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Isolated limb perfusion allows the direct application of therapeutic agents to a tumour-bearing extremity. The present study
investigated whether the dihydropyridine-type Ca2+-channel blocker nifedipine could improve blood flow and oxygenation
status of experimental tumours during isolated limb perfusion. Perfusion was performed by cannulation of the femoral artery
and vein in rats bearing DS-sarcoma on the hind foot dorsum. Perfusion rate was adjusted to maintain a perfusion pressure of
100 – 140 mmHg throughout the experiment. Following equilibration, nifedipine was continuously infused for 30 min (8.3 mg
min71 kg71 BW). During constant-pressure isolated limb perfusion, nifedipine can significantly increase perfusion rate
(+100%) and RBC flux (+60%) through experimental leg tumours. ‘Steal phenomena’ in favour of the surrounding normal
tissue and oedema formation were not observed. Despite the increased oxygen availability (+63%) seen upon application of
this calcium channel blocker, nifedipine does not result in a substantial reduction of tumour hypoxia, most probably due to an
increase in O2 uptake with rising O2 supply to the tumour-bearing hind limb. Nifedipine application during isolated limb
perfusion can enhance tumour microcirculation and may therefore promote the delivery (pharmacokinetics) of anti-cancer
drugs to the tumour and by this improve the efficacy of pressure-controlled isolated limb perfusion.
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Isolated limb perfusion (ILP) is a treatment modality for malignan-
cies of the extremities in which the tumour-bearing limb is isolated
from the patient’s circulatory system and perfused separately. This
procedure allows the administration of anti-cancer agents to the
tumour at high doses with only a minimum risk of systemic toxi-
city. High-dose regional chemotherapy was one of the first
concepts in ILP which was complemented more recently by the
application of cytokines and immune-modulators frequently in
combination with hyperthermia (Omlor et al, 1995; Eggermont et
al, 1996; Pisters et al, 1997; Schraffordt-Koops et al, 1998; Seyn-
haeve et al, 2002). Since its introduction into the clinical setting
(Creech et al, 1958), ILP with high-dose chemotherapy alone or
in combination with biological agents has been used for the treat-
ment of loco-regionally advanced melanomas and locally advanced
soft tissue sarcomas not amenable to surgical resection (for a
review see Hohenberger and Kettelhack, 1998).

The response to chemo- or cytokine-therapy may however be
compromised by ‘biological’ factors such as tumour blood flow
and microcirculation, tissue oxygenation or pH distribution. The
individual tumour microenvironment is a paramount determinant
in the outcome of non-surgical treatments (Vaupel et al, 1989;
Höckel and Vaupel, 2001). For example, bulky tumours, which
are an indication for ILP in sarcoma treatment, often show a
progressive deterioration and heterogeneity of tumour blood flow

during growth which in turn is responsible for diffusion- and
perfusion-limited hypoxia resulting in a reduced efficacy of
oxygen-dependent agents (e.g., anthracyclines, cyclophosphamide
or melphalan; Vaupel et al, 2001). At the same time a poor and
inhomogeneous delivery of anti-cancer agents will diminish the
cytotoxic effect. For this reason, supportive treatment modalities
might be helpful which lead to an improvement or homogenisation
of tumour blood flow and/or a reduction of hypoxia already
present in many experimental or human tumours.

One group of drugs that might achieve these goals (and by this
might increase the efficacy of ILP) are calcium channel blockers
(CCB). In experimental tumour therapy, CCBs have been of broad
interest because of their ability to modify tumour blood flow and
improve oxygenation status.

Blood flow modification following administration of these
agents results from a dilation of resistance vessels and a reduction
in blood viscosity. Over the last two decades, CCBs (e.g., flunari-
zine) have been shown to improve tumour blood flow, oxygen
availability (Kaelin et al, 1984; Vaupel and Menke, 1987, 1989),
tumour oxygenation (Dewhirst et al, 1992) and to increase tumour
radiosensitivity (Hill and Stirling, 1987; Wood and Hirst, 1988,
1989). However, the proposed increase in tumour blood flow
resulting from a vasodilatation of vessels feeding the tumour is
strongly dependent on the maintenance of a stable perfusion pres-
sure which could not be achieved with all types of CCBs. This
might however not be a problem in the case of the isolated perfu-
sion of tumour-bearing limbs by an extracorporeal circuit as
performed clinically, since perfusion pressure can be regulated by
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enhancing or lowering perfusate flow rate by means of an external
pump. Thus, a CCB-induced drop in perfusion pressure could
easily be compensated by an increase in the perfusion rate. Besides
their impact on the tumour oxygenation via an increase in the O2

supply, CCBs also seem to be able to improve the O2 status directly
by reducing oxygen consumption (Biaglow et al, 1986; Vaupel and
Mueller-Klieser, 1986).

