experiences with the interlocutor 
(Tomasello,	Carpenter,	Call,	Behne,	&	Moll,	2005).

On	 the	 contrary,	 social	 gestures	 are	 aimed	 at	managing	 inter-
personal	 relationships	 and	 are	 useful	 for	 starting,	 maintaining	 or	
interrupting	an	interaction	with	another	individual	(Kendon,	2017),	
providing	 the	 implementation	 of	 inclusion,	 cooperation,	 and	 ex-
clusion	behaviors,	that	can	elicit	positive	and	negative	emotions	in	
the	interlocutor	(Bavelas,	Chovil,	Lawrie,	&	Wade,	1992;	Bressem	&	
Müller,	2017;	Calbris,	2011).

Finally,	informative	gestures	are	aimed	at	communicating	a	phys-
ical state to the interlocutor with the purpose to direct the decoder 
attention	toward	a	specific	element	(Enfield,	2009;	Enfield,	Kita,	&	de	
Ruiter,	2007),	satisfying	different	communication	functions	that	can	
provide	positive	and	negative	emotional	experiences	(Enfield,	2009;	
Enfield	et	al.,	2007).
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Regarding	 this	 different	 types	 of	 gestures,	 several	 stud-
ies	 (Bush,	 Luu,	 &	 Posner,	 2000;	 Carter	 et	 al.,	 1998;	 Craig	 &	
Craig,	2009;	Critchley,	Wiens,	Rotshtein,	Öhman,	&	Dolan,	2004)	
have	observed	 the	neural	 correlates	underlying	affective,	 social,	
and	 informative	 gestures.	 In	 particular,	 affective	 and	 social	 ges-
tures	result	to	activate	some	cerebral	structures,	such	as	the	an-
terior	cingulate	cortex	(ACC)	and	the	insular	cortex,	that	are	more	
involved	in	emotional	regulation.	Moreover,	insular	cortex	appears	
to	 be	 involved	 in	 empathic	 processes,	 body	 representation,	 and	
emotional	experience	(Bush	et	al.,	2000;	Carter	et	al.,	1998;	Craig	
&	Craig,	2009;	Critchley	et	al.,	2004)	presenting	connections	with	
other	structures	such	as	the	orbitofrontal	cortex	(OFC),	the	DLPFC	
and	the	anterior	cingulate	cortex	(ACC)	(Mufson	&	Mesulam,	1982;	
Viskontas,	Possin,	&	Miller,	2007).	 In	addition	 to	 the	 insular	cor-
tex,	some	subcortical	structures,	such	as	the	amygdala,	also	play	
a	 fundamental	 role	 in	 the	emotional	 experience	 (Adolphs,	2002;	
Dolan,	2002;	Zald,	2003).

Despite the role of this subcortical structure in emotional pro-
cesses,	our	interest	focuses	mainly	on	the	cortical	regions	involved	
in	cognitive	and	emotional	processes,	since	fNIRS	measures	cortical	
neuronal firing through the hemodynamic changes due to neuro-
vascular	coupling	(Curtin	et	al.,	2019;	Fuster	et	al.,	2005;	Heeger	&	
Ress,	2002).

In	this	regard,	as	demonstrated	by	previous	studies	(Blair,	Morris,	
Frith,	Perrett,	&	Dolan,	1999;	Wildgruber	et	al.,	2004),	affective	and	
social	gestures	result	 to	activate	more	the	frontal	 regions,	such	as	
the	medial	part	of	the	ventral	prefrontal	cortex	and	the	DLPFC,	that	
is implicated in emotional valence of more expressive and emotional 
gestures.

On	 the	 contrary,	 other	 types	 of	 gestures,	 such	 as	 informative	
ones,	 that	 are	 involved	 in	attentional	 shift	 and	gaze	perception	of	
hand	movements	or	hand	gestures,	appear	to	activate	posterior	re-
gions,	such	as	the	parietal	 lobule	and	the	superior	temporal	sulcus	
(STS)	 (Nakamura	et	al.,	2004;	Pelphrey,	Morris,	&	Mccarthy,	2004;	
Thompson,	Hardee,	Panayiotou,	Crewther,	&	Puce,	2007;	Wheaton,	
Thompson,	Syngeniotis,	Abbott,	&	Puce,	2004).	 In	 the	 light	of	 this	
evidence,	we	expected	to	observe	an	 increase	of	O2Hb	and	a	de-
crease	of	HHb	activity	in	frontal	areas	according	to	the	observation	
of	affective	and	social	gestures,	which	appear	to	be	more	involved	
in	 individuals'	 emotional	 responses	 and	 social	 processes	 (Bavelas	
et	 al.,	 1992;	Bressem	&	Müller,	 2017;	Calbris,	 2011;	Müller,	 2016;	
Tomasello	et	al.,	2005).	 In	particular,	during	 the	observation	of	af-
fective	gestures,	we	expected	to	observe	an	increase	of	O2Hb	and	
a	 decrease	 of	 HHb	 activity	 in	 DLPFC,	which	 appears	 to	 be	more	
involved	 in	 mind	 theory	 processes,	 interpersonal	 relationships,	
other	people's	states	understanding	(Bavelas	et	al.,	1992;	Bressem	
&	Müller,	 2017;	Calbris,	 2011;	Kendon,	 2017;	Müller,	 2004,	2016)	
and	attentional	processing	of	emotional	information	(Fragopanagos,	
Kockelkoren,	&	Taylor,	2005;	Liotti	&	Mayberg,	2001)	considering	its	
role	 in	 top-down	 attentional	 control	 (MacDonald,	Cohen,	 Stenger,	
&	 Carter,	 2000;	 Vanderhasselt,	 De	 Raedt,	 Baeken,	 Leyman,	 &	
D'haenen,	2006).

