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Abstract: The Sry-related HMG BOX (SOX) gene family encodes transcription factors containing
highly conserved high-mobility group domains that bind to the minor groove in DNA. Although
some SOX genes are known to be associated with tumorigenesis and cancer progression, their
expression and prognostic value have not been systematically studied. We performed multi-omic
analysis to investigate the expression of SOX genes in human cancers. Expression and phylogenetic
tree analyses of the SOX gene family revealed that the expression of three closely related SOX
members, SOX4, SOX11, and SOX12, was increased in multiple cancers. Expression, mutation, and
alteration of the three SOX members were evaluated using the Oncomine and cBioPortal databases,
and the correlation between these genes and clinical outcomes in various cancers was examined
using the Kaplan–Meier, PrognoScan, and R2 database analyses. The genes commonly correlated
with the three SOX members were categorized in key pathways related to the cell cycle, mitosis,
immune system, and cancer progression in liver cancer and sarcoma. Additionally, functional protein
partners with three SOX proteins and their probable signaling pathways were explored using the
STRING database. This study suggests the prognostic value of the expression of three SOX genes
and their associated pathways in various human cancers.

Keywords: SOX4; SOX11; SOX12; prognosis; multi-omic analysis; oncogene

1. Introduction

Cancer is one of the leading causes of death worldwide and a major threat to human
health. Approximately 24.5 million new cancer cases and 9.6 million cancer deaths were
reported in 2017 [1]. Although there has been substantial improvement in diagnostic and
treatment modalities, the cumulative risk of cancer death between birth and 74 years of
age remained at approximately 10% in 2018 [2]. Oncogenic processes include accumulated
mutations and changes in gene expression, which result in gain of tumor traits such as lim-
itless proliferation, invasion, metastasis, and immortalization [3]. Therefore, identification
of differentially expressed genes (DEGs) between cancers and their normal counterparts,
which are related to patient survival, can be exploited as therapeutic targets and diagnostic
or prognostic markers for cancer.

The Sry-related HMG BOX (SOX) gene family consists of 20 transcription factors,
which have a highly conserved high-mobility group (HMG) domain that binds to the
minor groove in DNA [4]. During embryonic development, the SOX family members play
essential roles as regulators of specific lineage and tissue gene expression for stemness, cell
differentiation, organogenesis, and sex determination [5]. Some SOX members play onco-
genic roles in various cancers. Upregulation of SOX2 has been reported to be associated
with poor clinical outcomes in breast [6], lung [7], renal [8], ovarian [9], and liver [10] can-
cers. Additionally, high expression of SOX4 is associated with poor prognosis in leukemia,
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bladder [11], and breast [12,13] cancers [14]. Highly upregulated expression of SOX9 is
correlated with cancer progression in renal [15], liver [16], and colorectal [17] cancers.
Furthermore, the relative mRNA expression levels of other SOX family members, such as
SOX11 and SOX12, are elevated in breast [18–20], liver [21,22], and lung [23,24] cancers and
have a positive correlation with poor prognosis. In contrast, SOX15 is a prospective tumor
suppressor gene associated with the Wnt/β-catenin pathway in pancreatic cancer [25].

In this study, we systemically analyzed the expression of SOX family genes and their
prognostic value in various cancers, using online bioinformatic databases. The expression
of genes related to SOX4, SOX11, and SOX12, which are highly upregulated in various
types of cancers, and their related signaling pathways were also examined using a gene
meta-analysis database. The findings from these systemic analyses suggest the prognostic
value of the expression of several SOX genes in human cancers and their potential as
biomarkers for SOX gene-targeted cancer therapy.

2. Results
2.1. mRNA Expression of the SOX Gene Family in Various Cancers

The mRNA expression of the SOX gene family in different cancers and the correspond-
ing normal tissues was analyzed using the Oncomine database (Version 4.5, Thermo Fisher,
Waltham, MA, USA) with the following threshold parameters: p-value < 0.001, fold change
of 2, and gene rank of 10%. Among the genes in the SOX family, the expression of SOX4,
SOX9, SOX11, and SOX12 was higher in multiple types of cancers than in their normal
counterparts. (Figure 1a).

The amino acid sequences of SOX family proteins were retrieved from the National
Center for Biotechnology Information (NCBI) database and clustered to create a phylo-
genetic tree, employing the neighbor-joining method using the Molecular Evolutionary
Genetics Analysis (MEGA) tool (Figure 1b). Phylogenetic tree analysis showed that the
highly expressed SOX members in various cancers, i.e., SOX4, SOX11, and SOX12, were
closely clustered, suggesting similarities in amino acid sequences among these three SOX
members. Although expression of SOX9 was higher in various cancer types than their
counterparts from the Oncomine database, the homology of SOX9 was not strictly grouped
with other three SOX members. Accordingly, we selected the three SOX genes SOX4,
SOX11, and SOX12 for further systematic analysis to determine their prognostic value and
possible oncogenic role, using publicly available online databases.
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Figure 1. mRNA expression levels of the SOX gene family in different cancer types. (a) Comparison of the expression of 
SOX gene family members from the Oncomine database, indicating the number of datasets with mRNA overexpression 
(red) or underexpression (blue), between various types of cancers and their normal counterparts. The threshold was de-
termined based on the following parameters: p-value < 0.001, fold-change of 2, and gene ranking of 10%. (b) Phylogenetic 
tree analysis of the SOX gene family proteins was performed using the Molecular Evolutionary Genetic Analysis (MEGA) 
tool. The tree was derived from the maximum likelihood method. 

