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Abstract
Both malignant transformation and neurodegeneration, as it occurs in Alzheimer's disease, are
complex and lengthy multistep processes characterized by abnormal expression, post-translational
modification, and processing of certain proteins. To maintain and allow the accumulation of these
dysregulated processes, and to facilitate the step-wise evolution of the disease phenotype, cells
must co-opt a compensatory regulatory mechanism. In cancer, this role has been attributed to heat
shock protein 90 (Hsp90), a molecular chaperone that maintains the functional conformation of
multiple proteins involved in cell-specific oncogenic processes. In this sense, at the phenotypic level,
Hsp90 appears to serve as a biochemical buffer for the numerous cancer-specific lesions that are
characteristic of diverse tumors. The current review proposes a similar role for Hsp90 in
neurodegeneration. It will present experimentally demonstrated, but also hypothetical, roles that
suggest Hsp90 can act as a regulator of pathogenic changes that lead to the neurodegenerative
phenotype in Alzheimer's disease.

Background
Neurodegenerative diseases, including Alzheimer's dis-
ease (AD), are characterized by the progressive dysfunc-
tion of normal physiological cellular events. Whereas the
outcome of pathogenic changes in the brain is manifested
in a complex set of hallmarks that are different when com-
pared to cancer, the passage into neurodegenerative dis-
ease has many similarities to malignant transformation.
In this review, we will present recent findings suggesting
that heat shock protein 90 (Hsp90) may play a role in
maintaining pathogenic changes that lead to neurodegen-

erative diseases. We will also speculate on yet unexplored
putative roles of this chaperone in the particular case of
AD.

Cancer and Hsp90
Transformation of normal cells into malignant cells is a
multistep process requiring the accumulation of a number
of genetic alterations influencing key regulatory processes.
In this regard, many types of cancers are diagnosed in the
human population with an age-dependent incidence that
implicates several events that take the cell from premalig-
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nant states into invasive cancers [1]. Dysregulations may
occur in a multitude of pathways and be evidenced
through protein mutation, misexpression, or misproccess-
ing, leading to altered functions that confer a pathogenic
cell phenotype. While at the cellular level these dysregula-
tions are advantageous in cancer, and may lead to
increased survival, at the molecular level, these changes
take place at a cost to local energetic stability. To regain a
pseudo-stable state, cells co-opt chaperones, for example,
Hsp90, to bind aberrant proteins involved in the dysregu-
lated processes with high-affinity and maintain them in a
functional conformation [2-6]. These interactions buffer
the local molecular instability and allow for the accumu-
lation of aberrant proteins that ultimately leads to the
blossoming of disease. Thus, following dysregulation in
the abundance, stability or activity of a given protein, cell
survival can become critically dependent on the associa-
tion of client proteins of non-native stability with Hsp90.

In cancer, Hsp90 and associated co-chaperones were
found to assist in the correct conformational folding of
transformation-specific 'client proteins' without signifi-
cantly binding to, or influencing the folding of, 'normal'
protein counterparts; many of these client proteins are sig-
nal-transduction regulators of cell growth, differentiation,
the DNA damage response, and cell survival [2-6]. Small
molecule inhibitors of Hsp90 disturb its association with
aberrant proteins and stimulate their degradation, a proc-
ess initiated by recruitment of E3-ligases and mediated by
the proteasome [2-7].