Instead,	during	 the	observation	of	social	gesture,	we	expected	
to	 observe	 an	 increase	 of	 O2Hb	 activity	 in	 SFG	 area,	 which	 ap-
pears to be more involved in emotional regulation and interaction 
and	social	understanding	mechanisms	(Baker,	Liu,	et	al.,	2016;	Kalbe	
et	al.,	2010;	Liu	et	al.,	2015;	Suzuki,	Niki,	Fujisaki,	&	Akiyama,	2011).	
Related	to	informative	gestures,	instead,	we	expected	to	observe	an	
increase	of	O2Hb	activity	 in	parietal	areas,	that	are	more	 involved	
in visual and sensorimotor integration processes and in the imagina-
tion	of	body	in	time	and	space	(Janowski,	Kurpas,	Kusz,	Mroczek,	&	
Jedynak,	2013;	Nicolle	et	al.,	2012;	Ruby	&	Decety,	2001).

Moreover,	 considering	 gestures	 valence	 (positive,	 negative),	
we expected to observe a different cerebral asymmetry in the 
DLPFC	 area,	 more	 involved	 in	 interpersonal	 and	 emotional	 pro-
cesses	(Bavelas	et	al.,	1992;	Bressem	&	Müller,	2017;	Calbris,	2011;	
Kendon,	 2017;	 Müller,	 2004,	 2016)	 according	 to	 the	 observation	
of	positive	 and	negative	 affective	gestures,	which	are	 those	more	
involved in emotional and affective processes communication 
(Tomasello,	Carpenter,	&	Liszkowski,	2007).	 In	particular,	based	on	
neural	signatures	of	affective	experience	model	(Balconi,	Grippa,	&	
Vanutelli,	2015;	Davidson,	1992),	that	postulates	that	positive	stim-
uli more activate left frontal areas compared with negative ones that 
more	activate	right	frontal	side,	we	expected	to	observe	an	increase	
of	O2Hb	in	the	left	DLPFC	side	during	the	observation	of	positive	af-
fective	gestures,	that	induce	positive	emotions	and	approaching	and	
sharing	 behaviors	 in	 individuals.	On	 the	 contrary,	we	 expected	 to	
observe	an	increase	of	O2Hb	activity	in	the	right	DLPFC	side	during	
the	observation	of	negative	affective	gestures,	inducing	withdrawal	
behavior.

Finally,	 thanks	 to	 the	use	of	 fNIRS	 in	hyperscanning,	which	al-
lows the simultaneous recording of the activity of the two inter-
agents	individuals,	we	expected	to	observe	an	increase	of	interbrain	
connectivity and resonance mechanisms in the frontal areas during 
the	 observation	 of	 affective	 and	 social	 gestures.	 In	 particular,	we	
expected to observe an increase of interbrain connectivity in en-
coder and decoder in frontal areas during the observation of affec-
tive and social gestures and in parietal areas for informative one due 
to	the	presence	of	mirroring	mechanisms,	that	are	activated	during	
action	observation,	 imagination	 and	planning,	 and	 in	 line	with	 the	
specificity	of	these	brain	areas	in	response	to	gesture	types.	Indeed,	
frontal	 areas	 are	 more	 involved	 in	 relational,	 prosocial,	 and	 em-
pathic	processes	 (Balconi	&	Bortolotti,	2012,	2013;	Balconi,	Falbo,	
&	Conte,	2012;	Rameson	&	Lieberman,	2009),	while	parietal	ones	
are more implicated in processes concerning gestures' observa-
tion	 and	 execution	 (Caplan,	 2003;	 Ekstrom	 et	 al.,	 2005;	 Jones	 &	
Wilson,	2005;	Sirota	et	al.,	2008).

Starting	 from	 this	 evidence,	 we	 expected	 to	 observe	 a	 sim-
ilar	 neural	 activation	 in	 the	 encoder,	 who	 observed	 the	 gesture	
and	mentally	 plans	 the	 action	 to	 be	 successively	 reproduced,	 and	
in	the	decoder,	who	only	observed	the	gesture	without	any	action	
reproduction.

Indeed,	as	demonstrated	by	previous	studies,	mirroring	processes	
create a direct link between gestures' observation and execution in 
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both the actor who is required to successively reproduce the action 
and	who	has	simply	to	observe	the	action	itself	(Holle	et	al.,	2008;	
Huxham	 et	 al.,	 2009)	 because	 actions	 observation	 activates	 the	
same brain areas involved in that actions execution.