2.2. SOX4 Expression and Its Prognostic Value in Various Cancers 
In the Oncomine database, SOX4 expression was upregulated in most types of cancer 

except melanoma and ovarian cancer (Figure 1a). In addition, the relative mRNA expres-
sion of SOX4 in breast, liver, ovarian, pancreatic, and thyroid cancer as well as sarcoma 
datasets in the Oncomine database, was visualized (Figure 2a). We also found the expres-
sion of SOX4 were significantly upregulated regardless of the stage of cancer including 
COAD, LIHC, LUAD, and LUSC (Supplementary Figure S3a). To investigate the protein 
expression level of SOX4, we accessed the CPTAC dataset using the UALCAN database 
(Preston, Lancashire, UK). In the CPTAC dataset, protein expression of SOX4 was highly 

Figure 1. mRNA expression levels of the SOX gene family in different cancer types. (a) Comparison of the expression of
SOX gene family members from the Oncomine database, indicating the number of datasets with mRNA overexpression (red)
or underexpression (blue), between various types of cancers and their normal counterparts. The threshold was determined
based on the following parameters: p-value < 0.001, fold-change of 2, and gene ranking of 10%. (b) Phylogenetic tree
analysis of the SOX gene family proteins was performed using the Molecular Evolutionary Genetic Analysis (MEGA) tool.
The tree was derived from the maximum likelihood method.

2.2. SOX4 Expression and Its Prognostic Value in Various Cancers

In the Oncomine database, SOX4 expression was upregulated in most types of cancer
except melanoma and ovarian cancer (Figure 1a). In addition, the relative mRNA expression
of SOX4 in breast, liver, ovarian, pancreatic, and thyroid cancer as well as sarcoma datasets
in the Oncomine database, was visualized (Figure 2a). We also found the expression of
SOX4 were significantly upregulated regardless of the stage of cancer including COAD,
LIHC, LUAD, and LUSC (Supplementary Figure S3a). To investigate the protein expression
level of SOX4, we accessed the CPTAC dataset using the UALCAN database (Preston,
Lancashire, UK). In the CPTAC dataset, protein expression of SOX4 was highly increased
in breast cancer, uterine corpus cancer, and lung cancer (Supplementary Figure S2a). These
results indicated that the mRNA and protein expression levels of SOX4 were higher in
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three types of cancer tissues than in these neighboring normal tissues. Next, the muta-
tion and copy number alterations of SOX4 were examined in various cancer types using
the cBioPortal database (version 3.7.2, MSKCC, New York, NY, USA) (Figure 2b). The
locations of mutations in SOX4 were distributed widely across the coding region. The
alteration frequency of SOX4 was determined in various types of cancers. The results
showed that SOX4 mutations were present in several cancer types, particularly in prostate
and bladder cancer, with alteration frequencies of approximately 2% and 1.2%, respec-
tively. Additionally, the alterations in SOX4, such as mutation, amplification, and deep
deletion, showed a high percentage in various cancer types, including bladder, prostate,
and ovarian cancer datasets, with alteration frequencies of 17%, 16%, and 14%, respectively.
Further, the association between mRNA expression and clinical outcome was analyzed
to determine the prognostic value of SOX4 expression in patients with various cancers,
using the online survival analysis tools such as the Kaplan–Meier plotter (Balazs Gyorffy,
Budapest, Hungary), PrognoScan (Kyushu Institute Technology, Kyushu, Japan), and R2
databases (the Academic Medical Center (AMC), Amsterdam, The Netherlands). In these
databases, a positive correlation between SOX4 expression and poor patient survival was
observed in colon, liver, lung, and pancreatic cancers, as well as sarcoma (Figure 2c). Over-
all, these results showed that the expression of SOX4 was increased and correlated with
poor patient survival in various cancers, including colon, liver, lung, and pancreatic cancers
and sarcoma.
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Figure 2. SOX4 expression pattern and patient survival in various cancers. SOX4 expression, alteration frequency of muta-
tions, copy number alteration, and correlation with patient survival in various types of cancer. (a) Box plots comparing 
SOX4 expression in normal (left plot) and cancer tissues (right plot) were derived from the Oncomine database. The fold-
changes in SOX4 expression in colon, lung, liver, and pancreatic cancers, as well as sarcoma are shown as box plots. (b) 
The mutations and alteration frequency of SOX4 were determined using the cBioPortal database. The diagram shows 
SOX4 mutation in different cancer types across protein domains. The alteration frequency of SOX4 was retrieved using 
cBioPortal and is shown at the bottom. Only those cancer types with more than 100 samples and an alteration frequency 
of over 3.7% are shown. The alterations comprised deletions (blue), amplification (red), or mutation (green). (c) The sur-
vival plot comparing patients with high (red) and low (blue) expression in various cancer types was plotted using the 
Kaplan–Meier plotter, PrognoScan, and R2 databases. Survival plot analysis was performed using a threshold Cox p-value 
of <0.05. Abbreviations. CRC: colorectal cancer; LIHC: liver hepatocellular carcinoma; LUAD: lung adenocarcinoma; 
LUSC: lung squamous cell carcinoma; PAAD: pancreatic adenocarcinoma; AT: adipose tissue; PLS: pleomorphic liposar-
coma. 

