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Heterotrophic bacteria play a major role in organic matter cycling in the

ocean. Although the high abundances and relatively fast growth rates of

coastal surface bacterioplankton make them suitable sentinels of global

change, past analyses have largely overlooked this functional group. Here,

time series analysis of a decade of monthly observations in temperate

Atlantic coastal waters revealed strong seasonal patterns in the abundance,

size and biomass of the ubiquitous flow-cytometric groups of low (LNA)

and high nucleic acid (HNA) content bacteria. Over this relatively short

period, we also found that bacterioplankton cells were significantly smaller,

a trend that is consistent with the hypothesized temperature-driven decrease

in body size. Although decadal cell shrinking was observed for both groups,

it was only LNA cells that were strongly coherent, with ecological theories

linking temperature, abundance and individual size on both the seasonal

and interannual scale. We explain this finding because, relative to their

HNA counterparts, marine LNA bacteria are less diverse, dominated by mem-

bers of the SAR11 clade. Temperature manipulation experiments in 2012

confirmed a direct effect of warming on bacterial size. Concurrent with

rising temperatures in spring, significant decadal trends of increasing standing

stocks (3% per year) accompanied by decreasing mean cell size (21% per year)

suggest a major shift in community structure, with a larger contribution of

LNA bacteria to total biomass. The increasing prevalence of these typically oli-

gotrophic taxa may severely impact marine food webs and carbon fluxes by an

overall decrease in the efficiency of the biological pump.
1. Introduction
Climate change is significantly affecting the oceans. Either directly or indirectly

[1], the effects of warmer temperatures on marine biota are multiple, but most

reports either tackle poleward displacement of lower-latitude species [2] or

changes in physiological properties resulting in ecosystem rearrangements

[3–5]. Recently, changes in various components of marine food webs, from

phytoplankton to mammals [6–8], have been documented, but few reports to

date [4] have included the smallest life forms, in spite of their overwhelming

importance for standing stocks and biogeochemical cycles [9]. Microbial long-

term observations [10] are strongly needed to complement data previously

available only for larger groups (phytoplankton and zooplankton).
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Heterotrophic prokaryotes dominate the ocean’s living bio-

mass [11], mostly comprising Bacteria rather than Archaea

in upper layers [12]. In flow cytometric analyses, bacterio-

plankton cluster into two groups of cells with different

nucleic acid content [13,14]. These low (LNA) and high nucleic

acid (HNA) groups match bimodal distributions of bacterial

genome size [15]. Following universal size–genome relation-

ships [16], HNA bacteria are generally bigger than their LNA

counterparts [13,17]. Their ecological significance is still

debated, but the emerging consensus is that they represent

different lineages [18,19].

Biomass is the combination of abundance and individual

size. Although relationships between abundance, body size

and temperature are complex [20], two general ecological

principles apply: (i) higher abundance is associated with smal-

ler size [21], referred to hereinafter as the abundance–size rule

(ASR); and (ii) higher ambient temperature results in smaller

individuals according to the temperature–size rule (TSR)

[22], little studied in unicellular organisms [23]. While the

underlying mechanism for the ASR is clear (constant biomass

at a given level of resources implies that if there are more organ-

isms these should be smaller), the causes for the TSR are more

elusive, with several alternative hypotheses (e.g. [24]). We

recently assessed the validity of these two rules to explain

changes in phytoplankton size-structure using data collected

across the North Atlantic [25]. Similar to that study, in which

changes in the overall phytoplankton size community compo-

sition rather than intraspecific changes were addressed, we

provide here one of the first attempts to detect shifts in the

composition and size of planktonic heterotrophic bacteria.

