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A B S T R A C T

Immune checkpoint blockade has significantly improved clinical outcomes for patients with non-small cell lung
cancer (NSCLC) and other solid tumours, but many patients do not respond and acquired resistance is common.
Aspects of the tumour microenvironment linked to clinical outcomes include the proportion of tumour-infiltrating
lymphocytes (TIL), tumour programmed death ligand 1 ( PD-L1) score and tumour mutation burden. Adoptive cell
therapy (ACT), a technique that works by infusing ex vivo expanded T lymphocytes to increase the effector cell
pool in tumours, is anticipated to become a viable therapeutic option for patients with solid tumours, akin to
chimeric antigen receptor T cell (CAR-T) therapy in haematological malignancies. TIL therapy has shown durable
clinical responses in heavily pre-treated patients with melanoma and other solid tumours. We review the expe-
rience of ACT with TILs and the recent evidence that clonal neoantigens might be the most relevant immuno-
therapeutic targets in heterogeneous solid tumours such as NSCLC. Clonal (or truncal) neoantigens arise from the
earliest mutagenic events in tumour evolution, and are retained over time in all tumour cells within a patient,
making them the ideal target for T cell therapy. NSCLC has one of the highest clonal mutation burdens of all
cancers through exposure to carcinogens in tobacco smoke, providing a strong rationale to develop clonal neo-
antigen reactive T cells (cNeT) for this indication. The first treatment modality to test this concept clinically is
ATL001, a cNeT product that is derived from autologous TILs and enriched for T cells specifically recognizing
clonal neoantigenic epitopes by selective expansion. Clinical studies of ATL001 will commence in 2019.
Introduction

The most significant recent advancement in the treatment of non-
small cell lung cancer (NSCLC), melanoma, urothelial cancers and
other solid tumours has been the development of monoclonal antibodies
against immune checkpoint molecules to overcome immune evasion, one
of the hallmarks of cancer. Of these, the most successful class of agents
has been programmed death receptor 1 (PD-1)/programmed death
ligand 1 (PD-L1) inhibitors. Activated cytotoxic T cells express PD-1,
which interacts with PD-L1 which is expressed on a proportion of
tumour cells and antigen-presenting cells. When PD-1 binds to PD-L1, T-
cell antitumour activity is effectively suppressed, but the interaction can
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be prevented by using antibodies blocking PD-1 (e.g. nivolumab and
pembrolizumab) or PD-L1 (e.g. atezolizumab, avelumab and durvalu-
mab), allowing T cells to recognize and kill tumour cells.

PD-1 and PD-L1 inhibitors have shown clinical activity in a wide
variety of solid tumours, and are approved for the treatment of mela-
noma, NSCLC, small cell lung cancer, head and neck squamous cell car-
cinoma, urothelial carcinoma, microsatellite instability-high cancer,
gastric cancer, cervical cancer, hepatocellular carcinoma, Merkel cell
carcinoma and renal cell carcinoma. Initial approvals were in the second-
line (or later) treatment setting following disease progression on stan-
dard therapies, but recent approvals are as first-line treatments for mel-
anoma, NSCLC, renal and head and neck cancers, and as adjuvant
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Table 1
Clinical results with combinations of programmed death receptor 1 (PD-1)/programmed death ligand 1 (PD-L1) inhibitors and platinum-based chemotherapy regimens
as first-line therapy for metastatic non-small cell lung cancer (NSCLC)

Clinical study Investigational
agent and
subgroup

Progression-free survival Response rate Median overall
survival

Reference

KEYNOTE-189 (n ¼ 616)
Cisplatin/carboplatin þ pemetrexed � pembrolizumab

Pembrolizumab
Non-squamous
NSCLC
No EGFR/ALK/
ROS-1 mutation

Active Control Active Control Active Control
8.8 months
35% alive and
progression free
at 12 months

4.9 months
18% alive and
progression free
at 12 months

48% 19% NR 11.3
months

[4]

KEYNOTE-407 (n ¼ 559)
Carboplatinþ nab paclitaxel/paclitaxel� pembrolizumab

Pembrolizumab
Squamous NSCLC
No EGFR/ALK/
ROS-1 mutation

6.4 months
31% alive and
progression free
at 12 months

4.8 months
15% alive and
progression free
at 12 months

57% 36% 15.9
months

11.3
months

[5]

Impower150 (Arm B versus C; n ¼ 800)
Carboplatin þ paclitaxel þ bevacizumab � atezolizumab