  

Figure 2. SOX4 expression pattern and patient survival in various cancers. SOX4 expression, alteration frequency of
mutations, copy number alteration, and correlation with patient survival in various types of cancer. (a) Box plots comparing
SOX4 expression in normal (left plot) and cancer tissues (right plot) were derived from the Oncomine database. The
fold-changes in SOX4 expression in colon, lung, liver, and pancreatic cancers, as well as sarcoma are shown as box plots.
(b) The mutations and alteration frequency of SOX4 were determined using the cBioPortal database. The diagram shows
SOX4 mutation in different cancer types across protein domains. The alteration frequency of SOX4 was retrieved using
cBioPortal and is shown at the bottom. Only those cancer types with more than 100 samples and an alteration frequency of
over 3.7% are shown. The alterations comprised deletions (blue), amplification (red), or mutation (green). (c) The survival
plot comparing patients with high (red) and low (blue) expression in various cancer types was plotted using the Kaplan–
Meier plotter, PrognoScan, and R2 databases. Survival plot analysis was performed using a threshold Cox p-value of <0.05.
Abbreviations. CRC: colorectal cancer; LIHC: liver hepatocellular carcinoma; LUAD: lung adenocarcinoma; LUSC: lung
squamous cell carcinoma; PAAD: pancreatic adenocarcinoma; AT: adipose tissue; PLS: pleomorphic liposarcoma.
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2.3. SOX11 Expression Pattern and Patient Survival in Various Cancers

It is well known that SOX11 expression may affect the progression of several types
of cancers. Previously, elevated SOX11 expression was observed in various cancer types,
including brain, breast, head and neck, and gastric cancers [18,19,26,27]. However, the
correlation between SOX11 expression and patient survival has not yet been systematically
investigated. The mRNA expression of SOX11 was significantly higher in brain, breast,
kidney, lung, and pancreatic cancers as well as sarcoma (Figure 3a). In addition, SOX11
expression was significantly higher according to the stage of cancer, including BRCA, KIRC,
and LUAD, than adjacent normal tissue from TCGA database using the UALCAN (Sup-
plementary Figure S3b). Mutations in SOX11 frequently occurred in esophageal, stomach,
and lung cancers with D233 del/2_D233 del hotspot. In addition, the highest alteration
frequency (14%) was observed in neuroendocrine prostate cancer (NEPC), wherein amplifi-
cation was the major form of alteration (Figure 3b). Analysis of the correlation of survival
and SOX11 expression using Kaplan–Meier plotter, PrognoScan, and R2 databases revealed
significantly higher survival in the low SOX11 expression group of cancer patients than in
the high expression group (Figure 3c). These results suggest that upregulation of SOX11 is
correlated with poor prognosis in various types of cancer.
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Figure 3. SOX11 expression pattern and patient survival in various cancers. SOX11 expression pattern, alteration frequency
of mutations, copy number alteration, and patient survival in various types of cancers. (a) Box plots comparing SOX11
expression in normal (left plot) and cancer tissues (right plot) were derived from the Oncomine database. The fold-changes
in SOX11 expression in brain, breast, lung, kidney, and pancreatic cancers as well as sarcoma, are shown as box plots.
(b) Mutations and alteration frequency of SOX11 were determined using the cBioPortal database. The diagram shows
SOX11 mutations in different cancer types across protein domains. SOX11 mutations mainly occurred in esophageal cancer
with one hot spot (D233 del/2_D233 del) representing common founder mutations. The alteration frequency of SOX11
was determined using cBioPortal and is shown at the bottom. Only those cancer types with more than 100 samples and
an alteration frequency of >2.73% are shown. The alterations comprised deletions (blue), amplification (red), or mutation
(green). (c) Survival plots comparing patients with high (red) and low (blue) SOX11 expression in various cancer types were
plotted using the Kaplan–Meier plotter, PrognoScan, and R2 databases. Patient survival analysis was performed using a
threshold Cox p-value of <0.05. Abbreviations. GBM: glioblastoma; DBC: ductal breast carcinoma; CCRCC: clear cell renal
cell carcinoma; MRCLS: myxoid/round cell liposarcoma; PC: pancreatic carcinoma.
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2.4. SOX12 Expression Pattern and Patient Survival in Various Cancers