Historically, v-Src kinase was the first oncoprotein shown
to display unusually stable interactions with Hsp90 and
associated chaperones [8]. In contrast, non-oncogenic c-
Src requires only limited assistance from the Hsp90
machinery for its maturation and cellular function. Simi-
larly, stable expression of the mutant, but not wild-type,
p53 conformation required tight association of the p53
protein with Hsp90 [9]. In the chronic myelogenous
leukemia cell line K562, transformation is driven by the
aberrant fusion of the genes bcr and abl, leading to the pro-
duction of a constitutively active kinase, Bcr-Abl. Hsp90,
which is minimally required for the stabilization of Abl
itself, becomes closely associated with Bcr-Abl and main-
tains the kinase's functionality in this dysregulated state
[10,11]. Nucleophosmin-anaplastic lymphoma kinase,
found in lymphomas, is another recognized tumor-spe-
cific client of Hsp90 [12], as is mutated Flt3, a kinase
involved in driving transformation in acute myeloid
leukemias [13]. Steroid-hormone receptors in breast and
prostate cancers have an important role in the malignant
behavior of these tumors. They too are examples of
tumor-specific clients where oncogenic activity can be dis-
rupted by Hsp90 inhibitors [14,15]. Epidermal growth
factor receptor harboring kinase-activating mutations that

are involved in the transformation of non-small cell lung
cancers also associates with Hsp90. An inhibitor of Hsp90
triggers the rapid degradation of these kinases without
affecting wild-type epidermal growth factor receptor [16].
Zeta-chain-associated protein kinase 70 (ZAP-70),
expressed in patients with aggressive chronic lymphocytic
leukemia (CLL) and required for cell survival and signal-
ing in CLL, behaves as an Hsp90 client protein only in CLL
cells [17]. Examples may be extended to numerous addi-
tional transformed cell types but, in sum, multiple pro-
teins involved in cell-specific oncogenic processes have
been shown to be tightly regulated by the binding of
Hsp90 and undergo selective degradation following treat-
ment with an Hsp90 inhibitor. In this sense, at the pheno-
typic level, Hsp90 seems to serve as a biochemical buffer
for the numerous cancer-specific lesions that are charac-
teristic of diverse tumors.

In an effort to refine the many characteristics that are
required for the development of the fully malignant phe-
notype, Hanahan and Weinberg proposed six essential
phenotypic traits, referred to as the 'six hallmarks' of a
cancer cell [1]. Common to these hallmark traits is Hsp90,
a protein that has the capacity to regulate key elements of
each of these processes, suggesting that the chaperone is
an indispensable controller of multiple proteins regulat-
ing these cancer hallmarks [1-6,18].

In summary, malignant cells co-opt Hsp90 to maintain
their viability under the pressure of aberrant proteins and,
therefore, allow malignant transformation and the facili-
tation of disease progression. Hsp90 inhibition therefore
offers the potential of accomplishing what most targeted
anticancer therapies do not: the simultaneous disruption
of multiple signaling events critical to all recognized can-
cer hallmarks. In consequence, the unique biological role
of Hsp90 in cancer cells has suggested that its inhibition
could be an answer to the challenge imposed on therapy
by the heterogeneity and adaptability of cancer cells, and
represent a singular therapeutic modality against a large
array of tumors.

Neurodegenerative diseases and Hsp90
For neurodegenerative disorders associated with protein
aggregation, the view on Hsp90 has been limited to its
regulation of heat shock response [19-21]. Inhibition of
Hsp90 activates heat shock factor 1 (HSF1) to induce the
production of the chaperones Hsp70 and Hsp40, which
promote disaggregation and protein degradation. It is sug-
gested that under non-stressed conditions, Hsp90 binds
to HSF1 and maintains the transcription factor in a mon-
omeric state [22]. Inhibition of Hsp90 releases HSF1 from
the Hsp90 complex, leading to its trimerization, activa-
tion and translocation to the nucleus where it initiates a
heat shock response. However, recent evidence suggests
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an additional role for Hsp90 in neurodegenerative dis-
eases [23-26]. Based on the large body of evidence on the
ubiquitous 'transformation buffering' potential of Hsp90
in cancer, it is intuitive to suggest analogous roles for
Hsp90 in neurodegeneration.