Atezolizumab
Non-squamous
NSCLC
No EGFR/ALK/
ROS-1 mutation

8.4 months
38% alive and
progression free
at 12 months

6.8 months
20% alive and
progression free
at 12 months

56% 40% 19.2
months

14.7
months

[6]

Impower 131 (Arm B versus C; n ¼ 688)
Carboplatin þ paclitaxel þ bevacizumab � atezolizumab

Atezolizumab
Squamous NSCLC
No EGFR/ALK/
ROS-1 mutation

6.3 months
25% alive and
progression free
at 12 months

5.6 months
12% alive and
progression free
at 12 months

49% 41% 14
months

13.9
months

[7]
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treatments in melanoma.
The PD-1 inhibitor pembrolizumab has greatly improved outcomes

for patients with advanced NSCLC. Its approval for first-line treatment of
patients with metastatic NSCLC with high PD-L1 expression (tumour
proportion score�50%)was based on data from the KEYNOTE-024 study
which demonstrated a response rate of 44.8% versus 27.8% on platinum-
based chemotherapy, progression-free survival (PFS) of 10.3 versus 6.0
months (hazard ratio 0.5; P � 0.001) [1,2] and median overall survival
(OS) of 30.0 versus 14.2 months [3], with fewer grade 3–5 adverse events
than chemotherapy (26.6% versus 53.3%). The addition of pem-
brolizumab to standard platinum-based chemotherapy regimens has also
improved the response rate, PFS and OS compared with chemotherapy
alone, with a safety profile that is similar to chemotherapy alone. Similar
results have been reported for the PD-L1 inhibitor, atezolizumab
(Table 1).

These improvements in clinical outcomes with PD-1/PD-L1 are sig-
nificant, and some patients experience long-term benefit. However,
notwithstanding these encouraging statistics, 45–50% of patients with
metastatic NSCLC do not achieve an optimal response with chemo-
therapy plus PD-1/PD-L1, and ~70% patients experience disease pro-
gression, or die, within 12 months of starting treatment.

Resistance to checkpoint inhibitors may be primary or acquired, and
several mechanisms may contribute to both phenotypes. These are
summarized briefly here and have been the subject of many excellent
reviews [8–11].

Primary resistance may be a result of intrinsically low antigenicity of
the tumour, resulting from low expression of surface antigens or failure to
present them to the immune system via loss of major histocompatibility
complex (MHC) or β₂ microglobulin (B2M). Other mechanisms include
poor T cell infiltration into the tumour, failure of the T-cell recognition
machinery, or functional T cell suppression through other components of
the immune microenvironment such as regulatory T cells (Tregs) or
myeloid-derived suppressor cells (MDSCs). Mutations in tumour cell
signalling pathways such as the IFNγR-JAK-STAT, MAPK, VEGF, PTEN
and PI3K pathways may negatively influence the infiltration and function
of tumour-infiltrating lymphocytes (TIL), dampen antitumour responses,
and reduce the effectiveness of PD-1/PD-L1 inhibitors [12–14].

Acquired resistance may evolve through adaptive loss of antigenicity
(e.g. through loss of tumour neoantigen expression or defective surface
presentation through loss of MHC) and loss of antigen recognition ma-
chinery. The tumour microenvironment changes through treatment; for
example, the checkpoint inhibitor molecule TIM-3 is often co-expressed
with PD-1 on T cells, and its increased expression has been associated
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with the recurrence of lung cancer following PD-1 treatment in both
animal models and patients [15].

There are multiple reports of the positive prognostic significance of
the degree of lymphocyte infiltration in patients with lung cancer and
other solid tumours, and the proportion of intratumoural CD8þ T cells
recognizing tumour neoantigens is an important predictor of outcome to
checkpoint inhibitors [16]. The high tumour PD-L1 levels that are
generally associated with better outcomes for PD-1 inhibitors may also be
a surrogate marker of TIL infiltration; tumour cell PD-L1 expression in-
creases as an adaptive response to immune attack, and its presence on
antigen-presenting cells also signifies an immune response.

For patients with resistant NSCLC following PD-1/PD-L1 inhibitor
plus platinum doublet chemotherapy as first-line treatment, there is
currently no standard second-line treatment for their condition. Adoptive
cell therapy (ACT) might offer a promising alternative approach for these
patients.

Adoptive cell therapy for solid tumours

The genetic modification of blood-derived T cells has been shown to
be effective in the treatment of some haematological malignancies, but
limited activity has thus far been observed in solid tumours. The most
encouraging clinical activity to date has been observed from the use of
non-genetically modified, polyclonal TILs which target multiple epitopes.

