
Articles
The Lancet Regional
Health - Southeast
Asia 2024;24: 100279

Published Online 10

September 2023

https://doi.org/10.
1016/j.lansea.2023.
100279
Deep-learning enabled ultrasound based detection of
gallbladder cancer in northern India: a prospective diagnostic
study
Pankaj Gupta,a,∗ Soumen Basu,b Pratyaksha Rana,a Usha Dutta,c Raghuraman Soundararajan,a Daneshwari Kalage,a Manika Chhabra,a

Shravya Singh,a Thakur Deen Yadav,d Vikas Gupta,d Lileswar Kaman,e Chandan Krushna Das,f Parikshaa Gupta,g Uma Nahar Saikia,h

Radhika Srinivasan,g Manavjit Singh Sandhu,a and Chetan Arorab

aDepartment of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
bDepartment of Computer Science and Engineering, Indian Institute of Technology, New Delhi, 110016, India
cDepartment of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
dDepartment of Surgical Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
eDepartment of General Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
fDepartment of Clinical Hematology and Medical Oncology, Postgraduate Institute of Medical Education and Research, Chandigarh,
160012, India
gDepartment of Cytology and Gynaecological Pathology, Postgraduate Institute of Medical Education and Research, Chandigarh
160012, India
hDepartment of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India

Summary
Background Gallbladder cancer (GBC) is highly aggressive. Diagnosis of GBC is challenging as benign gallbladder
lesions can have similar imaging features. We aim to develop and validate a deep learning (DL) model for the
automatic detection of GBC at abdominal ultrasound (US) and compare its diagnostic performance with that of
radiologists.

Methods In this prospective study, a multiscale, second-order pooling-based DL classifier model was trained (training
and validation cohorts) using the US data of patients with gallbladder lesions acquired between August 2019 and June
2021 at the Postgraduate Institute of Medical Education and research, a tertiary care hospital in North India. The
performance of the DL model to detect GBC was evaluated in a temporally independent test cohort (July 2021–
September 2022) and was compared with that of two radiologists.

Findings The study included 233 patients in the training set (mean age, 48 ± (2SD) 23 years; 142 women), 59 patients
in the validation set (mean age, 51.4 ± 19.2 years; 38 women), and 273 patients in the test set (mean age, 50.4 ± 22.1
years; 177 women). In the test set, the DL model had sensitivity, specificity, and area under the receiver operating
characteristic curve (AUC) of 92.3% (95% CI, 88.1–95.6), 74.4% (95% CI, 65.3–79.9), and 0.887 (95% CI,
0.844–0.930), respectively for detecting GBC which was comparable to both the radiologists. The DL-based approach
showed high sensitivity (89.8–93%) and AUC (0.810–0.890) for detecting GBC in the presence of stones, contracted
gallbladders, lesion size <10 mm, and neck lesions, which was comparable to both the radiologists (p = 0.052–0.738
for sensitivity and p = 0.061–0.745 for AUC). The sensitivity for DL-based detection of mural thickening type of GBC
was significantly greater than one of the radiologists (87.8% vs. 72.8%, p = 0.012), despite a reduced specificity.

Interpretation The DL-based approach demonstrated diagnostic performance comparable to experienced radiologists
in detecting GBC using US. However, multicentre studies are warranted to explore the potential of DL-based
diagnosis of GBC fully.
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Research in context

Evidence before this study
We searched PubMed, Embase, and Google databases on July
1, 2019, for original studies of deep learning-based detection
of gallbladder cancer from imaging studies and updated the
search on Jan 1, 2023. We used the search terms “deep
learning” OR “convolutional neural network” AND
“gallbladder cancer” OR “gallbladder malignancies” AND
“diagnosis” without date or language restrictions. The
references of identified studies were also reviewed. We found
five non-overlapping studies that used deep learning to
diagnose gallbladder cancer on ultrasound (four studies, three
on trans-abdominal and one on endoscopic ultrasound) or
computed tomography (one study). The existing studies were
limited by the small number of patients in the test set (or the
need for a held-out test set). Importantly, these studies did
not evaluate the performance of deep learning models to
detect gallbladder cancer in diverse real-world scenarios,
including different morphological types (polyps, mural
thickening, masses), gallbladders with stones, contracted
gallbladders, lesions of different sizes and at various sites
within the gallbladder. Hence, the potential for deep learning-
enabled ultrasound-based detection of gallbladder cancer was
unclear. As ultrasound is the most practical and universally
available non-invasive initial diagnostic test for gallbladder
cancer, the voids in the existing literature necessitated this
study.