In addition, CCBs show a chemosensitising effect (Helson, 1984)
which is thought to be independent of effects on the classical slow
inward calcium channel. The ability of verapamil and other CCBs
to reverse multi-drug resistance is linked to the interaction of the
CCBs with the P-glycoprotein in the membrane of resistant
tumour cells (Cornwell et al, 1987). The enhanced anti-tumour
and anti-metastatic potential of cisplatin in combination with nife-
dipine in mice was attributed to the inhibition of tumour cell-
platelet aggregation and inhibition of platelet-enhanced tumour cell
adhesion to endothelial cells in vitro and in vivo by CCBs of the
dihydropyridine type (Honn et al, 1985; Onoda et al, 1989).

The present study investigated the possibility of using nifedipine
to improve perfusion and oxygenation status of experimental
tumours during pressure-controlled ILP and thus to possibly
enhance the efficacy of chemotherapy. Nifedipine was chosen
rather than other CCBs since dihydropyridine derivatives preferen-
tially block calcium channels in the plasma membrane of arterial
smooth muscle cells rather than the myocardium and therefore
function in contrast to other classes of CCBs predominantly as
vasodilators (Jirtle, 1988; Robertson and Robertson, 1996), a prop-
erty which may be particularly suitable for increasing perfusion rate
in a pressure-controlled system.

MATERIALS AND METHODS

Animals and tumours

Male Sprague Dawley rats (Charles River Deutschland, Sulzfeld,
Germany; body weight 200 – 320 g) housed in our animal care
facility were used in this study. They received a standard diet
and acidified water ad libitum. Experimental tumours were grown
following subcutaneous injection of DS-ascites cells (0.4 ml;
approximately 104 cells per ml) into the dorsum of the hind foot.

Tumours were used when they reached a volume of between 0.8
and 1.3 ml, 4 to 9 days after tumour implantation corresponding
to a tumour mass of 0.5% of the body weight (Workman et al,
1998). Tumours were implanted on both feet whereby one leg
was used for isolated limb perfusion and the contralateral leg as
an additional control for the metabolic and bioenergetic para-
meters. Studies had previously been approved by the regional
ethics committee and were conducted according to UKCCCR
guidelines (Workman et al, 1998) and to the German Law for
Animal Protection.

Nifedipine

Under protection from direct light, 2 mg nifedipine (Sigma,
Deisenhofen, Germany) was dissolved in 10 ml 96% ethanol.
Further dilution was made with isotonic saline resulting in a
concentration of 0.1 mg ml71. This stock solution was added
continuously at a rate of 0.5 ml h71 kg71 body weight (Harvard
infusion/withdrawal pump, Harvard, Edenbridge, UK) to the
perfusion medium via a catheter placed in the femoral artery
resulting in a nifedipine dose of 8.3 mg nifedipine min71kg71 body
weight. An equivalent volume of the vehicle was infused into
control animals.