SOX12 has been actively studied in recent years and is known to affect cancer charac-
teristics. For example, the upregulation of SOX12 has been reported to promote cancer pro-
liferation or migration in colorectal, lung, liver, gastric, and breast cancers [20,22,24,28,29].
Increased SOX12 expression was observed in breast, esophageal, lung, and ovarian can-
cers as well as sarcoma, compared to that in their corresponding normal tissues, using
the Oncomine database (Figure 4a). In addition, the mRNA expression of SOX12 was
significantly upregulated in BRCA, ESCA, LUSC, and LUAD regardless of the cancer stage
compared to their normal tissues (Supplementary Figure S3c). SOX12 mutation mainly
occurred in bladder cancer with a hot spot of E294K, but there were a few comparable
differences with the other cancer types. Moreover, alterations in SOX12 were the highest in
neuroendocrine prostate cancer, with an alteration frequency of 20% (Figure 4b). Survival
curve analysis, using the PrognoScan, Kaplan–Meier plotter, and R2 databases, showed that
the high-expression group had a significantly lower survival rate than the low-expression
group (Figure 4c). Overall, these data suggest that the regulation of SOX12 expression in
several types of cancers is significantly related to patient survival.
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Figure 4. SOX12 expression pattern and patient survival in various cancers. SOX12 expression pattern, alteration frequency
of mutations, copy number alterations, and patient survival in various types of cancers. (a) Box plots comparing specific
SOX12 expression in normal (left plot) and cancer tissues (right plot) were derived from the Oncomine database. The
fold-changes in SOX12 expression in breast, esophageal, lung, and ovarian cancers and sarcoma were determined and are
shown as box plots. (b) The mutations and alteration frequency of SOX12 were determined using the cBioPortal database.
SOX12 mutation diagram of different cancer types across protein domains is shown. SOX11 mutation mainly occurred
in bladder cancer with one hot spot (E294K) representing the common founder mutations. The alteration frequency of
SOX12 was determined using the cBioPortal database and is shown at the bottom. Only cancer types containing more than
100 samples and an alteration frequency of >2.1% are shown. The alterations comprised deletions (blue), amplification (red),
or mutation (green). (c) The survival plot comparing patients with high (red) and low (blue) expression in various cancer
types was obtained using the Kaplan–Meier plotter, PrognoScan, and R2 databases. Survival plot analysis was performed
using a threshold Cox p-value of <0.05. Abbreviations. IDC: invasive ductal carcinoma; OSE: ovarian surface epithelium;
OVC: ovarian carcinoma; EAC: esophageal adenocarcinoma.
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2.5. Clinical Prognosis of the Three SOX Genes in Liver Cancer

The analysis of SOX4, SOX11, and SOX12 expression revealed that their expression
was correlated with patient survival in several types of cancers. To investigate the cor-
relation between clinical prognosis and the co-expression of SOX4, SOX11, and SOX12,
we used the Kaplan–Meier plotter database, wherein the overall survival of patients was
compared between the two groups, classified based on the average expression level of
the three SOX genes. Survival plot analysis of the three SOX genes was performed using
pan-cancer RNA sequencing datasets in the Kaplan–Meier plotter. In this study, we found
that co-expression of the three SOX genes in liver cancer was significantly related to poor
overall survival of patients, indicating negative correlation of each SOX gene with overall
survival (Figure 5a). Next, to investigate the correlation between expression of the three
SOX genes in liver cancer, we examined their transcriptomic datasets in TCGA database
using the cBioPortal platform. Correlation heatmap analysis was performed using the
Pearson score of the three SOX genes (Figure 5b). The three SOX genes showed positive
correlation with each other in the liver hepatocellular carcinoma dataset (TCGA-LIHC). To
examine commonly related pathways of the three SOX genes, positively and negatively co-
altered genes of each SOX gene in TCGA-LIHC dataset were retrieved and 404 commonly
positively co-altered genes (Figure 5c) and 318 negatively co-altered genes (Supplementary
Figure S1a) between the three SOX genes were represented by a Venn diagram. The Reac-
tome pathway analysis with positively commonly correlated genes among the three SOX
genes revealed pathways related to the cell cycle and Golgi to ER transport (Figure 5d). In
the pathway analysis with commonly downregulated genes, certain correlated genes were
classified in metabolic pathways, including metabolism of lipids, amino acids, and other
macromolecules (Supplementary Table S1). Overall, these results suggest that the three
SOX genes are commonly correlated with patient survival and are associated with several
key pathways involved in cancer progression.
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genes in the heat map. (c) Venn diagram of the genes positively correlated with the three SOX
genes, generated using the TCGA-LIHC transcriptome dataset from the R2 database. (d) Reactome
pathway analysis of the genes positively correlated with the three SOX genes, using the TCGA-LIHC
transcriptome dataset.