Added value of this study
We trained, validated, and tested a deep learning
algorithm to detect gallbladder cancer based on
ultrasound using data from 565 prospective patients. The
test cohort was temporally independent. To our
knowledge, we report the largest sample size and the
most comprehensive metadata of gallbladder lesions. We
used advanced deep learning techniques (visual acuity-
based learning and multiscale second-order pooling)
described previously to address the challenges associated
with developing deep learning models from ultrasound
images. We found that the deep learning model was non-
inferior to the radiologists to detect gallbladder cancer in
the overall test cohort and subgroups covering all
common scenarios in the real world. In some subgroups,
the deep learning model had better sensitivity than the
radiologists.

Implications of all the available evidence
Our study shows the promising diagnostic performance of
the deep learning-based model for detecting gallbladder
cancer. With multicentre validation, our model can be
implemented for timely gallbladder cancer diagnosis in
large community hospitals with a limited number of expert
radiologists and may lead to an improved prognosis for this
deadly cancer.
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Introduction
Gallbladder cancer (GBC) is a lethal biliary tract malig-
nancy with a grave prognosis. According to GLOBO-
CAN 2020 data, GBC incidence is 115,949 per year, and
it accounts for 84,695 deaths every year worldwide.1 The
highest incidence is in Asia and among the Asian
countries, the highest incidence and mortality have been
recorded in East Asia, followed by South-Central Asia.
India accounts for 10% of the global GBC burden and
GBC is the leading cause of cancer-related deaths
among Indian women.2 There has been a steady rise in
the incidence of GBC in men and women.2

GBC is often detected at an advanced stage in most
patients, impeding curative resection and resulting in a
dismal prognosis.3 The overall mean survival rate for
patients with advanced GBC is six months, with a 5-year
survival rate of <5%.4 Early diagnosis is critical for
improving the survival rates of patients with GBC. Due
to the absence of ionising radiation exposure, low cost,
portability, and accessibility, ultrasound (US) is the
initial diagnostic modality for evaluating patients with
suspected gallbladder diseases. Although identifying
gallstones and abnormalities such as gallbladder wall
thickening at routine US is easy, accurate characterisa-
tion of early signs of GBC is challenging.5 If malignancy
is not suspected, usually no further testing is
performed, due to which early GBC could silently
progress. Also, accurate analysis of US images requires
a high degree of expertise and several years of training.

Artificial intelligence (AI) techniques have the po-
tential to reduce human effort to a great extent. Unlike
traditional image-dependent “semantic” feature evalua-
tion by human experts, deep learning (DL) can auto-
matically learn feature representations from sample
images with convolutional neural networks (CNNs).6

These neural networks have been shown to match or
surpass human performance in applying specific tasks
and may even discover additional differential features
not yet identified in current radiological practice.6 Ma-
chine learning has made transformational advance-
ments in radiology and medical diagnosis for
oncological diseases such as breast cancer, lung cancer,
pancreatic cancer, and ovarian cancer.7–12

We summarize the DL-based literature in gallbladder
in Supplementary Table S1. The published literature has
focused mainly on the detection of gallstones and clas-
sification of polyps on US. A few recent papers have
reported DL-based GBC detection on US. A CNN ar-
chitecture (GBCNet) recently showed state-of-the-art
diagnostic performance in categorizing gallbladder le-
sions on US.13 The existing studies are limited by the
small number of patients in the test set (or the need for
www.thelancet.com Vol 24 May, 2024
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a held-out test set). Additionally, the performance of
these DL models in actual world practice is not known.14

For widespread implementation of DL-based diagnosis,
it is critical to evaluate DL model performance in situ-
ations that are expected to affect radiologists’ perfor-
mance (e.g., polyps and mural thickening, contacted
gallbladder, gallbladder neck lesions.15–17 Thus, we per-
formed a large prospective study to develop and validate
a DL model for the automatic detection of GBC at
abdominal US and compare its diagnostic performance
with that of radiologists. We also perform extensive
subgroup analysis to demonstrate the robustness of DL-
model.
Methods
Study design and participants
Consecutive patients with gallbladder diseases (based on
prior US, CT, or MRI) underwent systematic US of the
gallbladder at the Postgraduate Institute of Medical
Education and Research, Chandigarh, a tertiary care
hospital in Northern India, between August 2019 and
July 2022. Patients whose final diagnosis could be
established were included in the study. The diagnosis of
GBC was based on histopathology of cholecystectomy
specimen or percutaneous US or endoscopic US-guided
biopsy or fine needle aspiration cytology. The diagnosis
of benign gallbladder diseases was based on the histo-
pathology of cholecystectomy specimens or clinical
follow-up of at least three months, demonstrating the
stability of lesions. Patients with polyps ≤ 5 mm, acute
cholecystitis, or gallbladder abnormalities secondary to
extracholecystitis causes (e.g., pancreatitis, hepatitis) or
systematic illnesses (e.g., viral infections, fluid overload
states) were excluded. This prospective study was
approved by the Institutional Ethics Committee
(approval number IEC-11/2019-1403), and informed
written consent was obtained from all the patients.