Isolated limb perfusion

A single-pass ILP of the tumour-bearing extremity was performed
(in contrast to the earlier attempts of Nagel et al (1987) where a
closed blood circuit was used) using a perfusion system consisting
of a peristaltic roller pump (mp13GJ-4, Ismatec, Zürich, Switzer-
land), a capillary oxygenator (SPS40002-P, Fresenius, Bad
Homburg, Germany), a water-filled heat exchanger used to main-
tain a perfusate blood temperature of 36.5 to 37.58C,
polyethylene cannulas and silicone tubing (Figure 1). The perfusion
medium was heparinised blood (20 i.u. ml71 whole blood)
obtained from donor rats. Prior to use, blood was diluted to a
haematocrit of 25% with bicarbonate-buffered oxypolygelatine
(55 g l71, Gelifundol, Biotest Pharma, Dreieich, Germany), an
isotonic colloidal blood plasma substitute solution which is used
in the clinical setting. By using this drug for haemodilution an
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Figure 1 Experimental set-up for isolated limb perfusion in the rat.
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isotonic and isooncotic perfusate was obtained. Mean haemoglobin
concentration (cHb) was 77 g l71. Mean glucose and lactate levels
were 6.1 and 6.9 mM, respectively. Blood was oxygenated with a
humidified gas mixture containing 6% CO2, 36% O2 and 58%
N2 (v v71).

When tumours had reached the target volume, animals under-
went general anaesthesia (sodium pentobarbital, 40 mg kg71 i.p.,
NarcorenTM, Merial, Hallbergmoos, Germany) and polyethylene
catheters were surgically placed into the thoracic aorta via the left
common carotid artery and into the right external jugular vein.
Mean arterial blood pressure (MABP) was continually monitored
through the connection of the arterial catheter to a Statham pres-
sure transducer (type P23 ID, Gould, Oxnard, CA, USA). Arterial
blood gas analysis was performed before and during ILP experi-
ments using a pH/blood gas analyser (type ABL 5, Radiometer,
Copenhagen, Denmark). Since the anaesthetic agent used is known
to induce respiratory depression in high concentrations, the depth
of anaesthesia was assessed by monitoring arterial blood pressure
and blood gas status to ensure that these parameters remained
within the physiological range throughout the experimental period.

Heparin (100 i.u. kg71, body weight) was injected intravenously
to prevent coagulation. An incision was made in one groin and the
femoral artery and vein were exposed. After ligation of accessible
collaterals, the femoral vessels were cannulated (Vasofix braunule
20 G, B Braun Melsungen, Melsungen, Germany, and Abbocath-
T, 20 G, Abbott Ireland, Sligo, Ireland, respectively), flushed with
2 ml of warmed oxypolygelatine and then connected to the perfu-
sion equipment. Blood flow in deep-seated collaterals was restricted
by a groin tourniquet which was tightened upon commencement
of the perfusion. Perfusate flow rate was varied (range: 0.27 –
2.63 ml min71) to achieve a constant perfusion pressure (PP) of
approximately 100 to 140 mmHg in order to maintain an adequate
tissue perfusion which might otherwise be impaired with PP
approximately 15 mmHg below the systemic MABP (Fontijne et
al, 1985a,b). Perfusion pressure in the isolated leg was continuously
monitored through the connection of the femoral artery to a
Statham pressure transducer via a three-way stopcock.

The duration of isolated perfusion of approximately 60 min
including 30 min of drug application was chosen in accordance
with clinical studies and with results dealing with optimum condi-
tions for ILP in the animal model (de Wilt et al, 1999).
Throughout all experiments, animals lay supine on a heated oper-
ating pad and rectal temperature was maintained at 37.5 – 38.58C.
Animals breathed room air spontaneously.

Laser doppler flowmetry

A multi-channel laser Doppler perfusion monitor (semiconductor
laser diode, wavelength 780 nm, output power 1 – 2.5 mW, cut-
off frequency 15 Hz, Oxford Array, Oxford Optronix, Oxford,
UK) was used to measure red blood cell flux (RBC flux). Details
of this method have been described earlier by Kelleher et al
(1995, 1998b). This method uses the Doppler shift (i.e. the
frequency change that light undergoes when reflected by objects
in motion, such as RBCs) and has been proposed to be a valid
method for the monitoring of microcirculatory function in small,
discrete tissue areas (for a review see Smits et al, 1986). The
measured flux predominantly represents the RBC flux within the
illuminated volume, regardless of flow direction, and is defined
as the product of the local velocity and concentration of RBCs
in the measured volume which encompasses a hemisphere with a
radius of approximately 0.1 mm. RBC flux signals were obtained
from up to two peripheral and one central locations within the
tumour using needle probes (Model array NP, o.d. 0.4 mm). A
small skin incision was made with a 24-gauge needle for insertion
of the needle probe so that bleeding from the wound was mini-
mised. Total backscattered light was also recorded during the