2  | METHODS

2.1 | Participants

For	 the	 research	 conduction,	 seventeen	 dyads	 of	 participants	
(Mage	=	26.98;	SDage	=	0.03)	of	the	same	gender	were	recruited,	for	a	
total	of	34	subjects.	In	particular,	14	dyads	were	composed	of	par-
ticipants	of	female	gender,	while	participants	of	male	gender	com-
posed three dyads. Recruited participants were university students. 
Specifically,	 the	participants,	coupled	 in	dyads,	did	not	know	each	
other.	Then,	one	of	each	dyads'	participants	was	randomly	assigned	
the	role	of	encoder	or	decoder,	who	were	asked	to	perform	differ-
ent functions. Participants were recruited with the following criteria: 
age	 between	18	 and	40	 years	 and	 normal	 or	 corrected-to-normal	
visual	 acuity,	 no	 neurological	 or	 cognitive	 deficits.	 Participants	
gave their voluntary consent to participate in the research after 
signing the informed consent. The local ethics committee of the 
Department	of	Psychology	of	the	Catholic	University	of	the	Sacred	
Heart	of	Milan	was	approved	by	the	principles	and	guidelines	of	the	
Helsinki	Declaration.

2.2 | Procedure

For	the	conduct	of	the	experiment,	participants	were	invited	to	sit	in	
a room at a distance of 60 cm from a centrally placed computer that 
allows	 observing	 the	 videos	 reproducing	 different	 gesture	 types,	
presented	 through	 the	 E-Prime	 2.0	 software	 (E-prime2	 software;	
Tools	Psychology	Software	Inc.).	Specifically,	60	videos,	that	repro-
duced	a	non-verbal	interaction	between	two	actors,	characterized	by	
different	gesture	types	(affective,	social,	and	informative	with	posi-
tive	and	negative	valence),	were	shown	to	participants.	The	presen-
tation	of	the	60	videos	took	place	in	three	randomized	blocks,	each	
consisting	of	20	stimuli,	with	an	interval	of	a	few	minutes	to	prevent	

participants' fatigue. The 60 videos consist in the reproduction of: 
10	affective	gestures	with	positive	valence,	aimed	at	communicating	
to	the	interlocutor	a	state	of	well-being,	10	affective	gestures	with	
negative	valence,	aimed	of	transmitting	a	state	of	malaise,	10	social	
gestures	with	 positive	 valence,	 aimed	 at	 starting	 or	maintaining	 a	
relationship	with	the	 interlocutor,	10	social	gestures	with	negative	
valence,	 aimed	 at	 interrupting	 the	 relationship	with	 the	 interlocu-
tor,	10	 informative	gestures	with	positive	valence	and	10	 informa-
tive	 gestures	with	negative	 valence,	 aimed	 to	direct	 the	 attention	
of the interlocutor toward a specific object in the environment. The 
valence of informative gestures was defined by the context that was 
introduced before gesture video presentation.

Specifically,	 the	 experiment	 required	 both	 dyads	 participants	
firstly to observe the videos that appeared on the screen for a dura-
tion	of	3	s	(sec.).	Subsequently,	either	one	participant,	casually	iden-
tified	as	the	encoder,	was	asked	to	reproduce	the	gesture	observed	
toward	his	companion,	the	decoder.	Specifically,	the	experiment	was	
carried out in the following way: an initial phase of task familiariza-
tion,	followed	by	the	execution	of	the	three	task	blocks	(order	ran-
domized).	The	administration	of	the	task	consists	of	the	presentation	
of a 2 s black screen; the presentation of a slide containing a context 
sentence,	lasting	4	s,	to	help	individuals	to	understand	the	meaning	
of gesture presented; the appearance of the video reproducing the 
gesture	to	be	observed	for	3	s;	the	presentation	of	a	4	s	black	screen	
and the presentation of a slide with the “go” signal to indicate partic-
ipants	to	reproduce	the	gesture	(Figure	1).

Fourteen	judges	(seven	males	and	seven	females)	were	recruited	
(Mage	=	28.34,	SDage	=	0.04)	for	the	stimuli	validation	using	a	Likert	
scale	 of	 seven	 points.	 In	 particular,	 the	 evaluation	 concerns	 some	
gestures	features,	such	as	commonality,	frequency	of	use,	complex-
ity,	 social	meaning,	 familiarity,	 and	emotional	 impact	 for	 the	 three	
types	 of	 gesture	 (affective,	 social,	 and	 informative).	 All	 gestures	
were homogeneous for the previous mentioned characteristics that 
were	verified	by	statistical	analysis,	differing	only	for	emotional	de-
gree	and	 social	 content	 that	differently	 characterize	 affective,	 so-
cial,	and	informative	gestures.	For	the	stimuli	categories,	statistical	
analysis was used to verify the similarity for previous characteristics 
(for	 all	 comparisons	p	 ≥	 .12).	 In	particular,	 from	 statistical	 analysis	
emerged	a	difference	only	 in	terms	of	emotional	degree	(for	social	
type M	 =	 5.34,	 SD	 =	 0.04;	 for	 affective	M	 =	 5.99,	 SD = 0.03; for 

F I G U R E  1   Experimental procedure of 
the task administered to participants
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informative M	=	3.41,	SD	=	0.04)	and	social	content	(for	social	type	
M	=	5.87,	SD = 0.02; for affective M	=	4.78,	SD = 0.03; for informative 
M	=	3.58,	SD	=	0.02).