TILs have been isolated from multiple solid tumours and expanded ex
vivo for clinical trials since the first reports using this approach in 1986,
which described the efficacy of TIL in mouse models when given in
combination with cyclophosphamide and interleukin-2 (IL-2) [17]. Most
clinical trials were initially conducted in patients with malignant mela-
noma, a tumour which was known to respond to immune-enhancing
treatments such as IL-2 and interferon. In this setting, ex vivo expanded
TIL achieved clinically meaningful results [overall response rates of
40–50% and complete response (CR) rates of 20%], and patients who
achieve CR have demonstrated long-term disease-free survival for many
years [18–25]. In 2019, Sarnaik et al. presented data on the safety and
efficacy of cryopreserved autologous TIL therapy (LN-144, lifileucel) in 66
patients with advanced metastatic melanoma who progressed on multiple
prior therapies including anti-PD-1 [26]. In this heavily pre-treated and
PD-1-resistant group, the response rate was 38%, with 3% CR and 80%
disease control rate. Durable responses were observed, and some responses
were observed in patients with PD-1-negative tumours, suggesting that
ACT with TIL may be an effective option for patients with PD-1-resistant
cancers or cancers with lower immunogenicity.
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There is growing evidence to suggest that the success of TIL therapy is
driven by neoantigen-directed T cells and the number of neoantigens that
are targeted. Cancer neoantigens arise from somatic tumour-specific
mutations and are present in cancer cells but absent from normal cells.
The clinical importance of T cell responses against neoantigens has been
suggested from a number of studies which have detected T cells in both
the TIL and circulating T cell compartments, recognizing neoantigens
arising from tumour-specific mutations in TP53, BRAF and KRAS in pa-
tients with epithelial solid tumours including NSCLC, ovarian and colo-
rectal cancer [27–32]. The tumour mutational load and predicted
neoantigen load have been shown to correlate with clinical outcomes for
TIL therapies as well as PD-1 inhibitors in patients with melanoma,
suggesting that TIL efficacy is driven through neoantigen-reactive T cells
within the product [33].

Recent reports have demonstrated that TIL therapy can deliver a
significant reduction in tumour burden in late-stage cancer patients
suffering from a diverse set of epithelial tumours as well as melanoma. A
response rate of 28% was reported in 18 patients with human papilloma
virus (HPV)-related cervical cancer using HPV-targeted T cells [34], two
of whom had achieved ongoing durable CRs for over 4 years at the time
of the report. In an ongoing study of TIL therapy, a 44% response rate,
with two CRs, was observed among 27 patients with advanced recurrent,
metastatic or persistent cervical cancer [35]. Case histories of durable
remissions have been reported in patients with metastatic colorectal
cancer [36], metastatic cholangiocarcinoma [37] and
chemotherapy-resistant metastatic breast cancer [38]. In the case report
describing the treatment of a patient with cholangiocarcinoma [37], a T
cell product that was 95% reactive to a single neoantigen was responsible
for a durable remission lasting over 35 months, and in the breast cancer
case reported by Zacharakis et al. [38], multiple reactivities against
neoantigens were identified that led to CR lasting over 22 months at the
time of the report. In this last case, other T cells targeting unknown an-
tigens persisted at a relative high frequency after transfer, so the possi-
bility that they also contributed to the observed effect cannot be
excluded.

There have been limited studies of TIL therapies in NSCLC, but its
responsiveness to PD-1/PD-L1 inhibitors and its high mutation burden
suggest that it would be a good candidate for this approach. In 1996, the
first clinical study using TIL therapy in NSCLC was published [39]. TIL
cultures were successfully expanded from tumours removed during
standard surgical procedures from 113 of 118 patients with stage II and
III lung cancer, who were randomized to be treated with TIL in a mon-
otherapy setting (stage II) or in combination with standard chemo-
radiotherapy compared with standard therapy ( stage III). TIL were
expanded to large numbers using high IL-2 doses and were subsequently
infused without any preconditioning regimen. It was shown that pre-
conditioning significantly improves the efficacy of TIL therapy ap-
proaches by giving the TIL space and nutrition to expand and limits the
negative influence of Tregs and MDSCs [40]. Despite these limitations, a
significant improvement in 3-year OS compared with controls was shown
in stage III patients, in whom local relapse was also significantly
improved. Interestingly, the authors noted that the most beneficial
impact of adding TIL therapy was seen in the first 6 months after treat-
ment, which might indicate limited persistence due to poor engraftment
of the transferred cells, or that the infused T cells were exhausted after
this period due to the high IL-2 dose during expansion and/or outgrown
or suppressed by Tregs andMDSCs. Nonetheless, this study was the initial
proof that TIL therapy can be applied successfully to patients with
late-stage lung cancer.