Spinal and bulbar muscular atrophy
Spinal and bulbar muscular atrophy (SBMA) is an inher-
ited motor neuron disease caused by the expansion of a
polyglutamine tract within the androgen receptor (AR)
[27]. The pathological features of SBMA are motor neuron
loss in the spinal cord and brainstem, diffuse nuclear
accumulation, and nuclear inclusions of the mutant AR in
the residual motor neurons and certain visceral organs.
Waza et al. [23] recently demonstrated that mutant AR, as
present in SBMA, is an Hsp90 client protein that forms a
molecular complex with the chaperone. This complex is
required to maintain the functional stability of the mutant
AR. Addition of 17-allylamino-17-demethoxy geldanamy-
cin (17AAG), a small molecule Hsp90 inhibitor currently
in phase II evaluation in patients with advanced cancers,
to both cells and transgenic mice led to a preferential deg-
radation of mutant AR compared to wild-type. These
effects were a result of increased dependency of the
mutant AR, compared to its normal counterpart, on
Hsp90 for stability, and not due to an induction of Hsp70
and Hsp40. In a SBMA transgenic mouse model, 17AAG
ameliorated motor impairments without detectable toxic-
ity and reduced the amounts of monomeric and aggre-
gated mutant AR. Similar findings were reported by
Thomas et al. [24], who found that Hsp90 inhibition
blocked the aggregation of the expanded glutamine
androgen receptor (AR112Q) in HSF1(-/-) mouse embry-
onic fibroblasts where the Hsp70 and Hsp40 chaperones
were not induced.

Tauopathies
Tauopathies are neurodegenerative diseases characterized
by tau protein abnormalities. In these diseases, transfor-
mation is characterized by abnormalities in the tau pro-
tein that lead to the accumulation of
hyperphosphorylated and aggregated tau [28,29]. It has
been suggested that AD and frontotemporal dementia are
linked in a genetic spectrum of presenile degenerative
brain disorders in which tau is one of the important play-
ers [30]. In AD, tau hyperphosphorylation is suggested to
be a pathogenic process caused by aberrant activation of
several kinases, in particular cyclin-dependent protein
kinase (cdk)5 and glycogen synthase kinase (GSK)3β,
leading to phosphorylation of tau at pathogenic sites.
Hyperphosphorylated tau in AD is believed to misfold,
undergoing net dissociation from microtubules, and form
toxic aggregates [31,32]. In a cluster of tauopathies termed
'frontotemporal dementia and parkinsonism linked to
chromosome 17 (FTDP-17)', pathology is caused by sev-

eral mutations in human tau isoforms on chromosome
17, which result in, and are characterized by, the accumu-
lation of aggregated tau, similar to that in AD [33,34].
Over 20 pathogenic mutations have been identified but
P301L is the most common among tauopathies. Luo et al.
[25] recently presented evidence that, in a particular case
of tauopathy, the stability of both p35, a neuronal protein
that may activate cdk5 through complex formation lead-
ing to aberrant tau phosphorylation, and the P301L
mutant, but not wild-type tau, are maintained by Hsp90.
These proteins form a molecular complex with the chap-
erone that is necessary to regulate their function and sta-
bility. Inhibition of Hsp90 in both cellular and mouse
models of tauopathies by Hsp90 inhibitors of the purine-
scaffold class [35] led to the reduction of the aberrant
activity of these proteins and resulted in a decrease of
aggregated tau. Complementary results were generated by
Dickey et al. [26], who demonstrated that inhibition of
Hsp90 by a similar small molecule led to a decrease in
phosphorylated tau levels independent of HSF1 activa-
tion. This reduction occurred selectively in the aberrant
phosphorylated tau species, leaving normal tau largely
unaffected.

Luo et al. [25] and Dickey et al. [26] have also shown that
the Hsp90 onco-clients Akt and Raf-1 were mainly unal-
tered by Hsp90 inhibitors. These important findings sug-
gest that 'tight' regulation of aberrant proteins by Hsp90 is
driven by the pathogenic event itself and, therefore, man-
ifested in a pathogenic-specific manner. Dickey et al. [26]
further demonstrated that the Hsp90 complex in affected
areas of AD brain has a significantly higher binding affin-
ity (approximately 1,000-fold) for small molecule inhibi-
tors than Hsp90 derived from unaffected brain tissue from
the same patients or from controls.