Although claims have been made that body size will univer-

sally decrease as a consequence of climate change [26,27],

studies targeting the smallest life forms are lacking. Here,

we explored the seasonal and interannual patterns of LNA

and HNA bacteria, focusing on their temperature responses

through the ASR and TSR, in a 10-year oceanographic dataset

from the southern Bay of Biscay continental shelf, in order to

shed light on future directions of change of microbial plankton.
2. Material and methods
(a) Environmental variables
The study site on the Southern Bay of Biscay continental shelf

(43.678 N, 5.588 W, bottom depth 110 m) off Xixón, Spain, has

been monitored monthly since 2001 as part of a time series pro-

gramme. Physico-chemical and environmental characterization is

detailed in [17]. The depth of the upper mixed layer was deter-

mined as that where more than or equal to 0.05 kg m23 density

increase over 5 m was first observed. A stratification index was

calculated as the per-metre difference in temperature between

the surface and 75 m.

(b) Bacterioplankton abundance, cell size and biomass
Bacterioplankton samples were taken at 10–25 m intervals from

April 2002 to March 2012, and analysed with a FACSCalibur

(BD) flow cytometer as described in detail in [17]. Briefly, LNA

and HNA cells were distinguished after nucleic acid staining in

green fluorescence versus right-angle light scatter (RALS) cyto-

grams (electronic supplementary material, figure S1a). Bacterial

abundance (cells ml21) was estimated after daily calibrating

the flow rate. When present, the high natural fluorescence of

Prochlorococcus due to photosynthetic pigments prevented over-

lap with the HNA cluster in red versus green fluorescence
cytograms (electronic supplementary material, figure S1b). Cell

size (mm3) was obtained with an empirical calibration between

cell diameter and mean RALS, because of its higher sensitivity

[28] compared with forward angle light scatter, assuming spheri-

cal shape [17]. This assumption may have introduced biases

especially in rods or curved rods such as most SAR11 cells, abun-

dant in our samples (see below). Cell size was converted into

biomass using [29]: pg C cell21 ¼ 0.12 � cell size0.72. LNA and

HNA bacterial biomass (mg C l21) was fundamentally driven

by changes in abundance.

(c) Quantification of SAR11 phylotype in environmental
samples

The contribution of the SAR11 clade to total abundance was

assessed by catalysed reporter deposition fluorescence in situ
hybridization (CARDFISH). For CARDFISH analysis, 4.5 ml

samples were collected monthly in 2012, fixed with 3.7% formal-

dehyde for 3 h, filtered onto 0.2 mm pore-size polycarbonate

filters and frozen until analysis. Hybridization was performed as

described in [30] using the probe SAR11–441R targeting the

SAR11 cluster [31]. Counterstaining of CARDFISH prepara-

tions was done with 4,6-diamidino-2-phenylindole (DAPI) at

50 mg ml21. Cells were counted with a Leica DM 5500 B epifluores-

cence microscope and pictures were taken with a Leica DFC 360FX

monochromatic camera. The abundance and size of SAR11-positive

cells were calculated using ACMETOOL2 image analysis software [32]

and the algorithm by Massana et al. [33], which yielded length and

width of each cell subsequently used for estimating biovolume.

(d) Time series analysis
Time series analysis was conducted with bacterial and environ-

mental properties averaged for the upper mixed layer, with

minima usually observed in summer (15+1 m s.e.) and maxima

in winter (58+8 m). We used an additive decomposition time

series model [34] to detect seasonal and long-term components.

The variability of the time series (X ) was expressed as

X ¼ �xþ btþ aþ SAicos
2pt
Ti

� �
þ ui

� �
þ wit þ 1t,

where the time series was represented by the climatological mean

(�x), the linear trend with the slope (b) and intercept (a) of the linear

regression with time (t), the periodic components amplitude (Ai),

period (Ti) and phase (ui), the autocorrelation coefficients bet-

ween consecutive values (wit) and the unexplained residuals (1t).

We used the Fisher G-test for assessing the significance of periodic

components. Correlation analysis between variables was sub-

sequently made with the pre-whitened residuals (i.e. once we

had filtered out the seasonal and long-term components and

adjusted for autocorrelation). Decadal trends were also computed

with annual averages.