monitoring period to optimise probe positioning, minimise tissue
compression (which might impair circulatory function) and ensure
a constant probe location. Flux artefacts, due to alteration of the
probe position (e.g., as a result of movement), additionally result
in sudden changes of the total backscattered light. In the few
instances where this occurred, the flux values concerned were
excluded from the final evaluation. At the end of the experiment,
the laser Doppler probes were left in place, the animal given an
overdose of anaesthetic, the cannula in the femoral artery discon-
nected from the perfusion equipment and the ‘biological zero’
laser Doppler signal was established and subtracted from flux
values which were then expressed as relative RBC flux and repre-
sent percentage values related to the RBC flux value determined
immediately prior to nifedipine application.

Although, attempts were made to maintain the PP at a constant
level during ILP, slight pressure changes (+5 – 10 mmHg)
occurred. In order to assess whether changes in RBC flux were
due to variations in PP or the result of nifedipine-induced vasodi-
lation, the relative tumour vascular resistance (TVR) was calculated
as a measure of the resistance to flow. The TVR was defined by the
ratio of the MABP (or PP) and the RBC flux. This parameter is
suitable for assessment of changes in the vascular diameter from
variations in tumour blood flow.

Tumour oxygen tension

Mean tumour oxygen partial pressure (pO2) was assessed polaro-
graphically using a flexible O2-sensitive catheter electrode (length
of the O2-sensitive cathode 5 mm, outer catheter diameter
0.35 mm, LICOX, GMS, Kiel-Mielkendorf, Germany) which was
inserted into the centre of the tumour for continuous monitoring
of tumour pO2. Before each experiment, the pO2 electrode was
calibrated with room air in a chamber with constant temperature,
taking the ambient barometric pressure into account.

After the surgical procedure, animals were allowed to stabilise
and measurements commenced once constant baseline readings
for PP, RBC flux and tumour oxygen tension were obtained for
at least 20 min (if constant baseline readings could not be achieved
values were excluded from further data analysis). Thereafter base-
line values for blood flow rate, PP, RBC flux and tumour pO2

were continuously recorded before the commencement of nifedi-
pine or vehicle infusion and throughout the 30 min infusion
period. Arterial and venous perfusate samples were taken at t=0
(immediately prior to ILP), 15, and 30 min to assess pH/blood
gas status (type ABL 5, Radiometer, Copenhagen, Denmark) as well
as glucose and lactate concentrations which were determined enzy-
matically using standard test kits (1442457 and 256773;
Boehringer-Mannheim, Mannheim, Germany).

Metabolite concentrations

In an additional series of experiments, the tumour of the isolated
perfused leg and of the contralateral hind limbs of the anaesthe-
tised animals were surgically removed and rapidly frozen in
liquid nitrogen immediately following termination of the perfusion
procedure (30 min of equilibration plus 30 min of nifedipine or
vehicle infusion) and the tumours subsequently removed. The
tumours were ground to a fine powder and subsequently freeze-
dried. Thereafter, glucose and lactate concentrations were assayed
enzymatically using standard test kits (1442457 and 256773; Boeh-
ringer-Mannheim, Mannheim, Germany). Concentrations of
adenosine triphosphate (ATP), adenosine diphosphate (ADP) and
adenosine monophosphate (AMP) were determined by high-
performance liquid chromatography (HPLC, for details see Krüger
et al, 1991). In brief, 2 – 3 mg aliquots of freeze-dried tissue were
extracted with 0.3 M perchloric acid, centrifuged and the super-
natant neutralised with 2 M potassium hydroxide and diluted
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1 : 2 with the mobile HPLC-phase. Concentrations were then
determined using reversed-phase high-performance liquid
chromatography (HPLC) and UV-detection at 254 nm. The
isocratic separation was performed by a Superspher RP 18 end-
capped column (25064 mm; Knauer, Berlin Germany) and a
guard cartridge system (564 mm). The mobile phase consisted
of 0.05 M ammonium dihydrogen phospate, 0.01 M tetrabutylam-
monium hydroxide and 11.5% acetonitrile (v v71), adjusted to
pH 6.4. The flow rate was 0.9 ml min71 and the sample size
40 ml. Concentrations of all metabolites are expressed as mmol g71

tissue wet weight. Wet weight was estimated from tissue samples as
follows: tumours (perfused for 1 h) were excised from the hind
foot dorsum, skin was removed and wet weight recorded. Tumours
were dried at 608C until constant weight readings were attained.
The tissue water content was the same in perfused and in untreated
tumours (82.1+0.2% vs 82.0+0.1%) of comparable volume.
Oedema formation during ILP can thus be excluded.