In 2017, Ben-Avi et al. used multiple methods to isolate and expand
TIL cultures in a good manufacturing practices (GMP) environment from
surgically removed tumour samples of five patients with NSCLC [41]. In
contrast to the approach of Ratto et al. [39], after isolation from the
tumour tissue, the TIL were expanded rapidly with anti-CD3 antibody,
IL-2 and irradiated feeder cells resulting in a massive numerical expan-
sion of the TIL producing up to 0.5 � 1010 cells for infusion. The results
3

obtained using these procedures were compared with data from patients
with melanomawho had previously undergone TIL treatment at the same
centre, and it was demonstrated that both TIL populations showed
comparable expansion rates and similar phenotypes, although the TIL
derived from lung cancer contained a higher percentage of CD4þ T cells.
Although this work has limitations as it did not specifically compare
tumour recognition and reactivities between the TIL populations, it
demonstrated that TIL from patients with lung cancer can be expanded to
treatment level under GMP conditions using state-of-the-art protocols.

In 2018, Creelan et al. isolated and expanded TIL from metastatic
tumour tissue from 13 of 14 heavily pre-treated patients with NSCLCwho
were enrolled in a phase I clinical trial [42]. The patients were treated
with nivolumab for 8 weeks, and nine patients with progressive disease
at this time received a lymphodepleting regimen (cyclo-
phosphamide/fludarabine) and were infused with a median of 81 � 109

expanded TIL. Patients then received six doses of IL-2 and nivolumab
maintenance treatment. In this initially nivolumab-refractory population,
seven of nine patients showed a reduction in tumour size compared with
baseline, with three partial responses and one pathological CR. Four
patients remained on treatment after 6–15 months of follow-up.

These reports demonstrate that it is feasible to isolate TIL from NSCLC
metastatic lesions and expand them ex vivo for adoptive T-cell treatment
within a clinical trial setting, with some encouraging early signals of
clinical activity in heavily pre-treated and PD-1-resistant patients.

Genetic landscape of NSCLC and emerging importance of clonal
neoantigens as a therapeutic target

Tumour-specific neoantigens arise frommutations that accumulate in
tumours over time, and have been demonstrated to elicit T cell responses
within the patient. These neoantigens are thought to be the major con-
tributors to the clinically relevant responses that have been documented
following treatment with immune-therapeutic approaches [43]. Tumours
with the highest mutational burden present more tumour neoantigens to
the host and appear to be more susceptible to immunotherapy [16,44].

Recent data from the TRACERx study suggest that clonal mutations
arising from the earliest transforming mutagenic events are retained in
all the subclones despite the acquisition of more mutations during the
natural history of the tumour due to evolutionary or therapeutic selection
pressures [45]. Therefore, the clonal mutations are present in all cancer
cells of a patient, whereas subclonal mutations are present in only a
proportion of the cancer cells. Theoretically, T cells targeting a single
clonal neoantigen could lead to complete tumour regression if all of the
cells express and present the antigen targeted.

The lung cancer genome is sculpted by a complex system of exoge-
nous and endogenous mutagenic forces, resulting in intratumour het-
erogeneity upon which local natural selection pressures can act. This
process is commonly initiated and fuelled by the >60 carcinogens found
in tobacco smoke, which induce ~150 mutations per year in people who
smoke 20 cigarettes per day [46]. The average mutation frequency
is > 10-fold higher in smokers than in never-smokers [47].

This accelerated mutagenic rate fuels an evolutionary search that
invariably converges on key mutations [48], which themselves signifi-
cantly alter the evolutionary potential of a tumour [49,50]. The most
common early events marking the emergent founding clone are
loss-of-function TP53 mutations (61.7% of 4678 NSCLC samples in 18
studies [51]), and the mutations responsible for this loss of function are
frequently attributable to tobacco smoke [52]. Due to the aetiological
heterogeneity of NSCLC [53], tumours harbour other early events
including mutations of KRAS (22%), STK11 (12.5%), KEAP1 (15.6%),
EGFR (14.5%), BRAF (6%) and MET (3.9%) [45,54–56].