2.3 | fNIRS recording and signal processing

A	NIRScout	system	(NIRx	Medical	Technologies,	LLC)	with	a	16-op-
tode matrix was used to record hemodynamic responses consist-
ing	of	the	variation	of	O2Hb	and	HHb	concentrations.	Specifically,	
through	the	use	of	an	ElectroCap,	eight	sources	and	eight	detectors	
were	placed	on	each	scalp	following	the	10/5	international	system	
(Oostenveld	&	Praamstra,	2001).

The distance between sources and detectors was kept at 30 mm 
for contiguous optodes and a near-infrared light of two wavelengths 
(760	and	850	nm)	was	used.	Specifically,	the	eight	sources	were	posi-
tioned	in	the	following	positions:	F3-FC1,	F4-FC2,	CP1-P3,	CP2-P4;	
while	 the	eight	detectors	were	placed	as	 follows:	F1-FC3,	F2-FC4,	
CP3-P1,	and	CP4-P2	(Figure	2).	The	optodes'	placement	resulted	in	
acquiring	 the	 following	 channels:	 Ch1	 (F3-F1),	 Ch2	 (F3-FC3),	 Ch3	
(FC1-F1),	Ch4	(FC1-FC3),	Ch5	(F4-F2),	Ch6	(F4-FC4),	Ch7	(FC2-F2),	
Ch8	 (FC2-FC4),	 Ch9	 (CP1-CP3),	 Ch10	 (CP1-P1),	 Ch11	 (P3-CP3),	
Ch12	(P3-P1),	Ch13	(CP2-CP4),	Ch14	(CP2-P2),	Ch15	(P4-CP4),	and	
Ch16	(P4-P2).

Before	the	task	beginning,	a	preliminary	baseline	of	120	s	was	
recorded.	The	variation	in	the	concentration	of	O2Hb	and	HHb	he-
moglobin was continuously recorded based on channels wavelength 
and	position.	The	sampling	rate	was	set	to	6.25	Hz.	For	the	signal	
processing,	 nirsLAB	 software	was	 used	 (v2014.05;	 NIRx	Medical	
Technologies	 LLC).	 A	 0.01–0.3	 Hz	 bandpass	 filter	 was	 used	 for	
O2Hb	and	HHb	data	filtering	 (Oda,	Sato,	Nambu,	&	Wada,	2018).	
Raw time series were visually inspected to detect noisy channels 
(e.g.,	due	to	 large	motion	errors,	 sudden	amplitude	changes,	poor	
coupling),	excluding	channels	with	a	poor	optical	coupling,	for	ex-
ample,	 absence	of	 the	~1	Hz	heartbeat	oscillations	 in	 raw	 signals	
(Pinti	et	al.,	2015).

O2Hb	and	HHb	mean	concentration	for	each	channel	was	cal-
culated	for	gesture	category	(affective,	social,	and	informative),	and	
valence	 (positive	 and	 negative).	 The	 mean	 concentration	 of	 each	
channel	was	computed	by	averaging	data	across	the	trials,	starting	
from the appearance of the video reproducing the gesture to be ob-
served	for	the	following	3	s.	For	each	channel	and	participant,	ac-
cording	to	the	mean	concentrations	in	the	time	series,	the	effect	size	
in every block was calculated as the difference of the means of the 
gesture	observation	steps	(m2)	and	the	baseline	(m1)	divided	by	the	
standard	deviation	(SD)	of	the	baseline:	d	=	(m2-m1)/SD	 (Cohen's	d 
value).

This normalized's index's average can be calculated despite the 
unit since the effect size parameter is not influenced by the differen-
tial	pathlength	factor	(DPF),	overcoming	the	fact	that	fNIRS	raw	data	
were initially related values and could not be precisely measured 
across	participants	or	channels	(Matsuda	&	Hiraki,	2006;	Schroeter,	
Zysset,	Kruggel,	&	Von	Cramon,	2003;	Shimada	&	Hiraki,	2006).

2.4 | Data analysis

Three	types	of	analyses	were	completed	according	to	O2Hb-	and	HHb-
dependent	measures.	The	first	ANOVA	was	applied	to	single-brain	data	
to	test	the	effect	of	independent	measures	on	O2Hb	and	HHb	concen-
tration	 for	 each	 participant	 (single-brain	 analysis).	 Secondly,	 Pearson	
correlational analysis for each couple of participants of encoder/de-
coder was calculated for each dependent measure finalizing to com-
pute the synchronization values within each couple for each measure. 
Thirdly,	these	indices	were	put	into	different	ANOVA	tests,	as	depend-
ent	variables,	 in	 order	 to	 evaluate	 differences	 in	 synchrony	 strength	
across	the	experimental	conditions	(interbrain	connectivity	analysis).

The	 degrees	 of	 freedom	 were	 corrected	 for	 all	 the	 ANOVAs	
using	 Greenhouse-Geisser	 epsilon	 with	 a	 0.05	 significance	 level.	
Moreover,	 contrast	 analyses	 and	 multiple	 comparisons	 with	 the	
Bonferroni	test	were	applied.	Finally,	data	distribution	normality	was	
tested with kurtosis and asymmetry tests. Due to multiple compar-
isons,	type	I	and	type	II	errors	were	considered	and	power	analysis	
allowed to support adequate limitation to increasing of these errors.