Statistical analysis

Results are expressed as means+s.e.m. unless stated otherwise.
Differences between groups were assessed by the two-tailed Wilcox-
on test for paired or unpaired samples as appropriate. The
significance level was set at a=5% for all comparisons.

RESULTS

Baseline PP in the isolated-perfused leg before administration of
nifedipine or vehicle was 141+8 and 131+7 mmHg, respectively,
at comparable baseline perfusate flow rates of 1.09+0.10 ml
min71 in the nifedipine group and of 1.16+0.12 ml min71 in
control animals. Upon nifedipine application, PP initially dropped
(with lowest values at t=3 min) to 81% of the baseline value.
Thereafter however, the decrease was intentionally compensated
by the increased perfusate flow rate resulting in a constant PP of
between 130 and 135 mmHg. During nifedipine application, the
perfusate flow rate had to be increased by almost 100% in order
to maintain a constant PP (Figure 2), suggesting a pronounced
nifedipine-induced vasodilation either in the tumour or in the
normal tissue of the perfused hind limb (e.g., skeletal muscle).
After discontinuation of nifedipine infusion, the PP increased with-
in 5 min so that the perfusate rate had to be reduced to achieve
pressure-constant conditions (Figure 2). Application of the vehicle
alone resulted in only a slight decrease in perfusion pressure by 2%
of the baseline value so that the perfusate flow rate remained
almost constant during vehicle administration (Figure 2).

At constant PP during nifedipine application, the mean RBC
flux in the tumours increased by approximately 60% whereas the
TVR was reduced by 40% indicating a vasodilation of vessels feed-
ing the tumour (Figure 3). In control animals, the opposite was
observed, with a moderate reduction in RBC flux and an increase
in vascular resistance revealing a slight vasoconstriction upon
vehicle application.

Since the oxygen content of the arterial perfusate was maintained
by oxygenising the blood with a capillary oxygenator to give an
oxyhaemoglobin saturation of almost 100%, the increase in perfu-
sate flow rate during nifedipine application resulted in a
pronounced increase in O2 delivery to the perfused limb. However,
the improved supply had only a minor impact on the O2 partial
pressure of the tumour tissue. Figure 4 illustrates that during nife-
dipine infusion only a minor increase in the mean tumour pO2 of
approximately 2 mmHg occurred. The application of the vehicle
alone resulted in a slight worsening in mean tumour pO2 (a
decrease of up to 3 mmHg, Figure 4) but taking the pronounced
inter-tumour variability of the oxygenation changes into account,
these differences were not statistically significant. The improved
O2 supply therefore did not result in an improvement of tumour
oxygenation. Since the oxygenation status of a tissue results from
a dynamic steady state between O2 supply and O2 uptake, one
possible explanation of this result might be an increased O2 utilisa-
tion during nifedipine infusion. Although the O2 supply was nearly
doubled by nifedipine application, the arterio-venous O2 concentra-
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tion difference (avDO2) remained almost constant (Table 1), indi-
cating a significant increase in O2 uptake following the improved
O2 delivery caused by nifedipine administration. If all experiments
(nifedipine treatment and controls) were taken together, a linear
correlation (r2=0.606) was seen between the O2 supply to the
tumour-bearing leg and the O2 uptake into the tumour (Figure
5), a phenomenon which might explain the lack of a substantial
tumour pO2 increase during nifedipine administration.