Procedures
US acquisition and interpretation
Radiologists (with 1–8 years of post-training experience
in abdominal US) performed gallbladder US on the
Logiq S8 US scanner (GE Healthcare, US) using a
convex transducer with a frequency range of 1–5 MHz
after at least 6 h of fasting. For patients with gallbladder
polyps, high-resolution US was also performed using a
transducer with a frequency range of 2–8 MHz. US
assessment was done in supine and lateral decubitus
positions to visualise the entire gallbladder wall and
lumen.5 All the US images were stored on the local hard
disk. Colour or spectral Doppler images were not
recorded. The US images were later reviewed indepen-
dently by two radiologists with two and eight years of
post-training experience in the abdominal US. The ra-
diologists performing and reviewing the US images
were aware that the patients had gallbladder diseases but
www.thelancet.com Vol 24 May, 2024
were blinded to the findings of the previous imaging
tests and the final diagnosis. The patients’ records were
handled by a data entry operator who archived the
clinical and imaging data.

The US diagnosis of GBC was based on the presence of
gallbladder masses infiltrating adjacent liver; diffuse or
focal, symmetric, or asymmetric gallbladder wall thick-
ening (GWT) showing indistinct interface with the liver or
directly involving biliary or vascular structures; and hypo-
echoic polyp >10 mm with lobular surface and internal
hypoechoic foci.18 The US diagnosis of benign diseases
was based on the presence of well-defined masses
<10 mm with a lack of invasion into adjacent structures or
intraluminal polyps without the features described above.
The presence of diffuse or focal, symmetric, or asym-
metric GWT with mural layering, intramural echogenic
foci or intramural cysts, and distinct interface with liver
also led to a diagnosis of benign GWT.5

Data annotation
The US images were anonymised and saved in.jpeg
format before feeding them to the CNN model. The
input to the CNN model was the entire image. Before
inputting the images for classification by the CNN
model, no other data labelling or region of interest was
drawn. The training cohort’s data preprocessing of US
images were performed as described below. Patient-
level labels (benign and malignant) based on the refer-
ence standard described above were used for training.

Neural network implementation
We employed the multiscale, second-order pooling-
based (MS-SoP) classifier proposed by Basu and col-
leagues for detecting GBC from US images.13 The
codebase for the MS-SoP classifier is publicly available
at https://github.com/sbasu276/GBCNet. The details of
neural network implementation are given in supple-
mentary data. Fig. 1 and Supplementary Figure S1 show
the proposed architecture.

Training the neural network
The weights of the classification network were ini-
tialised from a model pre-trained on the publicly avail-
able GBCU dataset, which contains 1255 US images of
GB from 218 patients.13 Since we modified the classifi-
cation head, we initialised the weights of the classifica-
tion head (the last layer) using the Xavier initialization
method.19,20 We fine-tuned the neural network on our
dataset.

We used the binary cross-entropy loss (BCE) as the
objective function. We trained the network end-to-end
with a stochastic gradient descent optimizer with an
initial learning rate of 0.003, a momentum of 0.9, a
weight decay of 0.0005, and mini-batches of size 32 on
images of 233 patients (training cohort). The learning
rate decays by a factor of 0.9 after every 5th epoch. We
used the resize, random crop, random horizontal flip
3
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Fig. 1: Schematic overview of the training and testing phases of the deep convolutional neural network (CNN) model. (a). We use the
Gaussian Blurring-based curriculum proposed by Basu and colleagues13 during the training phase. During the initial epochs, blurred input images
are used to train the network. Gradually the blur is lowered and towards the later phases, original high-resolution images are used for training.
(b). For predicting the diagnosis of a patient using the CNN model, image-level predictions are generated for all images corresponding to the
patient. The majority predicted class at the image-level predictions is chosen as the predicted class for the patient.
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with probability 0.1, and normalisation for data aug-
mentations during the training to mitigate overfitting
issues. The input image size to the network was
224 × 224. We trained the model for 60 epochs using a
Gaussian blurring-based training curriculum intro-
duced by Basu and colleagues.13 For the first 10 epochs,
the training images are blurred by convoluting with a
Gaussian kernel with σ = 16. Then, after every 5th
epoch, the σ of the Gaussian kernel is halved, thus
reducing the blur. After 30 epochs, the model is trained
with original resolution images. Such a training cur-
riculum mitigates the tendency of the neural network to
learn from spurious echogenic textures and enhances
the network’s ability to learn from the low-frequency
features as well.13 We used a validation set of 59 pa-
tients to optimize the network weights and the hyper-
parameters. The best-performing model on the
validation set in terms of accuracy was selected for
evaluation on a held-out test set of 273 patients (test set).
We also evaluated the performance of two popular pre-
trained CNN-models (ResNet-50, DenseNet-121) on
the held-out test cohort. Both the models were fine-
tuned using the training data of 233 patients. The
models were trained and evaluated in a system with
Intel(R) Xeon(R) Gold 5218 processor and four Nvidia
Tesla V100 32 GB GPUs.