2.6. Clinical Prognosis of the Three SOX Genes in Sarcoma

Furthermore, we examined the prognostic value of co-expression of the three SOX
genes in sarcoma. The overall survival of patients was significantly correlated with
the co-expression of the three SOX genes, as well as the expression of individual SOX
genes (Figure 6a). Survival analysis with co-expression of SOX genes indicated a lower
p-value (0.00014) than the p-values (0.0029, 0.01, and 0.015, respectively) of individual SOX
genes, thereby suggesting a stronger prognostic value of co-expression of the three SOX
genes than individual SOX expression. Subsequently, to investigate the correlation of all
SOXC members in sarcoma, we examined the transcriptome datasets of sarcomas using
TCGA database through the cBioPortal platform. In the heatmap analysis using Pearson
score, we found that the three SOX genes were positively correlated with each other in
the sarcoma dataset (TCGA-SARC) (Figure 6b). Next, we aimed to identify commonly
related pathways involving the three SOX genes that might play an oncogenic role in sar-
coma. To investigate the genes correlated with the three SOX genes, we found a co-altered
gene set with each SOX gene from the TCGA-SARC dataset through the R2 platform,
and commonly co-altered genes were represented by a Venn diagram (Figure 6c). Com-
pared to those in liver cancer, only 16 genes were commonly upregulated with the three
SOX genes in sarcoma, as indicated in the Venn diagram, while 9 genes were commonly
negatively correlated (Supplementary Figure S1b). The total commonly correlated DEGs
were classified using the Reactome pathway analysis (Version 76, Ontario Institute for
Cancer Research, Toronto, ON, Canada), which revealed pathways related to DNA methy-
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lation, exostosis, ephrin signaling, glycosaminoglycan metabolism, and telomere extension
(Figure 6d). In addition, the Reactome pathway analysis with commonly downregulated
genes revealed ontology terms such as neurodegenerative disease, FOX-mediated transcrip-
tion, and immune system, including interleukin-12 signaling (Supplementary Table S2).
Taken together, expression of the three SOX genes could have prognostic value and might
be associated with certain essential pathways related to the immune system, defective
glucuronosyltransferase activity, and DNA methylation, which result sarcoma progression.
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Figure 6. Correlation of SOX4, SOX11, and SOX12 expression with the prognosis of sarcoma, and
analysis of positively correlated genes with the three SOX genes. (a) Survival curve comparing
patients with high (red) and low (black) expression of each SOX gene from the Kaplan–Meier plotter.
The plotters were analyzed for sarcoma. (b) Correlation heat map of SOX4, SOX11, and SOX12
expression data, generated using TCGA-SARC RNA sequencing data from cBioPortal database.
Pearson’s correlation was calculated among the three SOX genes to determine the co-expression
pattern of genes in the heat map. (c) Venn diagram of the genes positively correlated with the
three SOX genes, generated using the -TCGA-SARC dataset from the R2 database. (d) Reactome
pathway analysis of the genes positively correlated with the three SOX genes, using TCGA-SARC
transcriptome dataset.
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2.7. Functional Protein Partners and Their Predicted Signaling Pathways

To investigate the three SOX gene-related pathways that might play a role in var-
ious types of cancers, 40 proteins that commonly correlated with the three SOX genes
were retrieved from the STRING database (version 11, Swiss Institute of Bioinformatics,
Lausanne, Switzerland) (Figure 7). The predicted interacting proteins that showed high
confidence included TP53, POU3F2, POU3F3, TCF7, TCF7L1, TCF7L2, CTNNB1, and
PTEN. Next, association of the 40 proteins was analyzed to predict probable signaling
pathways and gene ontology (GO) categories. The KEGG pathway analysis revealed that
individual functional protein partners were categorized in pathways related to the Hippo
signaling pathway, WNT signaling pathway, cell cycle signaling pathway, p53 signaling
pathway, and several other cancer-related pathways (Table 1). In addition, the Reactome
pathway analysis showed that some categories were related to TCF, β-catenin, and the
WNT signaling pathway (Table 2). The GO categories obtained from the analysis using
extracted functional protein partners, also contained terms related to the WNT signaling
pathway, TCF/β-catenin complex, and other developmental processes. Furthermore, gene
network analysis of three SOX genes was determined from the GeneMANIA database.
In the GeneMANIA webtool, 20 genes showed high confidence with the SOXC members
included SMARCA4, WT1, NF1, KRAS, GATA3, TERT, POU3F2, POU3F3, SOX3, and SOX5
(Supplementary Figure S4a). These findings suggest that the three SOX genes could be asso-
ciated with specific critical pathways related to certain developmental processes, including
the WNT signaling pathway and the TCF/βcatenin complex, in cancer progression.
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Functional protein partners of SOX4, SOX11, and SOX12 were predicted using the Cy-
toscape string application. The line color implies that each SOX protein interacts separately
with other proteins. The node and line colors of each SOX gene were the same. SOX4: red
color; SOX11: green color; SOX12: navy color.
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Table 1. KEGG pathway analysis of individual functional protein partners correlated with the three
SOX genes.

#Term ID Term Description False Discovery Rate

hsa05213 Endometrial cancer 2.20 × 10−20

hsa05215 Prostate cancer 4.75 × 10−18

hsa05200 Pathways in cancer 2.24 × 10−17

hsa04310 Wnt signaling pathway 2.61 × 10−16

hsa05226 Gastric cancer 2.92 × 10−16

hsa04520 Adherens junction 3.34 × 10−16

hsa05225 Hepatocellular carcinoma 7.38 × 10−16

hsa05165 Human papillomavirus
infection 2.76 × 10−15

hsa05217 Basal cell carcinoma 5.93 × 10−15

hsa05206 MicroRNAs in cancer 8.70 × 10−15

hsa04390 Hippo signaling pathway 9.90 × 10−15

hsa05210 Colorectal cancer 6.99 × 10−14

hsa05224 Breast cancer 2.64 × 10−13

hsa04934 Cushing’s syndrome 3.71 × 10−13

hsa05216 Thyroid cancer 4.14 × 10−13

hsa04115 p53 signaling pathway 4.94 × 10−13

hsa04110 Cell cycle 1.55 × 10−12

hsa05166 HTLV-I infection 4.71 × 10−11

hsa04916 Melanogenesis 4.15 × 10−10

hsa04218 Cellular senescence 4.27 × 10−10

Table 2. Reactome pathway analysis of individual functional protein partners correlated with the
three SOX genes.