(e) Temperature – size experiments
In 2012, we performed 12 monthly incubations with surface

samples from the same site aimed at determining the bacterial

response to temperature, both in the presence of the whole

microbial community and with bacteria only, after pre-filtering

the sample through 0.8 mm pore-size filters. Triplicate bottles

(2 l) were incubated at three temperatures (in situ, 238C and

þ38C), and samples for estimating LNA and HNA abundance

and cellular properties were taken twice per day for 5–10 days.

Although seasonally very similar, we will include here only the

results of the filtered incubations to exclude trophic interactions

with other components. Healthy bacterial populations were invari-

ably found, which started to grow shortly after confinement. HNA

cells grew always faster than their LNA counterparts. The slopes of
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Figure 1. Seasonal variations of temperature and bacterioplankton. Monthly
mean+ s.e. values of (a) temperature, and (b – d) total, LNA and HNA
(b) bacterial abundance, (c) bacterial size, (d ) bacterial biomass and
(e) per cent contribution of LNA bacteria to total biomass in the upper
mixed layer of the study site for the April 2002 – March 2012 period.
Fitted curves represent statistically significant seasonality detailed in table 1.
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3. Results
Overall, bacterial abundance ranged from 1.2 to 31 �
105 cells ml21, with HNA cells being slightly more abundant

(mean 54+1% s.e.). The vertical decrease in abundance was

more marked from 40 m downwards (electronic supplemen-

tary material, figure S2a). Mean bacterial cell size ranged

from 0.032 to 0.115 mm3 (electronic supplementary material,

figure S2b), with HNA cells significantly higher than LNA

(0.056 and 0.050 mm3, respectively, paired t-test, p , 0.001,

n ¼ 114). Mean cell sizes reached a minimum at 40 m and

then increased slightly down to the seafloor. Larger sizes

were significantly correlated with higher nucleic acid content

(electronic supplementary material, figure S3).

(a) Seasonal patterns
Temperature displayed a marked seasonality (figure 1a), with

the 12-month periodic component explaining 80% of total var-

iance (table 1). HNA bacteria had no persistent cyclical

components, whereas LNA bacteria showed a statistically sig-

nificant annual cycle explaining 25% of total variance (figure 1b
and table 1). The spring and autumn peaks in total bacterial

abundance (approx. 106 cells ml21; figure 1b) and biomass

(approx. 16 mg C l21; figure 1d) were characterized by a differ-

ent relative contribution of both groups, resulting in a strong

seasonality of the percentage contribution of LNA cells to bac-

terial biomass (figure 1e). Earlier work had already shown a

very strong seasonal signal of the percentage of HNA cell abun-

dance, with approximately 40% minima in summer and

maxima more than 80% around April [17], which is definitely

confirmed with this larger dataset. However, little was known

about the temporal variability in HNA and LNA bacterial cell

size, and no prior attempt had been made at relating their

seasonal and long-term patterns to temperature. Bacterial cell

size had significant seasonal components for LNA and total

bacteria (figure 1c and table 1), with maxima and minima

lagged by roughly one month because of the marked

summer peak in HNA cell size. For LNA bacteria, seasonal pat-

terns of abundance and size were roughly opposite, and pooled

LNA cell abundance and size were negatively correlated

(r ¼ 20.33, p , 0.001, n ¼ 114). LNA cell size was also nega-

tively correlated with temperature (r ¼ 20.19, p ¼ 0.044, n ¼
114). Other variables concurrently measured and potentially

relevant for bacteria include total chlorophyll (size-fractionated

also since 2003), inorganic nutrient concentrations and

stratification index. Briefly, marked stratification from June

to October was accompanied by strong nutrient limitation,

resulting in low chlorophyll and picophytoplankton domi-

nance. Chlorophyll usually peaked around March–May,

with greater contributions of the larger size-fractions. The var-

iance decomposition of these ancillary variables is shown in

electronic supplementary material, table S1.