Statistical analysis
We evaluated the performance of the CNN and both the
radiologists [Radiologist 1 (with two years post-training
experience) and Radiologist 2 (with eight years of post-
training experience) for the entire cohort and multiple
subgroups. Subgroup analysis was performed for gall-
bladder diseases with stones, contracted gallbladder,
different morphological types of gallbladder cancer
(including masses, GWT, mass with GWT, and polyps),
size ≤10 mm and >10 mm, different sites (body,
fundus, and neck), and focal vs. diffuse disease.
www.thelancet.com Vol 24 May, 2024
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To evaluate the classification results of CNN and
radiologists, we used sensitivity, specificity, positive
predictive value (PPV), negative predictive value (NPV),
accuracy, and area under the receiver operating charac-
teristic (ROC) curve (AUC). Diagnostic performance
measures were calculated using the mean and 95% CI.
CIs for sensitivity, specificity and accuracy are the
“exact” Clopper-Pearson CIs.21 CIs for the PPV and NPV
are the standard logit CIs.21 CIs for AUC were calculated
using pROC package. CNN and radiologists’ sensitivity,
specificity, and accuracy were compared using the Mc
Nemar test. The AUCs were compared using the
DeLong method. The statistical analyses were per-
formed using IBM® SPSS® version 22 (IBM India Pvt
Ltd, India), MedCal® (MedCalc Software Ltd, Belgium),
SciPy 1.1.0 (Austin, TX, USA), Analyse-it® version 6.15
(Analyse-it Software Ltd. UK), and R.22–25 A p-value of
<0.05 was considered statistically significant.

Role of the funding source
Not applicable.

Results
Over the study period, we recruited 565 patients
(Supplementary Figure S2). The mean age (±SD) was
All Train

Number of individuals 565 233

Diagnosis

Benign 189 (33.5) 75 (

Malignant 376 (66.5) 158

Age (years) 50.8 ± 22.6 48 ±

Sex

Male 208 (36.8) 91 (

Female 357 (63.2) 142

Morphological type

Masses 116 (20.5) 45 (

Thickening 333 (58.9) 139

Mass with thickening 75 (13.3) 30 (

Polyp 41 (7.3) 19 (

Cholelithiasis 334 (59.1) 150

Gallbladder statusa

Distended 285 (50.4) 115

Contracted 164 (29) 73 (

Size (cm)

Mass 4.69 ± 2.21 4.77

Wall thickness 1.12 ± 0.71 1.16

Polyp 1.32 ± 0.54 1.36

Sitea,b

Neck 72 (12.7) 28 (

Body 51 (9) 24 (

Fundus 49 (8.7) 18 (

Diffuse 249 (44.1) 100

aMasses replacing gallbladder were excluded. bMultiple sites of involvement were exclu

Table 1: Clinical characteristics of the patients in the overall group, training,

www.thelancet.com Vol 24 May, 2024
50.8 ± 22.6 years. There were 208 (36.8%) males and 357
(63.2%) females. There were 116 (20.5%), 333 (58.9%),
75 (13.3%), and 41 (7.3%) patients with the mass-
replacing gallbladder, GWT, mass with GWT, and
polyp, respectively, in the overall group. The mean size
of the masses and polypoidal lesions was 4.6 ± 2.2 cm
and 1.32 ± 0.54 cm, respectively. The mean GWT was
1.1 ± 0.7 cm. There were 189 (33.5%) patients with
benign and 376 (66.5%) patients with malignant di-
agnoses. The characteristics of the overall group and the
training, validation, and test sets are given in Table 1.

The diagnostic performance of the CNN and the
radiologists in the training and validation cohorts are
shown in the Supplementary Table S2 and
Supplementary Table S3. The diagnostic performances
of ResNet-50 and DenseNet-121 are reported in
Supplementary Table S4.