3  | RESULTS

3.1 | Single-brain analyses

For	single-brain	analyses,	Role	 (encoder/decoder),	gesture	Valence	
(positive/negative),	 Lateralization	 (left/right),	 gesture	 Type	 (social/

F I G U R E  2  Location	of	the	sources	(red)	and	detectors	(violet)	of	
fNIRS	montage.	In	particular,	sources	are	located	in	the	following	
positions:	F3-FC1,	F4-FC2,	CP1-P3,	CP2-P4	and	detectors	as	
follows:	F1-FC3,	F2-FC4,	CP3-P1,	CP4-P2
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affective/informative),	and	Region	(four	anterior	and	four	posterior)	
were	used	as	independent	measures.	Specifically,	Region	was	com-
posed	for	both	left/right	homologous	sides.	In	particular,	for	anterior	
areas,	 the	values	of	Ch1	and	Ch5	correspond	 to	 the	 left	and	 right	
frontal	 eye	 fields	 (FEF)	 activity,	 the	values	of	Ch2	and	Ch6	corre-
spond	to	the	left	and	right	DLPFC	activity,	the	values	of	Ch3	and	Ch7	
correspond	to	the	left	and	right	superior	frontal	gyrus	(SFG)	activity,	
the	values	of	Ch4	and	Ch8	correspond	to	the	 left	and	right	dorsal	
premotor	cortex	(DPMC)	activity.

Regarding	 posterior	 areas,	 the	 values	 of	 Ch9	 and	Ch13	 corre-
spond to the left and right supramarginal gyrus activity; the values 
of	Ch10	and	Ch14	correspond	to	the	left	and	right	superior	parietal	
lobule	activity;	the	values	of	Ch11	and	Ch15	correspond	to	the	left	
and right angular gyrus activity; the values of Ch12 and Ch16 corre-
spond to the left and right lateral portion of superior parietal lobule 
activity.

A	 mixed-model	 ANOVA	 was	 applied	 to	 O2Hb-	 and	 HHb-
dependent measures. We reported only the significant comparisons.

Specifically,	 regarding	 O2Hb	 activity,	 as	 shown	 by	 ANOVA,	
significant	 interaction	effects	 for	Type	x	Region	 (F[14,260]	=	7.24;	
p < .001; η2	 =	 0.28),	 and	 Valence	 ×	 Lateralization	 ×	 Region	
(F[7,70]	 =	 8.03;	 p < .001; η2	 =	 0.28)	were	 observed.	 In	 particular,	
by	 post-hoc	 comparisons,	 an	 increase	 of	O2Hb	 brain	 activity	was	

observed	 for	 affective	more	 than	 social	 (F[1,33]	=	8.50;	p < .001; 
η2	=	0.30)	and	informative	(F[1,33]	=	7.98;	p < .001; η2	=	0.29)	gestures	
in	DLPFC	and	for	social	more	than	affective	(F[1,33]	=	7.76;	p < .001; 
η2	=	0.28)	and	informative	(F[1,33]	=	7.92;	p < .001; η2	=	0.29)	ges-
tures	 in	SFG	 (Figure	3a,c).	Moreover,	as	 revealed	by	ANOVA,	pos-
itive	gestures	observation	showed	an	 increase	of	O2Hb	activity	 in	
DLPFC	left	side	responsiveness:	this	effect	was	specific	for	affective	
more	than	social	(F[1,33]	=	9.21;	p < .001; η2	=	0.35)	and	informative	
(F[1,33]	=	8.45;	p < .001; η2	=	0.30)	gestures	(Figure	4a,b).

Regarding	 HHb,	 a	 significant	 effect	 has	 emerged	 for	
Type	 ×	 Region	 (F[7,260]	 =	 10.11;	 p < .001; η2	 =	 0.34).	 In	 particu-
lar	post	hoc	comparisons	showed	a	decrease	of	HHb	for	affective	
more	than	social	(F[1,33]	=	7.56;	p < .001; η2	=	0.27)	and	informative	
(F[1,33]	=	7.11;	p < .001; η2	=	0.26)	gestures	in	DLPFC	and	for	social	
more	than	affective	(F[1,33]	=	7.98;	p < .001; η2	=	0.28)	and	informa-
tive	(F[1,33]	=	8.04;	p < .001; η2	=	0.30)	ones	in	SFG	(Figure	3b,c).