(b) Comparison between SAR11 and flow-cytometric
groups

Both the abundance and individual size of SAR11 bacteria cov-

aried positively with flow-cytometric LNA cell values but not

with those of HNA cells (electronic supplementary material,
figure S4a–d), strongly suggesting that LNA cells were mainly

composed of SAR11 bacteria. If all SAR11 cells were in the

LNA cluster, as current knowledge supports (see Discussion),

their mean annual contribution to LNA bacterial abundance

would be 74%+16%. With regard to size, although strongly

correlated (electronic supplementary material, figure S4c), the

mean 28% lower size of LNA compared with that of SAR11

cells should not be attributed, in our opinion, to the presence

of smaller bacteria, but to the different methods used (flow

cytometry versus microsocopic image analysis).

(c) Long-term trends
In addition to the seasonal patterns, we also identified conspic-

uous decadal trends (table 1). Figure 2 shows them as linear

regressions of annual mean values (electronic supplementary

material, table S2). In two cases (total bacterial abundance

and LNA bacterial biomass), annual mean values increased

significantly with time although the variance decomposition

of the whole time series failed to find linear trends. The increase

in annual mean temperatures was not significant, partly



Table 1. Variance decomposition of the upper mixed layer bacterial times series (April 2002 – March 2012) at the study site for total, LNA and HNA cells, and
the percentage contribution of LNA cells to total biomass (%LNA biomass). Abundance (cells ml21), size (mm3) and biomass (mg C l21) variables were log10

transformed. Only significant ( p , 0.05) variance components are shown, indicating the fraction of total variance accounted for (%var). Slope (b), intercept (a),
period in months (T ), amplitude (A), phase in radians (u), time when maximum value occurs in months (Tmax), autocorrelation coefficient (F). Lag in months.

linear trend periodic components autocorrelation
total

variable mean b a %var T A u Tmax %var lag F %var %var

temperature 15.7 — — — 12 3.89 4.26 8.13 80.43 1 0.34 2.28 82.71

total abundance 5.83 — — — — — — — — 1 0.20 4.32 4.32

LNA abundance 5.47 0.016 232.50 2.63 12 0.19 4.69 8.95 25.50 — — — 28.13

HNA abundance 5.55 — — — — — — — — — — — —

total size 21.27 20.005 10.53 8.73 12 0.04 2.92 5.58 26.31 — — — 35.04

LNA size 21.29 20.004 7.25 4.19 12 0.04 2.44 4.67 31.84 — — — 36.05

HNA size 21.24 20.007 13.17 7.07 — — — — — — — — 7.07

total biomass 1.02 — — — — — — — — 1 0.21 4.77 4.77

LNA biomass 0.65 — — — 12 0.18 4.56 8.72 23.01 — — — 23.01

HNA biomass 0.76 — — — — — — — — — — — —

%LNA biomass 44.2 0.59 21179 2.58 12 8.40 5.00 9.54 31.32 — — — 33.90
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because of the large weight of outliers in low-frequency moni-

toring. Examining monthly temperature changes (data not

shown), the only consistent period of warming extended

from April through July, with October and November pre-

senting cooling trends. Once in September and twice in

October, coastal upwelling caused notable cooling. Conse-

quently, we considered also mean temperatures for the

April–July period, coincident with the steepest yearly increase

(figure 1a). A significant decadal warming of approximately

1.58C became apparent for April–July mean temperatures

(figure 2a), while mean values for the rest of the year showed

a non-significant decrease. The large differences between the

annual and spring–early summer temperatures in 2007 and

2011 (figure 2a) were largely due to the above-mentioned

strong upwelling events, decreasing almost 48C the expected

monthly values. The abundance of LNA cells increased signifi-

cantly during the decade (figure 2b), adding approximately 3%

to the variance explained by seasonality (table 1). Although

HNA cells did not show persistent cyclical components, the

negative decadal trend in HNA cell size explained a larger per-

centage of variance than declining LNA cell size, also reflected in

steeper slopes (table 1; electronic supplementary material, table

S2). Total bacterioplankton cell size decreased consistently from

2002 to 2012 (equivalent to approx. 1% shrinking per year) as a

combined consequence of the sustained decrease in the size of

both groups (figure 2c) and the positive trend in the abundance

of the smaller LNA bacteria, which also increased significantly

in biomass when annual values were considered (figure 2d; elec-

tronic supplementary material, table S2). The mean contribution

of LNA cells to total bacterial biomass significantly increased

from 40 to 47% between 2002 and 2012 (figure 2e and table 1;