The sensitivity, specificity, accuracy, and AUC of
CNN in the test cohort were 92.3% (95% CI, 88.1–95.6),
74.4% (95% CI, 65.3–79.9), 86.4% (95% CI, 82.2–90.5),
and 0.887 (95% CI, 0.844–0.930), respectively compared
to 86.8% (95% CI, 81.1–91.4), 67% (95% CI, 56.3–76.5),
80.2% (95% CI, 75–84.8), and 0.826 (95% CI,
0.767–0.884), respectively for Radiologist 1 and 87.9%
(95% CI, 82.3–92.3), 80% (95% CI, 70.2–87.7), 75.2%
ing set Validation set Test set

59 273

32.2) 24 (40.7) 90 (33)

(67.8) 35 (59.3) 183 (67)

23 51.4 ± 19.2 50.4 ± 22.1

39.1) 21 (35.6) 96 (31.2)

(60.9) 38 (64.4) 177 (64.8)

19.3) 14 (23.7) 57 (20.9)

(59.6) 31 (52.5) 163 (59.7)

12.9) 8 (13.6) 37 (13.5)

8.2) 6 (10.2) 16 (5.9)

(64.4) 28 (47.4) 156 (57.1)

(49.4) 25 (42.4) 145 (54.9)

31.3) 20 (33.9) 71 (26)

± 2.46 4.61 ± 2.21 4.29 ± 2.33

± 0.73 1.0 ± 0.71 0.95 ± 0.67

± 0.67 1.41 ± 0.59 1.29 ± 0.55

12) 2 (3.4) 42 (15.4)

10.3) 11 (18.6) 16 (5.9)

7.7) 10 (16.9) 21 (7.7)

(42.9) 24 (40.7) 125 (45.8)

ded.

validation, and testing cohorts.
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Fig. 2: Performance of the deep convolutional neural network (CNN). Area under receiver operating characteristic curve of CNN and ra-
diologists in the test cohort for detecting gallbladder cancer in the overall group.
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(95% CI, 65.4–83.4), and 0.837 (95% CI, 0.781–0.892),
respectively for Radiologist 2. There were no significant
differences in the sensitivities, specificities, and AUCs
of CNN and the radiologists (Fig. 2).

In the patients with gallstones, CNN had diagnostic
performance comparable to the radiologists for detect-
ing GBC. There was no difference in the diagnostic
performance of the CNN and the radiologists in
detecting GBC on mass, mass with thickening, and
polyp morphological subtypes. However, the CNN had
better sensitivity than the radiologist 2 in detecting wall
thickening type of GBC (87.8% vs. 72.8%, p = 0.012).
This higher sensitivity was achieved at the cost of lower
specificity. In the contracted gallbladder, CNN had a
greater sensitivity than Radiologist 2. However, the dif-
ference was not statistically significant (93% vs. 77.3%,
p = 0.050). Additionally, the specificity of CNN was
lower than radiologists. The sensitivity and AUC of
CNN for lesions <10 mm was greater than the radiolo-
gists. However, the differences were not statistically
significant. The diagnostic performance of the CNN and
the radiologists for lesions >10 mm was comparable.
There were no significant differences between CNN and
radiologists based on the thickening site and whether
the thickening was focal or diffuse. Table 2 shows the
diagnostic performance of CNN and the radiologists in
the test cohort. Supplementary Tables S5–S7 show the
p-values of differences in the diagnostic performance of
CNN and the two radiologists.

The AUCs of all the overall cohort are shown in the
Supplementary Figure S3. The confusion matrix of
CNN diagnosis is shown in Supplementary Figure S4.
Class activation maps in Fig. 3 and Supplementary
Figure S5 and Supplementary Figure S6.
Discussion
In this prospective study evaluating DL-based GBC
detection on US, we found that the performance of the
DL-based approach was comparable to the experienced
radiologists. Overall, the DL-based approach achieved
high sensitivity, specificity, and AUC for detecting GBC.
In different subgroups also, the DL-based approach
achieved high sensitivity and AUC. These results sug-
gest the potential of DL-assisted GBC detection in
improving the diagnostic performance of non-
experienced radiologists and impacting the prognosis
of GBC.

GBC is prevalent in certain geographical regions of
the world.2 Accurate GBC detection in imaging studies
is challenging and delayed diagnosis of GBC is associ-
ated with poor prognosis.4,5 The DL-based approach is
associated with improved diagnostic performance in
several cancers.7–12 However, there is limited literature
on DL-based GBC detection in imaging.