As a result of the reduced haematocrit (25%) used in the perfu-
sate, the oxygen supply during ILP per se seems to be somewhat

restricted resulting in a higher glycolytic rate as indicated by a
lower glucose concentration in ILP tumours without nifedipine
application (0.59+0.09 compared to 1.11+0.22 mmol g71 in the
contralateral control tumours which were not isolated-perfused),
and higher lactate levels in the isolated perfused limb tumours
(27.0+3.5 vs 9.3+1.7 mmol g71 in the contralateral leg). However,
the higher glycolytic rate during ILP did not have a strong impact
on the bioenergetic status. In isolated perfused tumours (without
nifedipine) the ATP levels were 0.66+0.08 compared to
1.18+0.13 mmol g71 in the contralateral non-isolated-perfused
tumours. Although the oxygen supply was restricted during ILP
per se (due to the reduced haematocrit of the perfusate which
results in a lower oxygen transport capacity), a stable bioenergetic
status was maintained.

With nifedipine infusion during ILP, tumour perfusion substan-
tially increased and resulted in a considerably higher nutrient
supply which was reflected by a higher (though not statistically
significant) tumour glucose concentration (1.39+0.39 mmol g71

during nifedipine application vs 0.59+0.09 mmol g71 in ILP
tumours without nifedipine). However, since the oxygenation
status was not improved by nifedipine neither the lactate levels
(25.7+2.2 vs 27.0+3.5 mmol g71) nor the ATP concentration
(0.79+0.11 vs 0.66+0.08 mmol g71) markedly changed during
nifedipine treatment compared to tumours during ILP without
nifedipine. Obviously, the increase in tumour blood flow had prac-
tically no impact on the metabolic or bioenergetic status of the
tumour.

DISCUSSION

Pressure-controlled ILP allows the administration of anti-cancer
agents to a tumour at high doses with reduced systemic toxicity.
However, due to the compromised microcirculation found in many
experimental and human tumours a sub-optimum delivery (phar-
macokinetics) of chemotherapeutic agents can be expected. In
addition, the deterioration and heterogeneity of tumour blood flow
is responsible for hypoxia in tumours which in turn reduces the
efficacy of oxygen-dependent chemotherapeutic agents. For this
reason, a supportive treatment modality (e.g., nifedipine applica-
tion) which leads to a reduction of heterogeneity or an
improvement of tumour blood flow and/or a reduction of hypoxia
might be of clinical interest.

Tumour perfusion

The effect of CCBs on tumour perfusion has been investigated
extensively over the last two decades. Wood and Hirst (1989)
described dose-dependent effects of different types of CCBs on
tumour perfusion and radiosensitivity. While verapamil, nifedipine
and diltiazem enhanced radiosensitivity at low doses and increased
radioresistance at higher doses, flunarizine, which exhibits only
limited suppression of cardiac contractility (Robertson and Robert-
son, 1996), increased radiosensitivity at all dose levels. Pressure-
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Table 1 Arterio-venous O2 difference (avDO2), O2 uptake and O2 utilisation (O2 extraction rate) in the
isolated perfused tumour-bearing limb immediately prior to (t=0 min) and during (t=15 and 30 min) infusion
of nifedipine or vehicle

avDO2 (ml O2 ml71

perfusate) O2 uptake (ml min71) O2 utilisation (%)

t (min) Control Nifedipine Control Nifedipine Control Nifedipine

0 0.038+0.003 0.041+0.002 0.051+0.006 0.049+0.007 39+3 43+2
15 0.034+0.003 0.032+0.003 0.041+0.006 0.062+0.008* 36+4 33+2
30 0.033+0.003 0.031+0.003 0.036+0.004 0.050+0.006 34+3 32+2