3.2 | Interbrain connectivity analyses

Considering	 the	 O2Hb	 and	 HHb	 concentration	 raw	 database,	 in-
terparticipant correlational indices were calculated to compute the 
synchronization	 within	 each	 dyad.	 These	 indices	 (r	 values)	 were	

F I G U R E  3   (a)	Histogram	of	O2Hb	activity	according	to	the	three	different	gestures	types	(affective,	social,	and	informative)	in	DLPFC	
and	SFG.	Bars	represent	±1SE.	Stars	mark	statistically	significant	(p<.05)	pairwise	comparisons.	(b)	Histogram	of	HHb	activity	according	
to	the	three	different	gestures	types	(affective,	social,	and	informative)	in	DLPFC	and	SFG.	Bars	represent	±1SE.	Stars	mark	statistically	
significant	(p<.05)	pairwise	comparisons.	(c)	Representation,	from	left	to	right,	of	brain	responsiveness	for	affective	and	social	gestures.	The	
figure	shows	an	increase	of	O2Hb	activity	(red	color)	in	DLPFC	for	affective	gestures	and	SFG	for	social	gestures
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successively	used	as	dependent	variables	 in	mixed-model	ANOVA	
tests	for	O2Hb	and	HHb,	with	the	following	repeated	factors:	Type,	
Valence,	Lateralization,	and	Region.

From	 ANOVA,	 for	 O2Hb,	 a	 significant	 effect	 emerged	 for	
Type	 ×	 Region	 (F[2,105]	 =	 7.89;	 p < .001; η2	 =	 0.27)	 and	 Valence	
×	 Region	 ×	 Lateralization	 (F[14,215]	 =	 8.01;	 p < .001; η2	 =	 0.31).	

Specifically,	 an	 increase	 for	 interbrain	 synchronization	 (increased	
Pearson	 coefficients)	 was	 found	 for	 affective	 gesture	 in	 DLPFC	
than	social	(F[1,16]	=	7.89;	p < .001; η2	=	0.27)	and	informative	ones	
(F[1,16]	=	7.12;	p < .001; η2	=	0.27)	and	for	social	gesture	in	SFG	than	
affective	(F[1,16]	=	8.03;	p < .001; η2	=	0.27)	and	informative	ones	
(F[1,16]	=	7.98;	p < .001; η2	=	0.28;	Figure	5a,b).

F I G U R E  4   (a)	Histogram	of	O2Hb	activity	for	three	different	gestures	(affective,	social,	and	informative)	in	the	left	and	right	side	
of	the	DLPFC.	Bars	represent	±1SE.	Stars	mark	statistically	significant	(p<.05)	pairwise	comparisons.	(b)	Representation	of	O2Hb	brain	
responsiveness	for	affective	gestures	in	DLPFC	left	and	right	side.	The	red	color	shows	the	increase	of	O2Hb	brain	responsiveness	in	the	
DLPFC	left	side	compared	with	the	right	one	for	affective	gestures

F I G U R E  5   (a)	Histogram	of	O2Hb	interbrain	connectivity	according	to	the	three	different	gestures	types	(affective,	social,	and	
informative)	in	DLPFC	and	SFG.	Bars	represent	+-1SE.	Stars	mark	statistically	significant	(p<.05)	pairwise	comparisons.	(b)	Representation	of	
brain	responsiveness	for	affective	and	social	gestures.	The	superior	figure	shows	an	increase	of	O2Hb	interbrain	connectivity	(red	color)	in	
DLPFC	for	affective	gestures	in	encoder	and	decoder	and	the	inferior	figure	shows	an	increase	of	O2Hb	interbrain	connectivity	(red	color)	in	
SFG	for	social	gestures	in	encoder	and	decoder
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In	addition,	positive	gestures	 showed	an	 increase	of	 interbrain	
synchronization	in	the	left	DLPFC	area:	this	effect	was	specific	for	
affective	gesture	more	than	social	(F[1,33]	=	9.33;	p < .001; η2	=	0.35)	
and	informative	ones	(F[1,33]	=	8.21;	p < .001; η2	=	0.30;	Figure	6a,b).

4  | DISCUSSION

The present study aimed to investigate the brain responsiveness and 
interbrain correlates associated with the observation of different 
gestures' types during a non-verbal interaction between encoder 
and	decoder.	In	particular,	the	present	study	aimed	to	investigate	the	
neural	correlates	underlying	the	observation	of	affective,	social,	and	
informative	gestures	with	positive	and	negative	valence.	Specifically,	
in order to observe interagents' individuals brain responsiveness and 
brain	tuning	mechanisms,	single-brain	and	interbrain	analyses	were	
conducted.

Firstly,	from	the	results	of	the	single-brain	analysis,	according	to	
our	hypothesis,	an	increase	of	O2Hb	and	a	decrease	of	HHb	activity	
were	observed	for	affective	gestures	observation	in	the	DLPFC	and	
for	social	gestures	observation	in	the	SFG	area.	This	result	highlights	
the activation of specific brain areas according to the category of 
gesture observed.

Specifically,	 the	 greater	 activation	 of	 O2Hb	 activity	 in	 the	
DLPFC	area	 for	affective	gestures	observation	may	be	due	 to	 the	
functional significance of these types of gestures aimed to trans-
mit emotionally charged meanings and to share emotional experi-
ences	(Tomasello	et	al.,	2005).	Considering,	therefore,	the	functional	
meaning	of	affective	gestures,	the	increase	of	O2Hb	activity	in	the	
DLPFC	region	can	be	related	to	a	higher	 involvement	of	this	cere-
bral	 area	 in	emotional,	 prosocial,	 and	empathic	processes	 (Baeken	
et	 al.,	 2011;	 Balconi,	 Pezard,	 Nandrino,	 &	 Vanutelli,	 2017;	 Kalbe	
et	al.,	2010)	that	can	be	experienced	by	individuals	during	affective	
gestures observation.