In general, the patterns of genomic alterations are markedly distinct
between lung adenocarcinomas and lung squamous cell carcinomas [57].
Of the 58 significantly mutated genes in both tumour types, only six are
common to both: TP53, RB1 [58], ARID1A, CDKN2A, PIK3CA and NF1
[59]. KRAS and EGFR mutations are essentially restricted to lung
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adenocarcinomas, and EGFR mutations are enriched in females and
non-smokers [59–61]. Notably, the tumour mutation burden is markedly
lower in patients with EGFR, ALK, RET or ROS1 mutations [34].

TP53 mutations are associated with whole-genome duplication [60],
a common early event in NSCLC [45,57–61], and aneuploidy in general
[62]. This genomic instability may generate a profusion of neoantigens,
which in turn fuel an ‘arms race’ of immune predation and evasion
[63–65]. Two recent reports demonstrated that T cell responses against
oncogenic drivers like P53 and BRAFN581I can be detected in patients
with NSCLC [27,28]. Ultimately, this explosion of diversity and ensuing
competition commonly leads to punctuated evolution and the emergence
of a dominant clone [66], and it is this set of clonal mutations that are
passed on to future generations of tumour cells.

The clonal mutation burden has clinical consequences. Patients with
NSCLC whose tumours contain large numbers of these original clonal
mutations appear to have a survival benefit on treatment with PD-1 in-
hibitors compared with patients whose tumours are dominated by sub-
clonal mutations [44], suggesting that T cell responses are more effective
in these cases. This publication also demonstrated that T cells recognizing
clonal neoantigens can be successfully isolated from patients with
NSCLC. Two further recent publications have suggested that the number
of these non-synonymous clonal mutations is the driver of disease-free
survival in patients with early-stage NSCLC [67,68]. These data suggest
that specifically targeting clonal neoantigens with TIL might result in
enhanced clinical benefit. To prove this hypothesis, clinical data are
needed in multiple patients with lung cancer. Higher clonal neoantigen
burdens are associated with cytotoxic T lymphocyte and Treg infiltration,
and a relative paucity of Th2 cells and cancer-associated fibroblasts [69].
The fundamental mechanisms mediating these phenomena remain
obscure, although recent evidence suggests that an effective antitumour
T cell response requires optimal effector-to-target ratios which are, in
part, defined by the clonal neoantigen fraction [70,71].
Median number of non-silen

M
ed

ia
n 

Le
uk

oc
yt

e 
fra

ct
io

n

0

0.1

0.2

0.3

0.4

0 0.5 1.0 2.0

NSCLC non-smoking

TNBC

Kidney (RCC)

Breast

CRC

Cervix

Liver

Pancreas

EndometrialKidney (all)
Prostate

Thyroid

HN

Brain

Figure 1. Correlation between tumour mutational burden and tumour immune infiltr
coding somatic mutations per megabase (MB) of DNA and the corresponding median
scale. Each circle is shaded to reflect the median proportion of clonal mutations for tha
burden. NSCLC, non-small cell lung cancer; TNBC, triple negative breast cancer; HN
cancer; CRC, colorectal cancer; RCC, renal cell carcinoma. Sources: Thorsson et al. (Im
and Cortes-Ciriano et al [73,74] (Nature communications 2017; 8:15180)

4

Rationale to develop a cNeT product for the treatment of NSCLC

A therapeutic approach of identifying clonal neoantigens, priming
TILs ex vivo to recognize them and treating patients with their own
expanded clonal neoantigen-reactive T cell (cNeT) product is expected to
effectively enhance the ability of the immune system to attack all of the
tumour cells in the body, and overcome the problem of intratumoural
heterogeneity, as clonal neoantigens are present in all tumour cells and
are the most relevant therapeutic targets for T cells.