electronic supplementary material, table S2).

(d) Residual analysis
The correlations between pre-whitened residuals of bacterial

properties and selected environmental variables are shown

in table 2. Temperature residuals were significantly correla-

ted with both LNA and HNA cell size residuals, but
negatively in the former and positively in the latter. Although

the relationship between temperature and the contribution of

LNA bacteria to total biomass was not significant, a signifi-

cant correlation was found with LNA cells contribution to

total numbers (r ¼ 0.21, p ¼ 0.021, n ¼ 120). The residuals of

the contribution of LNA bacteria to total biomass were also

positively correlated with those of stratification index and

nitrate concentrations, and negatively with total chlorophyll.

The latter correlation became more negative with the absolute

and relative concentrations, of chlorophyll in the micro-

plankton size class. Total and size-fractionated chlorophyll

residuals were also variably associated with the residuals of

LNA and HNA cells, summarized by a negative effect of

total chlorophyll on HNA cell size (and positive on HNA

abundance) and a positive effect on LNA cell size, more

marked with large than small phytoplankton.

(e) Temperature – size experiments
The 68C gradient in experimental temperature generally resulted

in smaller bacterial cell sizes, both for LNA (eight out of 12 exper-

iments) and HNA cells (nine experiments), as indicated by

negative slopes in the cell size versus temperature linear

regressions. The respective monthly cell size versus temperature

changes were significantly correlated for both groups (figure

3a), with an average 2.2-fold higher decrease in HNA than in

LNA cells. Both groups showed highly coherent cell size decreases

with temperature from March to September (data not shown),

particularly marked for spring–early summer (n¼ 4), with

mean values of 20.00041 and 20.00091 mm38C21 in LNA and

HNA bacteria, respectively. Figure 3b shows that mean values

of bacterial cell size and temperature for the April–July period

of the time series were also significantly and negatively correlated.
4. Discussion
The decadal time series analysis of the LNA and HNA bacte-

rial groups indicates that seasonal changes in the abundance
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Figure 2. Long-term trends of temperature and bacterioplankton. Annual
(April – March) mean+ s.e. values of (a) temperature, and (b – d) total,
LNA and HNA (b) bacterial abundance, (c) bacterial size, (d ) bacterial biomass
and (e) percentage contribution of LNA bacteria to total biomass in the upper
mixed layer of the study site. Filled symbols in (a) represent average temp-
eratures for the April – July period. Error bars for this period are not shown
but were on average 48% higher than the annual mean s.e. values. Fitted
continuous lines represent significant trends detailed in electronic
supplementary material, table S1.
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and cell size of the LNA group were coherent with both

the TSR and the ASR (i.e. more abundant and smaller LNA

bacteria were found during the warmest months). Although

the ASR is based on energetic equilibrium, which probably

does not hold in a seasonally varying environment, the

analysis of the entire LNA bacteria dataset is consistent

with the general ASR prediction that the higher the abun-

dance, the smaller the size of an organism [21]. Based on

the good agreement between the size of LNA and SAR11 bac-

teria, the latter derived from the more precise image analysis of

DAPI-stained samples (electronic supplementary material,

figure S4c), our assumption of spherical form in flow cytometry

data probably had a minor effect on biovolume estimates, at

least regarding the relative differences between groups and

over time that were the object of this study.
We explain the coherent behaviour of the LNA cells by their