Moreover,	 DLPFC	 area	 appears	 to	 be	 involved	 in	 some	 pro-
cesses	 that	can	be	activated	by	affective	gestures,	 such	as	 theory	
of	mind	mechanisms,	interpersonal	relationships	and	other	people's	
states	understanding	(Bavelas	et	al.,	1992;	Bressem	&	Müller,	2017;	
Calbris,	 2011;	 Kendon,	 2017;	 Müller,	 2004,	 2016).	 These	 results	
also appear to be confirmed by previous research that has observed 
an increase of frontal activity concerning emotional affective ges-
tures	 observation	 (Peyk,	 Schupp,	 Keil,	 Elbert,	&	 Junghöfer,	 2009).	
Furthermore,	DLPFC	compare	with	SFG,	FEF,	DPMC	areas	appears	
to be more involved in the ability to respond motivationally to innate 
or	learned	nonverbal	social	cues,	such	as	facial	expressions	and	emo-
tional	tone	in	speech	or	gestures.	Moreover,	DLPFC	appears	to	be	
involved in understanding and reinterpreting the meaning of a stim-
ulus	to	downregulate	emotional	response	(Gökçay	&	Yildirim,	2010).

Similarly,	 the	 increase	of	O2Hb	 in	SFG	area	 for	social	gestures	
observation can be interpreted in light of the functional meaning of 
social	gestures	finalized	to	initiate,	establish,	or	interrupt	a	relation-
ship	with	another	individual	(Bavelas	et	al.,	1992;	Kendon,	2017).	In	
light	of	the	functional	significance	of	social	gestures,	the	greater	ac-
tivation	of	O2Hb	 in	SFG	region	may	be	because	this	cerebral	area	
appears to be involved in mechanisms of behavior control and in oth-
ers'	 intentions	 implementation	(Crivelli	&	Balconi,	2017;	Nakamura	
et	al.,	1998;	Shima	&	Tanji,	2017).

Concerning	 this	 first	 result,	 it	 is	 interesting	 to	 observe	 how	
both	 for	 O2Hb	 and	 HHb	 values	 the	 same	 trend	 occurs	 in	 indi-
vidual	 brain	 responsiveness,	 as	 evidenced	 by	 a	 simultaneous	 in-
crease	of	O2Hb	and	decrease	of	HHb	in	the	same	cerebral	areas	
according	 to	 specific	 gestures	 observation.	Moreover,	 according	
to	 our	 hypothesis,	 an	 increase	 of	O2Hb	 activity	 has	 emerged	 in	
the	left	DLPFC	region	during	the	observation	of	positive	affective	
gestures. This lateralized effect confirms the theory of the dual 
system	model	of	neural	signatures	of	affective	experience	(Balconi	
et	 al.,	 2015;	Davidson,	 1992),	which	 postulates	 that	 stimuli	 per-
ceived by individuals as positive induce approaching behaviors and 

F I G U R E  6   (a)	Histogram	of	O2Hb	interbrain	connectivity	for	three	different	types	of	gestures	(affective,	social,	and	informative)	in	the	
left	and	right	side	of	the	DLPFC.	Bars	represent	+-1SE.	Stars	mark	statistically	significant	(p<.05)	pairwise	comparisons.	(b)	Representation	of	
O2Hb	interbrain	connectivity	for	affective	gestures	in	DLPFC	left	and	right	side	in	encoder	and	decoder.	The	red	color	shows	the	increase	of	
O2Hb	interbrain	connectivity	in	the	DLPFC	left	side	compared	with	the	right	one	for	affective	gestures
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positive	 emotions	 experience,	 leading	 to	 a	 greater	 activation	 of	
the	left	frontal	side;	while,	a	more	greater	activation	of	the	frontal	
right side results to be associated with the presentation of nega-
tive	stimuli	providing	avoidance	behaviors	(Balconi	&	Mazza,	2009,	
2010;	Davidson,	1992;	Harmon-Jones,	2003).	On	the	basis	of	this	
model,	therefore,	the	greater	activation	of	DLPFC	on	the	left	side	
could	 be	 due	 because	 positive	 affective	 gestures'	 observation,	
such	as	seeing	one	individual	caressing	another,	elicits	individuals'	
positive emotions.

Considering,	instead,	interbrain	results,	an	increase	of	O2Hb	in-
terbrain	connectivity	in	DLPFC	area	emerged	during	the	observation	
of	affective	gestures;	while	an	increase	of	O2Hb	interbrain	connec-
tivity	emerged	in	SFG	area	during	the	observation	of	social	gestures.	
This	 result	 shows	 how	 these	 cerebral	 areas,	 which	 support	 emo-
tional	regulation,	interaction	and	social	understanding	mechanisms	
(Baker,	 Bloom,	&	Davis,	 2016;	Kalbe	 et	 al.,	 2010;	 Liu	 et	 al.,	 2015;	
Suzuki	et	al.,	2011),	are	involved	in	mirroring	mechanisms	that	allow	
individuals to synchronize their brain responses during gestures ob-
servation	 (Marsh,	 Blair,	 Jones,	 Soliman,	 &	 Blair,	 2009).	 Moreover,	
this result highlights that during affective and social gestures ob-
servation,	neural	synchronization	and	implicit	coupling	mechanisms	
occur	between	encoders	and	decoders,	presupposing	a	sharing	and	
a	co-representation	of	actions	that	equally	involve	both	individuals,	
as if they were preparing for the implementation of a synchronized 
response to movement.