#Term ID Term Description False Discovery Rate

HSA-201681 TCF-dependent signaling in response to WNT 4.69 × 10−15

HSA-3769402 Deactivation of the β-catenin transactivating complex 4.69 × 10−15

HSA-8878159 Transcriptional regulation by RUNX3 1.63 × 10−12

HSA-212436 Generic Transcription Pathway 3.64 × 10−12

HSA-2990846 SUMOylation 5.69 × 10−12

HSA-74160 Gene expression (Transcription) 9.40 × 10−12

HSA-195253 Degradation of β-catenin by the destruction complex 1.42 × 10−11

HSA-162582 Signal Transduction 3.63 × 10−11

HSA-1640170 Cell Cycle 4.88 × 10−11

HSA-201722 Formation of the β-catenin/TCF transactivating complex 7.06 × 10−11

HSA-6804760 Regulation of TP53 activity through methylation 4.81 × 10−10

HSA-3065678 SUMO is transferred from E1 to E2 (UBE2I, UBC9) 6.14 × 10−10

HSA-4411364 Binding of TCF/LEF: CTNNB1 to target gene promoters 1.59 × 10−9

HSA-8951430 RUNX3 regulates WNT signaling 1.59 × 10−9

HSA-3108232 SUMO E3 ligases SUMOylate target proteins 1.86 × 10−9

HSA-69563 p53-dependent G1 DNA Damage Response 3.53 × 10−9

HSA-1643685 Disease 4.70 × 10−9

HSA-3700989 Transcriptional Regulation by TP53 6.39 × 10−9

HSA-5663202 Diseases of signal transduction 6.39 × 10−9

HSA-6804757 Regulation of TP53 Degradation 6.39 × 10−9

3. Discussion

Members of the SOX gene family are essential transcription factors for human devel-
opmental processes such as sex determination, cell differentiation, and organogenesis [3].
Nevertheless, it has been reported that the SOX family may participate in tumor pro-
gression as transcriptional activators or repressors depending on their specific binding
partners [30]. In the present study, we revealed that phylogenetically close SOX members,
SOX4, SOX11, and SOX12, have distinctively higher expression in various cancers, and
analyzed the prognostic value and correlated pathways using various bioinformatic tools.
These three SOX proteins belong to the SOXC subgroup and are evolutionarily conserved
in vertebrates [30,31]. Although it has been reported previously that higher expression
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of SOX4, SOX11, and SOX12 is negatively correlated with patient survival in various
cancers [9–22], the expression of SOXC members has not yet been analyzed systematically
in multiple cancer datasets. In most types of cancer, SOXC members could serve as the
oncogenic role and poor prognostic value, however previous studies have been reported
that the function of SOX11 was associated both with an oncogenic or tumor-suppressive
role in carcinoma [26,32]. In our study, the higher expression of three SOX genes was
determined in various types of cancer regardless of their cancer stage compared to normal
tissues. Our systematic analysis demonstrated that the expression of the three SOXC mem-
bers was distinctively higher in various types of cancers than in their normal counterparts,
thereby indicating a negative correlation of these proteins with patient survival in multiple
cancer datasets. In particular, the poor prognostic value of SOX11 expression in pancreatic
cancer and sarcoma and SOX12 expression in breast and ovarian cancer as well as sarcoma,
has not been reported previously (Figures 2–4). We also found strong correlations between
mRNA and SOX4 protein expression in CPTAC datasets including breast, uterine corpus,
and lung cancer from TCGA database. However, Protein expression of SOX11 and SOX12
was not detectable or significant in CPTAC datasets. In the Oncomine database, SOX9 was
also highly expressed in multiple types of cancers than healthy counterparts and it has
been reported previously that higher expression of SOX9 is correlated with poor prognosis
in several cancers [15–17]. Although SOX9 has strong prognostic value in various types
of cancers, phylogenetic tree analysis of the SOX gene family proteins has shown weak
homology of SOX9 with SOXC members. Correlation between expression of SOX9 and
poor patient prognosis strongly suggests that SOX9 might have an oncogenic role in several
types of cancer, which remains to be explained in further studies.

Co-expression of all SOXC members largely occurs in mouse embryos, mid-organogenesis,
and several tissues [31,33–35]. We also observed co-expression of SOXC members in the
LIHC and SARC datasets (Figures 5b and 6b). The increased expression of these three SOX
members in cancers and sequence similarities raise the question that whether the expression
of the three SOX genes has possible compensatory or synergic role in cancer progression.
We examined the effect of co-expression of SOX4, SOX11, and SOX12 on patient survival in
TCGA datasets. In TCGA-LIHC and TCGA-SARC datasets, co-expression of the three SOX
genes was positively correlated with poor outcomes. We also observed that the expression
levels of the three SOX members were positively correlated with each other in the LIHC
and SARC datasets. In the SARC dataset, the p-value for correlation between co-expression
of the three SOX members and patient survival was much less than that for correlation
with individual SOX members, indicating that co-expression of the three SOX members has
a stronger prognostic value than the expression of individual SOX members. The stronger
prognostic value of co-expression than with each SOX member might reflect the synergic
effect of the three SOX members. However, in the LIHC dataset, co-expression did not
indicate a significantly higher prognostic value for patient survival. This indicates that
co-expression of SOX proteins is more predictive in SARC than in LIHC.