lower diversity (electronic supplementary material, figure S5),

probably dominated by a single alphaproteobacterial clade,

SAR11 (electronic supplementary material, figure S4), as pre-

viously found [18,31,35]. Genome sizes of cultured SAR11

strains would place them neatly in the LNA rather than the

HNA cluster [36,37]. In a large cross-Atlantic survey, LNA

populations were invariably dominated by SAR11, while

HNA cells were phylogenetically diverse, including members

of Bacteroidetes, Gammaproteobacteria and other Alphapro-

teobacteria lineages [18]. Numerous ecotypes with different

metabolic functions and temperature dependences are

grouped under the SAR11 lineage [38,39], which could help

explain the slightly higher presence of SAR11 in winter in the

Pacific [40], contrary to common observations of summer

abundance maxima [38,41] (this study). At our site, two

SAR11 ecotypes were found among the top 10 most abundant

bacterial OTUs (plus eight more in the top 100) in a 3.5-year

survey [42]. Their biogeochemical roles and the existence of

differing long-term trends exceed the scope of this study, but

are part of ongoing efforts. On the contrary, the higher diver-

sity (electronic supplementary material, figure S5) and

marked species succession within HNA cells [18,19] may be

related to the absence of seasonality and of significant corre-

lation between abundance and size. Lack of bacterial time

series through sufficiently extended periods precludes asses-

sing the generality of our observations. Yet there is evidence

of seasonally recurring patterns in phylogenetic community

composition in temperate systems [43,44], including our own

site [42]. These cyclical changes can also be discerned in the

much coarser flow cytometric classification (figure 1).

While 10 years were too short to find sustained warming

of the upper mixed layer, in recent decades, the oceans have

warmed up at an unprecedented pace (e.g. [45]). Extended

analysis (electronic supplementary material, figure S6) and

longer records just 50 km eastwards show that the southern

Bay of Biscay is no exception, with an approximate 0.058C yr21

increase [46] comparable with other latitudes. This increase has

not been homogeneous and our results indicate that significant

spring–early summer warming (figure 4a) was accompanied

by non-significant cooling for the rest of the year. Seasonally

uneven warming is widespread, with reports for our study

area consistently agreeing on the preponderance of higher

summer temperatures over winter values, including the whole

northwestern European continental shelf [47], the Iberian

Peninsula [48] and the above-mentioned nearby site [49].

Based on monthly snapshots rather than continuous measure-

ments, decadal trends were more compelling for bacterial

characteristics than for temperature, probably due to the fact

that bacterioplankton integrate environmental forcing over

periods longer than days. Nevertheless, the inverse relationship

found between spring–early summer mean temperatures and

bacterial sizes (figure 3b) might be linked to the period of the

year in which larger decreases in LNA and HNA cell volume

with experimental temperature were observed (figure 3a).

We are not aware of previous studies concurrently asses-

sing temporal trends of marine bacterioplankton abundance

and cell size. The few reported time series of heterotrophic

bacteria are mostly restricted to coastal temperate waters, for

which consistent interannual decreases [50] and increases in

abundance [51] were associated with parallel changes in phyto-

plankton standing stocks. Recent increases in heterotrophic

bacteria and picophytoplankton in polar environments were



Table 2. Pearson correlation coefficients between the pre-whitened residuals of heterotrophic bacterioplankton and selected environmental variables. SI,
stratification index; NO3, nitrate concentration; Chl, total chlorophyll; pChl, chlorophyll smaller than 2 mm; nChl, chlorophyll 2 – 20 mm; mChl, chlorophyll larger
than 20 mm; %pChl, %nChl and %mChl, percentage contribution to Chl of pChl, nChl and mChl, respectively. n ¼ 114.