Two recent studies evaluated the performance of DL-
based characterisation of gallbladder polyps.26 In a
transabdominal US-based study, 535 patients were
divided into the development dataset (n = 437) and test
dataset (n = 98). The polyps were classified into
neoplastic and non-neoplastic by a CNN model, and the
performance was compared with three radiologists. The
DL-based approach showed sensitivity of 74.3% (95%
CI, 56.7–87.5), specificity of 92.1% (95% CI, 82.4–97.4),
accuracy of 85.7% (95% CI, 73.2–93.9), and AUC of 0.92
(95% CI, 0.87–0.95) for detection of neoplastic polyps.
The AUC of the three reviewers was 0.94, 0.78, and 0.87.
With the DL-assisted approach (combining CNN and
radiologists’ evaluation), the specificity (65.1–85.7 to
71.4–93.7), AUC (0.78–0.94 to 0.91–0.95), and intraclass
www.thelancet.com Vol 24 May, 2024
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Groups % Sensitivity (95% CI) % Specificity (95% CI) % PPV (95% CI) % NPV (95% CI) % Accuracy (95% CI) AUC (95% CI)

Overall

CNN 92.3 (88.1–95.6) 74.4 (65.3–79.9) 90.1 (84.9–94.1) 80 (70.2–87.6) 86.4 (82.2–90.5) 0.887 (0.844–0.930)

Radiologist 1 86.8 (81.1–91.4) 67 (56.3–76.5) 87 (81.31–91.5) 76.1 (65.8–84.5) 80.2 (75–84.8) 0.826 (0.767–0.884)

Radiologist 2 87.9 (82.3–92.3) 80 (70.2–87.7) 89.7 (84.32–93.8) 75.2 (65.4–83.4) 85.3 (80.5–89.3) 0.837 (0.781–0.892)

Stones

CNN 92.2 (87–95.2) 79.6 (71.9–93.1) 90.1 (82.5–95.1) 80.0 (67.0–89.5) 87.8 (82.3–93) 0.890 (0.836–0.945)

Radiologist 1 90.2 (82.7–95.2) 72.2 (58.4–83.5) 85.5 (77.3–91.7) 76.9 (63.1–87.4) 83.9 (77.3–89.4) 0.812 (0.733–0.891)

Radiologist 2 90.1 (82.5–95.2) 77.8 (64.4–87.9) 88.24 (80.3–93.7) 81.1 (68–90.5) 85.8 (79.3–90.9) 0.835 (0.761–0.909)

Mass

CNN 98.2 (90.4–99.9) 100 (2.5–100%) 99.1 (95.1–99.9) 20 (0.5–71.6) 98.2 (90.6–99.6) 1

Radiologist 1 96.4 (87.6–99.5) 100 (2.5–100) 100 (93.4–100) 25 (0.6–80.6) 96.5 (87.9–99.6) 1

Radiologist 2 100 (93.6–100) 100 (2.5–100) 100 (93.6–100) 100 (2.5–100) 100 (93.7–100) 1

Thickening

CNN 87.8 (78.7–93.9) 74.1 (64.4–84.2) 84.1 (74.7–91) 86.6 (76.8–93.4) 81 (74.7–87.2) 0.859 (0.802–0.917)

Radiologist 1 81.7 (71.6–89.3) 72.8 (61.8–82.1) 76.1 (65.8–84.5) 80 (69.1–88.3) 77.3 (70.1–83.4) 0.733 (0.698–0.847)

Radiologist 2 72.8 (61.8–82.1) 79 (68.5–87.3) 77.6 (66.6–86.4) 74.7 (64.2–83.4) 75.9 (68.6–82.2) 0.755 (0.687–0.831)

Mass + Thickening

CNN 94.6 (81.8–99.3) – 96.9 (84.2–99.9) – 94.6 (81.8–99.3) –

Radiologist 1 94.4 (81.3–99.3) – 97.1 (84.6–99.9) – 94.4 (81.3–99.3) –

Radiologist 2 97.1 (85.1–99.9) – 100 (90.5–100) – 97.1 (85.1–99.9)

Polyp

CNN 87.5 (47.3–99.6) 75 (34.9–96.8) 77.7 (39.9–97.1) 85.7 (42.1–99.6) 81.2 (54.3–95.9) 0.779 (0.529–0.994)

Radiologist 1 85.7 (42.1–99.6) 62.5 (24.5–91.5) 80 (44.3–97.4) 85.7 (42.1–99.6) 73.3 (44.9–92.2) 0.759 (0.497–0.994)

Radiologist 2 75 (34.9–96.8) 75 (34.9–96.8) 85.7 (42.1–99.6) 77.7 (39.9–97.2) 75 (47.6–92.7) 0.753 (0.497–0.994)

Contracted

CNN 93 (80.9–98.5) 71.4 (55.1–89.3) 78.7 (64.3–89.3) 57.5 (39.2–74.5) 84.5 (75.6–93) 0.860 (0.768–0.952)