The consistent prognostic value associated with the expression of the three SOX genes
in cancers suggests shared functional pathways between these SOX genes in various cancer
types. We analyzed the shared pathways among the genes co-expressed with SOX4, SOX11,
and SOX12 in the LIHC and SARC datasets. In LIHC, the 404 commonly co-expressed
genes (9.5% of analyzed correlated genes) were highly correlated with the cell cycle and
mitosis-related pathways. However, in SARC, only 16 genes (1.4% of analyzed correlated
genes) were identified as commonly significantly correlated genes, which were mainly
related to pathways involved in epigenetic regulation. These commonly related pathways
were highly associated with cancer progression. Lower number of commonly-related genes
among the three SOX genes in SARC may reflect that independent pathways of each SOX
member could cooperatively work, thereby leading to cancer progression in SARC, which
could explain the stronger prognostic value of the three SOX genes than that of individual
SOX genes in SARC.
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PPI network analysis of the three SOX proteins revealed their functional protein part-
ners to be categorized in several cancer-related pathways, including the TNF/β-catenin
and WNT signaling pathways. Previous studies have described a single SOX gene-related
canonical WNT/β-catenin signaling pathway in various cancers [36,37]. However, our
analysis is the first to reveal a correlation between the three SOX genes and a group of
genes that are related to several pathways. Our findings indicate an association between
expression of the three SOX genes and their predicted signaling pathways in some cancers.
In addition, our results of the PPI network analysis showed similar signaling pathways
with correlated genes, including the cell cycle and SUMOylation, in LIHC and SARC. We
also analyzed the gene network analysis of SOX4, SOX11, and SOX12 using GeneMA-
NIA database. In this result, these commonly related genes including TERT, KRAS, and
CDKN2A were also highly associated with cancer progression. Previous studies have
reported that regulation of TERT, KRAS, and CDKN2A could serve as potential therapeutic
targets in multiple cancer types [38–40]. However, the mechanisms of action of these genes
in cancer progression remain unknown and need to be elucidated in the future.

The alterations in the three SOX genes were investigated to determine which types
of cancers were related to significant alterations in the SOX members, using cBioPortal.
Mutations in oncogenes, such as TP53, KRAS, and PIK3AC, are correlated with clinical
outcomes in various cancers [41–44]. Alterations are associated with human cancers, and
regions of structural variation in the human genome can be novel biomarkers for cancer
progression [45]. In our study, we found amplification of SOX4 and their upregulated
expression in multiple cancer types. In addition, previous studies have reported that ampli-
fication of SOX4 is associated with cancer progression [46–48]. Although the amplification
of SOX4 can lead to upregulation of SOX4 expression, the association between mutations
of SOX4 and their gene expression with various cancer phenotypes was unknown and
should be pursued in further study. Indeed, the SOX11 and SOX12 gene-altered patient
group had poorer survival than the unaltered group in the SARC dataset (unpublished
data). However, the functional importance of mutations and alterations in SOX4, SOX11,
and SOX12 remain unknown. In addition, more experimental and theoretical studies are
recommended to support the outcomes of this study, since the clinical data mining-based
analyses need to validate the underlying molecular mechanisms.

4. Materials and Methods
4.1. Oncomine Database Analysis

The differential mRNA expression of the SOX family members in various cancer tissues
versus their normal counterparts, was examined using the Oncomine database (Thermo
Fisher, Waltham, MA, USA) (https://www.oncomine.org/ (accessed on 11 May 2021); ver-
sion 4.5) [49,50]. Fold-change in the mRNA expression of the SOX family genes in cancer
tissues, compared to that in their normal counterparts, was calculated based on a threshold
p-value < 0.05; fold-change of 2.

4.2. Molecular Evolutionary Genetics Analysis

The amino acid sequences of the SOX family proteins were retrieved from the NCBI
database. Accession numbers of the SOX protein sequences are mentioned in Supplemen-
tary Table S3. Multiple sequence alignment was performed using the ClustalW program
from the Molecular Evolutionary Genetics Analysis X (MEGA-X) tool. Multiple-aligned se-
quences were used to build a phylogenetic tree by employing the neighbor-joining method.

4.3. GEPIA2 Database Analysis

Gene expression profiling interactive analysis 2 (GEPIA2) (Peking University, Beijing,
China) (http://gepia2.cancer-pku.cn/ (accessed on 11 May 2021)) is an online bioinformatic
tool for analyzing RNA expression using The Cancer Genome Atlas (TCGA) data [51]. In
this study, GEPIA2 was used to analyze the expression of SOX4, SOX11, and SOX12 and
their association with the survival of patients in multiple cancer types. Differential gene

https://www.oncomine.org/
http://gepia2.cancer-pku.cn/
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expression between TCGA tumor samples and a combination of TCGA normal samples
and Genotype-Tissue Expression (GTEx) normal samples, was visualized using boxplots.
A survival curve was generated, using GEPIA, to determine the association of SOX gene
expression with patient survival in different cancer types. The correlation between SOX
gene expression and patient survival was analyzed using Kaplan–Meier survival curves
and log-rank test using GEPIA2.

4.4. cBioPortal Database Analysis

cBioPortal (MSKCC, New York, NY, U.S.A.) (http://www.cbioportal.org (accessed
on 11 May 2021); version 3.7.2) is a web-based genomic portal that provides visualization
and analysis of TCGA datasets [52,53]. In this study, cBioPortal was used to analyze the
mutation and alteration frequency of SOX genes with relevant parameter settings.