total
abund

LNA
abund

HNA
abund

total
size LNA size HNA size

total
biomass

LNA
biomass

HNA
biomass

%LNA
biomass

temperature — — — — 20.19* 0.26** — — — —

SI — — 20.23** 0.19* — 0.34*** 0.23*

NO3 20.23* — 20.31** — — — 20.22* — 20.30** 0.31**

Chl — — 0.18* — 0.19* 20.25** — — — 20.19*

pChl — — — — — — — — — —

nChl 0.22* — — — — — 0.23* — 0.18* —

mChl — — 0.25** — 0.27** — — — 0.23* 20.27**

%pChl — — — 20.19* 20.23* — 20.19* — — —

%nCHl — — — — — — — — — 0.22*

%mChl — — 0.19* — 0.20* — — — — 20.27**

***p , 0.001; **p , 0.01, *p , 0.05.
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Figure 3. (a) Comparison between cell size change versus temperature (ccc-
temp) for LNA and HNA bacteria in experimental incubations with surface
samples taken in 2012. Darker symbols represent results from April through
July. Fitted line: HNAccc-temp ¼ 20.0002 þ 1.19 LNAccc-temp, r2 ¼

0.41, p ¼ 0.024, n ¼ 12. Dashed lines represent no change (0 slope of
the linear regression, more details given in the text). (b) Relationship
between mean values of bacterial cell size and temperature for the period
extending from April through July of the 10 years of available data. Fitted
line: April – July cell size þ 0.098 2 0.024 April – July temperature, r2 ¼

0.52, p ¼ 0.017, n ¼ 10.
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explained by enhanced sea ice melting and decreased nutrient

supply [52], which can still lead to higher primary production,

largely channelled through dissolved organic compounds

usable by bacteria [53]. Availability of resources for bacterial

uptake could be an alternative hypothesis to temperature

explaining the observed trends. Using phytoplankton as a

proxy for resource availability, high values should result in

high bacterial abundances [54]. This could explain the spring

peaks in HNA bacterial abundance (figure 1b), positively

correlated with chlorophyll (r ¼ 0.18, p ¼ 0.048, n ¼ 114; see

also table 2). However, no correlation was found with LNA

cells, and neither total chlorophyll nor any size-fraction

showed decadal trends (electronic supplementary material,

table S1). Recent work concurs that LNA cells are spatio-tem-

porally independent of phytoplankton, at least at short scales

[38,55], although a study in the Pacific has found positive

correlations of SAR11 with DOC and primary production [40].

LNA/SAR11 cells could also have benefitted from environ-

mental conditions related to high temperature, such as low

inorganic nutrients content and high light, foreseen to expand

in the future ocean [1,56]. Although environmental variables

other than temperature also showed seasonal and long-term

trends (electronic supplementary material, table S1), the only

ones that changed intra- and interannually coherently with

bacterial properties were inorganic nutrient concentrations.

However, while the seasonal patterns of NO3 and PO4 and

LNA cell abundance were roughly opposite (cf. table 1; elec-

tronic supplementary material, table S1), both nutrients

increased rather than decreased with time, but this increment

did not translate into larger phytoplankton biomass.

Because of the covariance and linear trends of most vari-

ables, correlation analysis of residual variation (table 2) is

more suitable to search for mechanistic explanations. The pre-

ferential association of HNA cells with phytoplankton (large

rather than small) was confirmed by residual analysis.

Although nitrate concentration residuals showed correlations

of opposite sign with HNA cell abundance and %LNA

biomass, it is difficult to see nitrate availability as the

direct driver when phosphate residuals were not correlated

(data not shown) and without concomitant changes in
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phytoplankton. The negative correlation between temperature

and LNA cell size residuals confirms the compliance with the

TSR of LNA bacteria, which also prevailed in abundance in

warmer waters. Their positive association also with the

water-column thermal gradient (table 2) suggests that indirect

effects of global warming such as enhanced stratification

[46,47,57] might exacerbate the future prevalence of LNA

cells. Altogether, the match between seasonal and decadal

trends and residual analysis identify temperature as the

candidate for the dominance of increasingly smaller LNA bac-

teria in these waters. Finer-scale variations within the group

(e.g. changes in the relative contribution of SAR11 ecotypes

with differing temperature ranges [38,39]) may be behind the

observed patterns.