Furthermore,	 in	 light	 of	 this	 result,	 it	 emerges	 that	 an	 under-
standing of the meaning of these types of gestures occurs during 
gestures	 observation	 both	 in	 encoder	 and	 decoder,	 which	 leads	
individuals	to	prepare	for	the	development	of	 joint	action.	 Indeed,	
as	 has	 been	 shown	 by	 previous	 studies,	 during	 the	 development	
of	 joint	actions,	synchronic,	and	diachronic	mechanisms	take	place	
in	 individuals,	 increasing	 the	 implicit	 neural	 coupling	 and	 interper-
sonal	coupling	dynamics	(Balconi,	Fronda,	&	Vanutelli,	2019;	Balconi,	
Pezard,	et	al.,	2017).

Concerning	gesture	valence,	instead,	from	interbrain	connectiv-
ity	an	increase	of	O2Hb	activity	in	the	left	DLPFC	area	has	emerged	
concerning positive affective gestures observation. This result con-
firms the frontal brain asymmetry postulated by the dual system 
model of neural signatures of affective experience according to the 
presentation	of	positive	and	negative	 stimuli	 (Balconi	 et	 al.,	 2015;	
Davidson,	1992).

Finally,	it	is	interesting	to	notice	that	the	outcome	of	the	pres-
ent study did not reveal any significant differences in the brain 
activity	of	encoder	and	decoder	during	gestures	observation,	de-
spite the different roles of interagents that required encoder to 
observe the gesture in view of future reproduction and decoder 
to only observe the gesture reproduced by the video without any 
other action. This direct combination of observation and plan-
ning	of	the	gesture	has	been	observed	by	several	studies	(Chong	
et	al.,	2008;	Rizzolatti	&	Craighero,	2004;	Rizzolatti	et	al.,	2001),	
pointing out that actions understanding occur when the obser-
vation	 activate	 the	 observer	 motor	 region	 (Chong	 et	 al.,	 2008;	
Rizzolatti	et	al.,	2001).

This similar neural activation has shown the involvement of 
the same cerebral areas during processes of gestures observa-
tion	 and	 gestures	 imagination	 and	 planning	 (Buccino,	 Binkofski,	 &	
Riggio,	2004;	Chong	et	al.,	2008;	Coricelli	et	al.,	2005;	Gallese,	2003;	
Gallese	 et	 al.,	 1996;	 Rizzolatti	 &	 Craighero,	 2004;	 Rizzolatti	
et	al.,	1996;	Wilson	&	Knoblich,	2005).	In	the	present	study,	the	main	
frontal areas involved in encoder/decoder response may be repre-
sented as supporting mirroring mechanisms in the case of affective 
and	social	action	representation,	able	to	produce	a	dual	resonance	in	
both active and passive actor.

In	conclusion,	the	present	study	highlighted	different	activation	
schemes underlying the observation of different types of positive 
and	negative	gestures.	Furthermore,	the	use	of	hyperscanning	and	
the implementation of interbrain analysis allowed us to underline the 
presence of mirroring mechanisms involved in gesture-specific fron-
tal	regions	during	gestures	observation	and	action	planning,	with	a	
clear synchronization in two brains.

Despite	 the	 potential	 of	 this	 study,	 some	 limits	 may	 be	 high-
lighted that could be taken in consideration for future studies. 
Firstly,	 by	 implementing	 the	 sample	 size,	 the	 power	 of	 the	 obser-
vations	obtained	could	be	 increased.	Secondly,	 the	study	could	be	
repeated using different interaction contexts for the observation of 
specific categories of gestures.

Thirdly,	the	use	of	other	neuroscientific	techniques	(such	as	elec-
troencephalography)	could	allow	us	to	gather	further	data	in	terms	
of	temporal	evolution	of	the	interbrain	dynamics,	which	is	useful	to	
confirm or add new evidence to results.

Fourthly,	to	better	generalize	the	present	results,	an	ample	sam-
ple size could be suggested for future investigations.

At	present,	power	analysis	supported	the	results	as	a	pilot	study,	
in	the	absence	of	population	as	a	reference	for	the	sample	size.	Fifth,	
future analysis could be considered the comparison between encoder 
and	decoder	during	 the	step	of	gesture	 reproduction	by	encoder,	 in	
which the encoder reproduces the gesture toward the decoder who 
passively	 receives	 it,	 to	 investigate	other	 neural	mechanisms	under-
lined	 this	 moment,	 quite	 different	 from	mirroring	 mechanisms	 pre-
senting	during	gestures'	observation.	Finally,	besides	mechanisms	of	
synchrony and symmetric interbrain connectivity in the same cerebral 
areas,	in	future	studies	the	asymmetric	pattern	of	coupling	in	different	
cerebral areas should be explored to observe the different psychologi-
cal process of the subjects during social interactions.
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