Radiologist 1 81.4 (66.6–91.6) 75 (55.1–89.3) 83.3 (68.6–93.0) 72.4 (52.7–87.2) 78.9 (67.5–87.6) 0.794 (0.680–0.907)

Radiologist 2 77.3 (62.2–88.5) 77.8 (57.7–91.3) 82.5 (67.2–92.6) 67.7 (48.6–83.3) 77.5 (66–86.5) 0.759 (0.640–0.877)

Size (<10 mm)

CNN 89.8 (78.8–96.1) 76.1 (68.6–87.9) 79.6 (67.7–88.7) 88.7 (79–95) 81.7 (76.4–89.5) 0.875 (0.832–0.949)

Radiologist 1 81 (68.5–90.1) 76.6 (65.5–85.5) 73.4 (60.9–83.7) 84.5 (73.9–92) 78.5 (70.6–85.1) 0.782 (0.696–0.883)

Radiologist 2 77.1 (64.2–87.2) 80.7 (70.2–88.8) 75.8 (62.8–86.1) 83.1 (72.8–90.1) 79.3 (71.4–85.7) 0.788 (0.707–0.870)

Size (>10 mm)

CNN 84.8 (75.1–94.4) 60 (39.1–80.7) 95.8 (90.4–98.6) 47.3 (24.4–71.1) 79.1 (73.4–84.3) 0.769 (0.661–0.916)

Radiologist 1 91.4 (85.7–96.1) 42.9 (17.6–71.1) 94.2 (88.4–97.6) 41.1 (18.4–67.1) 86.9 (80.2–92.1) 0.678 (0.506–0.850)

Radiologist 2 91.2 (84.8–95.5) 61.5 (31.6–86.1) 96.6 (91.5–99.1) 45 (23.1–68.4) 88.4 (81.9–93.2) 0.741 (0.579–0.904)

Site—body

CNN 88.9 (51.7–99.7) 71.4 (29.1–96.3) 87.8 (71.8–96.6) 72.7 (39.–93.9) 81.2 (54.3–95.9) 0.891 (0.690–1)

Radiologist 1 88.9 (51.7–99.7) 85.7 (42.1–99.6) 90.6 (74.9–98.0) 66.6 (34.8–90.1) 87.5 (61.6–98.4) 0.810 (0.557–1)

Radiologist 2 77.8 (39.9–97.2) 100 (59–100) 100 (87.6–100) 62.5 (35.4–84.8) 87.5 (61.6–98.4) 0.857 (0.631–1)

Site—fundus

CNN 86.7 (57.2–98.2) 100 (69.5–100) 94.4 (72.7–99.8) 60 (26.2–87.8) 90.5 (79.1–93.3) 0.981 (0.937–1)

Radiologist 1 80 (51.9–95.6) 50 (11.8–88.2) 86.3 (65.1–97.1) 50 (11.8–88.2) 71.4 (47.8–88.7) 0.656 (0.373–0.921)

Radiologist 2 86.7 (59.5–98.3) 66.7 (22.3–95.7) 90 (68.3–98.7) 50 (15.7–84.3) 80.9 (58.1–94.5) 0.922 (0.804–1)

Site—neck

CNN 86.1 (78.5–94.2) 66.7 (22.2–95.6) 94.3 (84.3–98.8) 53.8 (25.1–80.7) 83.3 (74.5–91.7) 0.810 (0.641–0.995)

Radiologist 1 91.6 (77.5–98.2) 50 (11.8–88.2) 90.7 (79.7–96.9) 45.4 (16.7–76.6) 85.7 (71.5–94.6) 0.708 (0.447–0.969)

Radiologist 2 85.7 (69.7–95.2) 57.1 (18.4–90.1) 94.1 (83.7–98.7) 50 (23–76.9) 80.9 (65.9–91.4) 0.680 (0.421–0.891)

Focal

CNN 92.8 (86.7–96.6) 72.7 (49.7–89.2) 93.4 (86.9–97.3) 60 (40.6–77.3) 89.8 (83.7–94.2) 0.844 (0.805–0.946)

Radiologist 1 91.4 (85.7–96.1) 60.8 (38.5–80.3) 92.6 (86.5–96.6) 58.3 (36.6–77.8) 87.1 (80.5–92.1) 0.764 (0.639–0.889)

Radiologist 2 90.3 (83.7–94.9) 78.3 (56.3–92.5) 95.7 (90.3–98.6) 60 (40.6–77.3) 88.4 (82.1–93.1) 0.839 (0.735–0.942)

Diffuse

CNN 91.2 (80.4–97) 75 (62.6–85.9) 83.1 (71.7–91.2) 90 (79.4–96.2) 82.4 (75.3–89.2) 0.889 (0.830–0.946)

Radiologist 1 80.7 (68.1–89.9) 77.9 (66.2–87.1) 75.4 (62.7–85.5) 82.8 (71.3–91.1) 79.2 (71–85.9) 0.811 (0.731–0.890)

Radiologist 2 78.9 (66.1–88.6) 80.9 (69.5–89.4) 77.5 (64.7–87.4) 82.1 (70.8–90.3) 80 (71.9–86.6) 0.799 (0.717–0.881)

CNN: convolutional neural network, AUC: area under receiver operating characteristic curve, PPV: positive predictive value, NPV: negative predictive.