Smaller phytoplankton and zooplankton in response to

rising temperatures have been demonstrated both experi-

mentally and through sustained observations [4,25,58,59],

but as far as we know this is the first study documenting a

systematic long-term decline in bacterioplankton size, thus

supporting the view of decreasing body size as a universal

ecological response to warming [26,27] alongside changes

in phenology [60] and distributional ranges [2]. The decadal

trends of declining total, LNA and HNA bacterial sizes

(figure 2c) are highly relevant, particularly considering that

only LNA cells consistently followed the ASR and TSR on

the two temporal scales (seasonal and interannual) compared

here. Seasonality of HNA cells, bimodal for abundance and

unimodal for size (figure 1b,c), did not preclude a decadal

compliance with the TSR. While the seasonal patterns of

LNA and HNA bacterial size differed markedly, probably

linked in the latter case to the recurrent appearance of large

species in spring and summer [42], both groups decreased

consistently in size as temperature rose. In the 10 years cov-

ered by this study, surface warming was better detected in

the period extending from April through July than in the

annual average (figure 2a).

Bearing in mind that a gradual ocean warming of 0.58C
per decade cannot be directly comparable with a quasi-

instantaneous 38C increase in an incubation, the hypothesis

that temperature is the ultimate cause for the marked decrease

in bacterial mean size (approx. 1% yr21) is further strengthened

by the experimental results with natural samples in which

temperature was the only factor manipulated (figure 3a). Inter-

estingly, the size of HNA cells tended to decrease more

markedly than LNA cells both interannually (figure 2c; elec-

tronic supplementary material, table S2) and experimentally

(figure 3a). Applying the 2012 mean spring–early summer

decrease of LNA and HNA cell size per 8C (figure 3a, darker

symbols) to the 2002–2011 April–July warming (figure 2a)

would result in an overall size decrease of 3%. This value is

smaller than the observed 10% (figure 2c), possibly related

to the hugely different temporal scales compared (days

versus years). Negative associations between temperature

and bacterial size have been documented in large spatial
surveys [61] as well as experimentally through reductions

in genome size [62], usually strongly correlated with cell

volume [16] (electronic supplementary material, figure S3).

Atlantic cross-ocean analysis [25] hints at a rapid increase in

the foreseen contribution of cyanobacteria to planktonic com-

munities [63]. Residual variation analysis (table 2) suggests

that the future prevalence of small phytoplankton may also

enhance LNA bacterial contribution to total stocks. The impli-

cations of a future dominance of small autotrophic and

heterotrophic bacteria for oceanic food webs and biogeochem-

istry are multiple. The size structure of planktonic communities

affects ecosystem functions such as predator–prey interactions,

efficiency of energy transfer across trophic levels and ulti-

mately carbon export [5,64]. Gradual replacement of bacteria

by typically oligotrophic taxa such as the SAR11 clade and

others included within the LNA cluster [14,18,35] will be

likely to alter carbon fluxes and trophic relationships as these

bacteria grow slowly [65] and, contrary to HNA cells, appear

not to respond simultaneously to changes in phytoplankton

primary production [55]. We document here a rapid change

in bacterioplankton community composition that probably fol-

lows fundamental ecological and metabolic rules. This study

adds to evidence from recent and geological times [4,59] to

strongly support that, regardless of the trophic level and

biological organization, a shift towards lower sizes can be a

widespread response of marine organisms to global change.

Additional studies are needed to test these associations

between warming, bacterial abundance and cell size, but only

longer oceanographic time series will confirm the generality

of shrinking marine bacteria. The consequences for ecosystem

functioning are far-reaching, but can be summarized as a

lower transfer efficiency of primary production towards

higher trophic levels together with a decrease in the importance

of the biological pump for efficient carbon sequestration in the

ocean’s interior.
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