Data represent mean+s.e.m. from at least 10 perfusion experiments; *P50.05 nifedipine vs control.
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Figure 4 Changes of mean tumour pO2 during isolated limb perfusion
upon application of nifedipine compared to the pO2 value immediately
prior to the commencement of drug infusion. Data represent mean+s.e.m.
(n=number of tumours investigated).
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controlled isolated perfusion permits the use of all classes of CCBs
irrespective of their suppression of cardiac contractility since PP
can be maintained by adjusting the perfusate flow rate. Vessels
feeding the tumour dilate upon application of CCBs, while micro-
vessels within hypoxic tumours might not be able to react
adequately to vasodilatory stimuli since in their acidic and hypoxic
microenvironment they are already maximally dilated (Vaupel et al,
1989) or are lacking a functional smooth muscle layer. Thus an
increased flow rate will result in an enhanced perfusion in both
normal and tumour tissue as long as the vascular beds of these
tissues lie in series with one another. If both vessels are located
parallel to each other, dilation of the host tissue vessels (and not
of the tumour vasculature) may induce a redirection of blood flow
in favour of the surrounding normal tissue (‘steal’ phenomenon).
However, the results of the present study show that the nifedi-
pine-induced increase in perfusion rate actually leads to an
increased tumour blood flow. Perfusate flow rate and tumour
RBC flux (as measured by the laser Doppler technique) increased
almost in parallel, except towards the end of the infusion period
when the perfusate flow was reduced by approximately 30%
(Figure 2), whereas the RBC flux showed a sustained increased
value (Figure 3A) indicating a vasodilatatory effect of nifedipine
during this period (Figure 3B). Tumour perfusion increased during
nifedipine application by 50 – 70% of the pre-treatment value.
These data clearly indicate that nifedipine-induced vasodilation
does not induce a ‘steal’ effect of the surrounding normal tissue
of the isolated perfused leg (e.g., skeletal muscle). The improve-
ment of tumour blood flow seen in the present experiments was
comparable to that found in other studies where increases ranged
from approximately +30% to a maximum of +200% using various
kinds of CCBs (Kaelin et al, 1984; Vaupel and Menke, 1987; Wood
and Hirst, 1989; Dewhirst et al, 1992; Zenke et al, 1996; Muruga-
nandham et al, 1999). Wu et al (1997) demonstrated that an
enhanced flow rate is accompanied by improved pharmacokinetics
of the anti-cancer drug melphalan. Raising the perfusate flow rate
from 4 to 8 ml min71 led to a two-fold increase in melphalan
concentration in the tumour tissue. Zenke et al (1996) showed that
co-administration of diltiazem and the anti-cancer drug nimustine
resulted in a 39% increase in intra-tumoural blood flow and a
higher concentration of nimustine in rat gliomas. The improved
microcirculation seen upon application of nifedipine as shown in
our study may therefore present a useful and appropriate means
of promoting the delivery of anti-cancer agents to the tumour
tissue.

Tumour oxygenation and oxygen utilisation

In the present study, pO2 values measured in tumours of isolated
perfused limbs were lower (median pO2: 2 mmHg, fraction of
hypoxic pO2 values 42.5 mmHg: 62%) than in non-perfused
contralateral control tumours with comparable volumes (median
pO2: 4 – 13 mmHg, fraction of hypoxic pO2 values: 10 – 40%)
(Kelleher and Vaupel, 1993; Kelleher et al, 1995, 1998a). These data
indicate that during isolated limb perfusion O2-supply conditions
were restricted (compared to control conditions in non-perfused
limbs). This is partially due to the lower cHb of the perfusate
(74+2 g l71) compared to whole blood. Control measurements
in the normal subcutis of perfused hind limbs (non-tumour bear-
ing) and non-artificially perfused legs also showed poorer
oxygenation during ILP (median pO2=37 mmHg in subcutis
during ILP and 49 mmHg in control legs). In many experimental
ILP studies (Bonen et al, 1994) as well as in the clinical setting,
perfusates with reduced cHb (compared to normal whole blood)
or even erythrocyte-free perfusates were used. Enhanced flow rates
(e.g., during nifedipine application) might therefore (at least
partially) compensate for the reduced oxygen transport capacity
associated with a low cHb.