Collectively, these findings suggest that a neuron under-
going a degenerative process may co-opt Hsp90 in a fash-
ion similar to an epithelial cell undergoing malignant
transformation. In doing so, it maintains the functional
stability of proteins of aberrant capacity, allowing and
sustaining their accumulation as toxic aggregates, thus
providing a common principle that governs the two dis-
eases. The process is ill-fated for neurons, ultimately
resulting in the loss of disease-specific classes, unlike the
increased cellular survival seen in cancer.

Hsp90: putative roles in Alzheimer's disease
AD, the most common neurodegenerative dementia in
the elderly, affects cognition, behavior and functioning. It
is a heterogeneous disease in which the pathogenic trans-
formation is probably driven by a multitude of aberrant
events, and as in cancer, no two patients present an iden-
tical disease. The major hallmarks accepted for AD
include: amyloid deposition composed of β-amyloid pep-
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tide (Aβ); intracellular neurofibrillary tangles composed
of abnormally phosphorylated forms of the protein tau;
prominent neuroinflammation of nearby glial cells; and
synaptic loss and specific neuronal death.

Several hypotheses on the basis of the disease have
emerged, but it is yet unclear whether these are causative
events or neuronal pathways prone to being hijacked by
pathogenic elements. Irrespective of the initiator factor, a

large body of evidence suggests aberrant activation of
essential kinases in these pathways is associated with AD
progression. Gradually, dysregulated kinase activities
might contribute in an age-dependent manner to amyloid
generation and deposition, tau hyperphosphorylation
and tangle formation, neuroinflammation, and ulti-
mately to neuronal death.

Proposed model for the regulatory roles played by Hsp90 in AD progressionFigure 1
Proposed model for the regulatory roles played by Hsp90 in AD progression. Hsp90 can promote AD by facilitating the activi-
ties of protein kinases that cause the pathological features of AD. LTP, long-term potentiation; CTF, carboxyl-terminal frag-
ment – cleavage product of APP (amyloid precursor protein); MT, microtubule.
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Amyloid generation and deposition
Aβ, the major component of the extracellular amyloid
deposits, is believed to be the upstream causative factor in
the AD pathological cascade generated by the sequential
proteolytic cleavage of the amyloid precursor protein
(APP), as summarized in Figure 1[34]. The length of Aβ
peptides generated can vary. Among the most common
forms, Aβ42 is far more prone to aggregation than the
more abundant Aβ40 [35]. Under physiological condi-
tions, the steady state concentrations and ratio of Aβ40
and Aβ42 are balanced, and thus no pathogenic deposits
form. Although the mechanisms for pathogenic deposi-
tion of Aβ are still unclear, it is speculated that several fac-
tors, including familial Alzheimer's mutations, genetic
risk factors (for example, apolipoprotein E), environmen-
tal stress, and decreased Aβ clearance capability, may dis-
rupt the balance and result in accumulation of amyloid
peptides and promote aggregation. The build-up of Aβ
may initiate multistep pathogenic events, including dis-
ruption of neuronal homeostasis, and the aberrant activa-
tion of kinases. These alterations ultimately lead to
neurofibrillary tangle formation, prominent neuroinflam-
mation, and neurodegeneration [34].