There are some challenges to developing a cNeT product, including
the identification of clonal neoantigens, and the development of a scal-
able manufacturing process to provide a product made up of T cells that
are capable of expansion and persistence over time, and can maintain
their functional effector phenotype in vivo. First-generation TIL therapies
have demonstrated the ability of the cells to home to and penetrate into
tumours in different locations. The resistance mechanisms to immune
checkpoint inhibitors may also be relevant to TIL products, including
tumour expression of PD-L1, TIM-3 or other immune checkpoint mole-
cules; reduction in interferon signaling; decreased expression of neo-
antigens over time [67]; and loss of antigen-presenting machinery. An
example of this is the case report of a patient with colorectal cancer cited
previously, who initially responded to TIL therapy but relapsed some
months later due to loss of human leukocyte antigen expression in one
lesion [36]. It is currently estimated that <2% of mutations in gastro-
intestinal cancers are immunogenic [72]. One way to overcome some of
the challenges associated, for example, with human leukocyte antigen or
B2M loss is to develop a manufacturing process that generates multiple
cNeT clones targeting a variety of clonal neoantigens per patient,
including CD4þ and CD8þ T cells in the final product. In addition,
thorough analysis of tumour specificity of the clonal mutation targeted
must be undertaken to ensure that the mutation is not present in normal
cells.
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NSCLC is an ideal candidate tumour to develop and test a cNeT
product, and Creelan et al. have demonstrated that it is possible to
manufacture TIL products consistently from tumour tissue from patients
with lung cancer. In addition to the observations that NSCLC has a high
tumour mutation burden, high T cell infiltrate and high PD-L1 expres-
sion, smoking-related NSCLC has a very high clonal mutation burden
compared with other tumours and compared with NSCLC that is not
caused by smoking (Figure 1).

ATL001 is a cNeT product derived from autologous TIL isolated from
tumour tissue, which are then enriched through the selective expansion
of T cells specific for clonal neoantigen epitopes expressed by the
patient's tumour.

In the ATL001 manufacturing process (VELOS™), autologous TIL are
isolated from a sample of the patient's tumour. In addition, samples from
the patient's tumour and blood are analysed using whole-exome
sequencing and RNA sequencing which enables the identification of
candidate clonal neoantigens, potentially presented on MHC class I and
class II, using the proprietary PELEUS™ bioinformatics platform. Den-
dritic cells (DCs) isolated from the patient's blood are loaded with pep-
tides corresponding to the patient-specific clonal neoantigens, and are
subsequently cultured with the patient's TIL derived from tumour frag-
ments. By harnessing the basic immunological principles of DC-based
specific expansion to activate and expand T cells which recognize their
cognate patient-specific clonal neoantigens, this process results in the ex
vivo expansion of cNeT which can be re-infused to the patient (Figure 2).

ATL001 is designed to target multiple clonal neoantigens expressed
on all tumour cells and absent from healthy tissue, on a personalised
basis, in contrast to gene-modified approaches which are largely limited
to single shared antigens that are not expressed on all cancer cells. As DCs
present antigens through both MHC class I and class II, the product
contains a mixed population of CD4þ and CD8þ T cells, both of which
have been shown to be important for maintenance of long-term cytotoxic
responses.
5

Two clinical studies of ATL001 have been initiated:

� ATX-NS-001 (CHIRON), a phase I/IIa study to evaluate the safety and
clinical activity of cNeT in patients with advanced NSCLC (ClinicalT
rials.gov Identifier: NCT04032847); and

� ATX-ME-001 (THETIS), a phase I/IIa study to evaluate the safety and
clinical activity of cNeT in patients with metastatic or recurrent
melanoma following treatment with a PD-1 inhibitor (ClinicalT
rials.gov Identifier: NCT03997474).

The primary objective of these trials is to establish the safety of cNeT
therapy; the tolerability and clinical activity will also be explored. In each
study, patients will be treated with standard therapies for their condition,
which will include a PD-1 inhibitor prior to receiving the product. Pa-
tients will undergo a non-myeloablative lymphodepletion regimen of
cyclophosphamide and fludarabine, after which they will receive a single
infusion of cNeT followed by a short course of IL-2.

Summary

Recent data emerging from longitudinal studies of lung cancer evo-
lution, particularly the TRACERx study [45], have highlighted the po-
tential of neoantigens, specifically clonal neoantigens, as emerging
therapeutic targets for NSCLC and other solid tumours. As confidence in
identifying clonal neoantigens increases, so does the potential to create a
personalized cell therapy product directed against multiple clonal neo-
antigens, which may overcome the barriers of tumour heterogeneity and
immunoediting. As clonal neoantigens may be present on all tumour cells
but not normal tissues, and because TIL are not genetically modified,
clonal neoantigen-reactive T cells are anticipated to be better tolerated
than engineered T cell products. It is hoped that cNeTs may eventually
offer a therapeutic option for patients with NSCLC who have become
resistant to PD-1/PD-L1 inhibitors.

http://ClinicalTrials.gov
http://ClinicalTrials.gov
http://ClinicalTrials.gov
http://ClinicalTrials.gov
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