Many studies have demonstrated an increased tumour blood
flow upon application of CCBs but the postulated effect on tumour
oxygenation has generally not been documented. Based on mathe-
matical simulation experiments, Secomb et al (1995) proposed that
a fraction of hypoxic pO2-values of 30% would only be abolished if
the flow rate were to be increased by a factor of 4 or more. An
improvement in tumour oxygenation was reported in two studies
by Dewhirst et al (1992) and Muruganandham et al (1999) where
tumour blood flow increased to two- and three-fold the baseline
values, respectively. Using a dorsal skin flap preparation Dewhirst
et al (1992) demonstrated that flunarizine enhanced perivascular
pO2 by approximately 50% in the tumour center (pO2 prior to
drug administration 25 mmHg, with an increase of 12 mmHg).
Muruganandham et al (1999) reported a diltiazem-induced
improvement in tumour oxygenation of 25% in a subcutaneously
growing tumour. The present study failed to show a marked effect
of nifedipine on tumour oxygenation during ILP. Although
tumour perfusion increased by 50% during nifedipine application
(Figure 3A), the mean tumour pO2 rose only slightly by 2 –
3 mmHg (Figure 4). These results are still in accordance with
previous studies demonstrating that CCBs can affect the oxygen
consumption rate of tumour cells (Biaglow et al, 1986; Vaupel
and Mueller-Klieser, 1986). These studies showed that with high
concentrations of verapamil and other CCBs the O2 utilisation in
several tumour cell lines can be reduced under in vitro conditions
by up to 30%. However, in vivo, the tissue concentrations of these
drugs are presumably much lower inducing a less pronounced
reduction. In addition, previous studies also clearly demonstrated
that a reduction of O2 consumption rate by only 30% is not suffi-
cient to cause a significant improvement in the oxygenation status
of a tumour (Thews et al, 1999). For this reason, the results of the
present study do not necessarily contradict previously published in
vitro data.

Since the oxygenation status of a tissue results from a dynamic
steady-state between the oxygen supply and the cellular O2

consumption, one possible explanation for the lack of oxygenation
improvement during nifedipine application may be an increase in
O2 uptake during the treatment. Calculating the oxygen uptake
from the avDO2 and the perfusion rate, it became obvious that
with a greater oxygen supply (as a result of a higher perfusion rate
during nifedipine application) the O2-uptake by the tumour
increased linearly (Figure 5). Previous studies by Gullino et al
(1967a,b) and Kallinowski et al (1989a,b) showed that the tumour
O2 consumption is dependent on the oxygen availability as long as
a ‘saturation level’ of the O2 supply is not reached. An improve-
ment in the convective O2 transport (by increased perfusion) will
only reduce tumour hypoxia if the O2 supply greatly exceeds the
consumption rate. Due to the reduced haemoglobin level during
ILP, the oxygen transport capacity of the perfusate is diminished
(0.11 ml O2 per ml blood during ILP vs 0.2 ml O2 per ml blood
in controls) resulting in a restricted supply situation. Obviously,
the O2 supply in the present study was markedly lower than the
‘saturation level’ and the convective O2 transport during ILP did
not meet the demands of the tumour tissue. During ILP therefore,
where the O2 transport capacity is reduced, an improvement in the
perfusion rate of 50 – 100% is probably not sufficient to bring
about a significant increase in the median tumour pO2.

As a result of the restricted oxygen supply during ILP (due to
the reduced haematocrit of the perfusate), the lactate levels in
tumours of isolated perfused limbs were significantly higher than
in tumours of contralateral control limbs, indicating a much higher
glycolytic rate. However, the higher glycolytic rate had only a
minor impact on the bioenergetic status resulting in ATP levels
which are comparable to those found previously in untreated
tumours (Vaupel et al, 1994). Although nifedipine application
during ILP increased tumour perfusion by approximately 60%
(Figure 3) and in turn the nutrient and oxygen supply, only the
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glucose concentration in the tumour was elevated. Nifedipine had
almost no impact on the bioenergetic status, a finding which is in
good accordance to an earlier study demonstrating the energy
status to be relatively stable despite substantial changes in blood
flow and tissue oxygenation providing tumour perfusion does
not fall below a certain threshold (Vaupel et al, 1994).

In conclusion, nifedipine can significantly improve tumour
perfusion during pressure-controlled ILP. ‘Steal phenomena’ in
favour of the surrounding normal tissue and oedema formation
were not observed. Nifedipine can enhance tumour microcircula-
tion and may therefore promote the delivery (pharmacokinetics)
of anti-cancer agents. Although the application of this calcium

channel blocker increases oxygen availability to the tumour the
improvement of perfusion by nifedipine does not result in a
substantial reduction of tumour hypoxia. On the basis of these
results, nifedipine application during ILP can be expected to
increase the delivery of anti-cancer drugs to the tumour and by this
improve the efficacy of pressure-controlled ILP.
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