4.5. Kaplan–Meier Plotter

The Kaplan–Meier plotter (Balazs Gyorffy, Budapest, Hungary) (http://kmplot.com/
analysis/ (accessed on 11 May 2021)) is a web-based database that provides survival curve
of patients, based on 54,675 genes in 21 cancer types [54]. Comparison of survival between
the two patient groups, classified according to the expression level of each SOX gene, with
“auto select best cutoff” option was carried out using the survival curve. The survival curve
indicating the co-occurrence of SOX genes was retrieved to investigate the prognostic value
of co-expression of SOX genes in pan-cancer RNA sequencing data. Survival analysis was
performed to determine the average expression levels of SOX4, SOX11, and SOX12.

4.6. R2: Genomic Analysis and Visualization Platform

The R2 platform (the Academic Medical Center (AMC), Amsterdam, The Netherlands)
(https://hgserver1.amc.nl/cgi-bin/r2/main.cgi (accessed on 11 May 2021)) is a publicly
available web-based genomic analysis and visualization platform that uses information
from the TCGA, Gene Expression Omnibus (GEO), and GTEx projects. In this study, we
performed survival analysis of the mRNA expression of the three SOX genes in several
types of cancers, using the R2 online tools.

4.7. Gene Correlation Analysis of SOX4, SOX11, and SOX12

Correlated genes of the three SOX members were determined from TCGA datasets
of liver cancer and sarcoma, using the R2 platform (https://hgserver1.amc.nl/cgi-bin/r2
/main.cgi (accessed on 11 May 2021)). The analysis was performed with the adjustment of
the Bonferroni test using a threshold p-value < 0.01.

Next, Venn diagrams were used to identify common genes among the correlated
genes of SOX4, SOX11, and SOX12 in liver cancer and sarcoma, using Venny 2.1.0 (Spanish
National Biotechnology Centre (CNB)-CSIC, Madrid, Spain) (https://bioinfogp.cnb.csic.es/
tools/venny/ (accessed on 11 May 2021)).

To explore pathways associated with the genes commonly correlated with SOX4,
SOX11, and SOX12, we used the Reactome pathway database (Ontario Institute for Cancer
Research, ON, USA) (https://reactome.org/ accessed on 11 May 2021; version 76) [55].

4.8. Identification of Functional Protein Partners of SOX4, SOX11, and SOX12, and Signaling
Pathway Analysis

The functional protein partners of SOX4, SOX11, and SOX12 were analyzed using
STRING database v11.0 (https://string-db.org/ (accessed on 11 May 2021)). Subsequently,
these data were reorganized using the Cytoscape tool to visualize the interaction network of
each protein. Pathway and gene ontology (GO) analyses were performed using the selected
protein partners. Pathway analysis was classified based on the KEGG and REACTOME
pathway databases [56].

http://www.cbioportal.org
http://kmplot.com/analysis/
http://kmplot.com/analysis/
https://hgserver1.amc.nl/cgi-bin/r2/main.cgi
https://hgserver1.amc.nl/cgi-bin/r2/main.cgi
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https://bioinfogp.cnb.csic.es/tools/venny/
https://bioinfogp.cnb.csic.es/tools/venny/
https://reactome.org/
https://string-db.org/
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4.9. Analysis of SOX Protein Expression Pattern in Various Types of Cancer

The protein expression levels of SOX protein in multiple cancer types were investi-
gated from the UALCAN databases (Preston, Lancashire, UK) (https://ualcan.path.uab.edu/
index.html (accessed on 11 May 2021)) [57]. Protein expression level of SOX4 was system-
atically analyzed according to cancer stage on the characteristics of patients with COAD,
LIHC, LUAD, and LUSC, derived from the Clinical Proteomic Tumor Analysis Consortium
(CPTAC). Differences with p-value < 0.05 were considered statistically significant.

4.10. Analysis of Gene Network with SOX4, SOX11, and SOX12

The gene network analysis with SOX4, SOX11, and SOX12 was conducted using
GeneMANIA database (University of Toronto, TN, Canada) (https://genemania.org/
(accessed on 11 May 2021)) [58]. In this study, GeneMANIA was used to analyze the
interaction gene network with three SOX genes.

5. Conclusions

In this multi-omics analysis of SOX genes expression in human cancer databases,
we suggest the evidence of the correlation between the expression of three SOX genes
and clinical outcomes in human cancer. Our study provides the importance of all SOXC
members expression and possible three SOX genes related pathways in cancer progression.
Therefore, our analysis may contribute valuable insights into SOX4, SOX11, and SOX12 as
a potential therapeutic goal for various human cancers.
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10.3390/jpm11080823/s1, Supplementary Figure S1: Venn diagram showing genes negatively cor-
related with SOX4, SOX11, and SOX12 in TCGA-LIHC and TCGA-SARC; Supplementary Figure
S2: Protein expression profile of SOX4 in various types of cancers and their adjacent normal tis-
sues; Supplementary Figure S3: mRNA expression level of SOX4, SOX11, and SOX12 in multiple
cancer types; Supplementary Figure S4: gene network analysis with SOX4, SOX11, and SOX12
using GeneMANIA database; Supplementary Table S1: Reactome pathway analysis of commonly
downregulated genes in TCGA-LIHC; Supplementary Table S2: Reactome pathway analysis of
commonly downregulated genes in TCGA-SARC. Supplementary Table S3: Accession numbers of
the SOX protein sequences (NCBI).
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