Among the Aβ-induced aberrant kinases, cdk5 has been
implicated in AD pathology. In human AD brains, there is
a significant, specific elevation in cdk5 activity compared
with age-matched controls [36,37]. Normally, activation
of cdk5 is regulated by association with its cofactor, p35
[38]. It is also believed that elevated cdk5 activity in AD
may be induced by p25, a more stable cleavage form of
p35 [39,40]. In this case, Aβ accumulation activates intra-
cellular calcium signaling and induces the pathogenic
production of p25 via a calpain-dependent cleavage of
p35. Upon binding to cdk5, p25 causes mislocalization
and prolonged activation of cdk5. The p25-activated cdk5
complex alters substrate specificity, preferentially phos-
phorylating tau and APP [41-44]. Aberrant kinase activi-
ties also regulate Aβ generation. Cdk5 phosphorylation of
APP on Thr668 can induce a conformational change in
APP, altering its intracellular trafficking to facilitate β-
secretase cleavage and Aβ generation [45]. A positive feed-
back loop could therefore exist between cdk5 and Aβ,
where accumulation of Aβ induces aberrant cdk5 activa-
tion that in turn further stimulates Aβ generation, ulti-
mately triggering a cascade of pathogenic events (Figure 1)
[46]. Similarly, Aβ can activate GSK3β, leading to
increased Aβ production [47]. Casein kinase 1 (CK1) is
also implicated in regulating Aβ-generation. Constitutive
overexpression of active CK1ε, one of the CK1 isoforms
expressed in brain, can generate an increase in Aβ peptide
production [48].

Another theory, complementary to the amyloid hypothe-
sis and which also invokes signal transduction, proposes

that APP and presenilins may modulate an as yet
unknown cell signal, the disruption of which may induce
cell-cycle abnormalities, amyloid formation, neuronal
death, and eventually dementia [49].

Tau pathology
One of the major pathologies of AD, hyperphosphoryla-
tion of the microtubule-binding protein tau and forma-
tion of intracellular neurofibrillary tangles, is suggested to
result from abnormal activation of essential kinases (Fig-
ure 1) [28-30,32]. The hyperphosphorylation of tau at
pathogenic sites causes its detachment from microtu-
bules, perturbing normal microtubule function. Hyper-
phosphorylated species form paired helical filaments that
easily aggregate and may ultimately act as physical barriers
to axonal transport, impairing synaptic transmission [50].
Tau hyperphosphorylation may be caused by various
events, among which up-regulated or aberrant activation
of tau kinases (for example, cdk5, GSK3β, mitogen-acti-
vated protein kinases (MAPK), calcium/calmodulin-
dependent kinase II (caMK-II), and the microtubule-affin-
ity-regulating kinase (MARK)) are believed to play impor-
tant roles (Figure 1) [51,52].

Neuroinflammation
Neuroinflammation, another prominent feature of AD, is
caused by microglia and astrocytes (Figure 1). These cells
are activated in AD brain, as well as in AD transgenic mice
[53-55]. Recent studies implicate several signaling path-
ways of neuroinflammation in AD. Microglial activation
is suggested to result from Aβ binding and activation of
cell surface immune and adhesion molecules, for exam-
ple, CD45, CD40, CD36 and integrins. Subsequently,
members of the Src family of tyrosine kinases, including
Fyn, Lyn and Syk, are recruited to activate the ERK and
MAPK pathways, inducing proinflammatory gene expres-
sion, and leading to the production of cytokines and
chemokines. This chain of events leads to further micro-
glial activation, astrogliosis, secretion of proinflammatory
molecules, Aβ generation, and tau phosphorylation, thus
perpetuating the cascade [56]. Interestingly, recent studies
using AD-transgenic mice indicate that inflammation also
contributes to tau pathology by a cdk5/p25-mediated
pathway [57].