Table 2: Diagnostic performance of the convolutional neural networks (CNN) and radiologists in test cohort.
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Fig. 3: Class activation maps for deep convolutional neural network (CNN) detection of gallbladder cancer. Arrows in each image point to
the abnormality.
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correlation coefficient (0.87–0.93) for detection of
neoplastic polyps improved. In another study, the DL-
based classification model was developed on 1039
endoscopic US images.27 The model performance was
tested in an external cohort of 83 patients. For the dif-
ferential diagnosis of neoplastic and non-neoplastic GB
polyps, the sensitivity and specificity of the DL model
were 60.3% and 77.4%, respectively, compared to 74.2%
and 44.9%, respectively, for the endoscopists. The ac-
curacy of the DL model is 77.4% vs. 65.3% for
endoscopists.

DL models’ potential to detect GBC on US images has
also been explored in a few recent studies. Basu et al.
proposed state-of-the-art CNN model based on multiscale,
second-order pooling architecture (GBCNet).13 The dataset
comprised 1255 US images, of which 1133 were used for
training and 122 for testing. The image level performance
of the GBCNet was better than the two radiologists and
other state-of-the-art image classification models.13 The
sensitivity, specificity, and accuracy of the GBCNet to
classify images as normal, benign, and malignant were
92.9%, 90%, and 87.7%, respectively, compared to
70.7–73.2%, 81.1–87.3%, and 68.3–70%, respectively for
the radiologists. The accuracy of GBCNet for binary clas-
sification of images into malignant and non-malignant
was 91% compared to 78.4–81.6% for radiologists.
Recently, a transformer-based DL model (RadFormer)
showed performance comparable to GBCNet with a faster
test time inference.28 RadFormer also allowed human-
readable explanations of the model decisions.28 The
pretrained CNN-based models for detecting GBC in US
images have been reported to be suboptimal in literature
on public datasets.13,28 Our findings are consistent with that
reported in the literature. The pretrained CNN models
perform well in detecting non-malignant control gall-
bladder with high accuracy due to its regular shape and
appearance. However, these models struggle to identify
malignancy due to the high variability of appearance in
malignant gallbladder lesions. Thus, we see a high speci-
ficity, but a low sensitivity for pretrained ResNet-50 and
DenseNet-121 models.

Despite these recent promising technical works on
DL-based GBC detection on US images, there is no
published work demonstrating the performance of DL
models in GBC detection in diverse clinical scenarios.
We evaluated the DL-based patient-level GBC detection
www.thelancet.com Vol 24 May, 2024
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[unlike previous works where image level predictions
were performed13,28] on US images in a large cohort
recruited prospectively. We also assessed the perfor-
mance of CNN in various clinically relevant subgroups,
including distinct morphological subtypes, gallbladder
lesions with stones, contracted gallbladders, lesions
<10 mm, and distinct gallbladder sites. We found that
CNN performed well in all the subgroups. In some
subgroups, including mural thickening and polyp sub-
types, contracted gallbladders, and gallbladder neck le-
sions, which pose a challenge for the radiologists, CNN
performed better than the experienced radiologists
(although the difference was not statistically significant
in all these subgroups).

Our study had few limitations. First, although we
tested the performance on a temporally independent
held-out dataset, single-centre data was used. Second,
the number of patients in some subgroups, e.g., polyps,
was small. The relative paucity of polyps in our cohort is
due to the geographical variations in the presentation of
gallbladder lesions and the exclusion of polyps ≤5 mm.
Third, we must assert that the US images were read by
two academic radiologists with expertise in abdominal
US. We expect these models to outperform the non-
expert radiologists in detecting GBC. However, this
needs to be confirmed in future studies. Finally, we did
not explicitly evaluate the impact of CNN on early
diagnosis and prognosis of GBC.

In conclusion, the DL-based approach demonstrated
comparable or better diagnostic performance than expert
radiologists in detecting GBC at US. However, multicentre
studies are warranted to explore the potential of DL-based
diagnosis of GBC fully.
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