Synaptic and neuronal loss
Synaptic loss is an early event in AD and the best correlate
of cognitive dysfunction [58]. Aberrant cdk5 activity in
AD can also cause dendritic spine loss and disrupt synap-
tic activity. In this regard, phosphorylation of WAVE1 by
cdk5 inhibits WAVE1's activity in spine development and
results in a decrease in mature dendritic spines [59]. In a
transgenic model, prolonged p25 production and cdk5
activation caused severe cognitive deficits that were
accompanied by synaptic and neuronal loss, and
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impaired long-term potentiation [60]. Neuronal death in
AD is also linked to aberrant kinase activity and several
signaling pathways that cascade into cell death have been
identified [61-64]. In a new twist, cdk5 interacts with p53
and increases its stability through post-translational regu-
lation, leading to the accumulation of p53 (particularly in
the nucleus), and on to neuronal death [65]. With respect
to the 'cell cycle-like reactivation' hypothesis, pathological
kinase activity has again been identified [65-67]. Termi-
nally differentiated neurons remain in G0 phase and dis-
play, compared to proliferating cells, an opposite
regulation pattern of cell cycle markers where most of the
key activators and inhibitors are down- and up-regulated,
respectively. Experimental attempts to force terminally
differentiated neurons to divide ultimately leads to their
death. Conversely, cell cycle blockade in experimental
models of neuronal death is able to rescue neurons, sug-
gesting that cell cycle dysregulation is among the mecha-
nisms governing neuronal death. For the p25/cdk5 kinase
complex, a role in this pathological process has been sug-
gested through retinoblastoma protein phosphorylation
and derepression of E2F-responsive genes [68].

Collectively, these findings suggest aberrant kinase activa-
tion is a critical step in the cascade of detrimental events
that both initiate and permit the development of the path-
ogenic events in AD. To tolerate the accumulation of these
dysregulated processes, and allow the blossoming of the
disease phenotype, their functional stability likely
requires a 'buffering' mechanism, as offered by Hsp90 in
malignant transformation. In Figure 1, we present our
view on the putative roles Hsp90 may play in AD. This
model suggests Hsp90 as a master regulator of pathogenic
events leading to AD. We hypothesize that accumulated
amyloid may trigger a cascade of cellular changes, includ-
ing altered kinase activities. These aberrant kinase activi-
ties develop Hsp90-dependency and promote disease
progression. The outcomes of 'Hsp90-sheltered' aber-
rantly activated proteins are tau hyperphosphorylation,
synaptic deficits, and neuroinflammation, salient deter-
minants of the pathological changes of AD that lead to
amyloid deposition, tangle formation, synaptic dysfunc-
tion, and neuronal death.

Conclusion and significance
The bulk of current AD research is focused on possible
interventions along the amyloid pathways. However, this
focused approach may not ameliorate outcomes due to
abnormal tau phosphorylation. In addition, AD is a com-
plex and heterogeneous disease, with a diversity of risk
factors and a multitude of symptoms. In the post-genomic
era, identification of novel molecular targets for AD may
offer the theoretical promise of great specificity coupled
with reduced systemic toxicity, but this highly focused tar-
geting approach faces the potential peril of being unable

to deal successfully with a complex disease, such as AD.
We speculate that targeting Hsp90, part of the cellular
machinery that allows the accumulation and progression
of dysregulated events in AD, could provide a more com-
prehensive approach towards treatment. The model pro-
poses a multifaceted use for Hsp90 inhibitors and
presents a view whereby targeting one protein, Hsp90,
may ameliorate several aspects of the disease. Hsp90 inhi-
bition may restore a multitude of damaged signaling net-
works in the diseased brain by alleviating aberrant
phosphorylation and reducing protein misprocessing.
The ability of Hsp90 inhibitors to simultaneously affect
multiple transforming molecules and pathways is a
unique and therapeutically attractive feature of targeting
this chaperone [69]. These findings suggest that Hsp90
inhibitors might provide a broader, more effective anti-
neurodegenerative therapy than molecules targeting sin-
gle signaling molecules that are the focus of most current
drug discovery efforts. Moreover, the apparent increased
requirement for Hsp90 activity in cancer suggests the real
potential of an exploitable therapeutic index for this
approach in neurodegenerative diseases.

Although a target still in its infancy in AD, Hsp90 has
recently become the focus of several research efforts. It
may take several years until its promise in AD treatment
may come to fruition, and it will likely require concerted
efforts that entail a better understanding of the biology of
Hsp90 in AD, but also the development of small molecule
Hsp90 inhibitors better suited for central nervous system
use.
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