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Abstract
The direct alkynylation of benzofurans was achieved for the first time using the hypervalent iodine reagent 1-[(triiso-

propylsilyl)ethynyl]-1,2-benziodoxol-3(1H)-one (TIPS-EBX) based on the cooperative effect between a gold catalyst and a zinc

Lewis acid. High selectivity was observed for C2-alkynylation of benzofurans substituted with alkyl, aryl, halogen and ether

groups. The reaction was also successful in the case of the more complex drug 8-methoxypsoralen (8-MOP).
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Introduction
Benzofurans are important heterocycles frequently encountered

in both bioactive compounds and organic materials (Figure 1).

For example, members of the furocoumarin class of natural

products including psoralen (1), 8-methoxypsoralen (2) and

angelicin (3) can cross-link with DNA upon light irradiation.

They have consequently been used for the treatment of skin

diseases such as cancer or psoriasis [1-4]. The natural product

coumestrol (4) is found especially in soy beans and has estro-

genic activity [5]. Synthetic bioactive compounds containing

benzofurans are also important, as exemplified by amiodarone

(5), as antiarrythmic drug [6,7]. Finally, benzofurans have also

emerged recently as important structural elements for organic

materials, such as the organic transistor 6 [8].

Due to the importance of benzofurans, the discovery of new

efficient methods for their synthesis and functionalization is an

intensive field of research [9-11]. Especially interesting would

be methods allowing the direct and regioselective C–H func-

tionalization of benzofurans [12]. In this context, the introduc-

tion of an alkyne would be particularly useful, as acetylenes are

important building blocks in synthetic chemistry, chemical

biology and materials science [13]. Nevertheless, to the best of

our knowledge, the direct alkynylation of benzofurans is still an

unknown process.

Since 2009, our group has developed a mild gold-catalyzed [14-

17] method for the alkynylation of electron-rich aryls such as
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Scheme 1: Zinc–gold catalyzed C2-alkynylation of benzofurans.

Figure 1: Benzofurans in bioactive compounds and materials.

indoles and pyrroles [18], thiophenes [19], anilines [20] and

furans [21]. Key for success was the use of ethynylbenziodox-

olones, which are cyclic hypervalent iodine reagents [22,23].

Nevertheless, the conditions we have used for other hetero-

cycles gave only very low yields in the case of benzofurans.

Herein, we would like to report the first catalytic direct

C2-alkynylation of benzofurans 7 based on a cooperative effect

between a gold catalyst and a zinc Lewis acid using 1-[(triiso-

propylsilyl)ethynyl]-1,2-benziodoxol-3(1H)-one (TIPS-EBX, 8)

as reagent (Scheme 1). The reaction proceeded under mild

conditions (60 °C under air) and could also be used to alkyny-

late the more complex polycyclic natural product 8-methoxy-

psoralen (2).

Findings
Benzofuran (7a) is less reactive then furans and indeed no prod-

uct was observed under the conditions optimized for the latter

[21] at room temperature or at 60 °C using the commercially

available electrophilic alkynylation reagent TIPS-EBX (8)

(Table 1, entries 1 and 2) [24-27]. Fortunately, benzofuran (7a)

was also more stable in the presence of acidic additives, and

co-activation became possible, whereas Zn(OTf)2 was superior

to trifluoroacetic acid (TFA) at 60 °C (Table 1, entries 3 and 4)

[19,28]. No product was observed in the absence of AuCl,

demonstrating the cooperative effect of the two metals (Table 1,

entry 5). Lower or higher temperatures did not increase the

yield (Table 1, entries 6 and 7). Finally, using a larger excess of

TIPS-EBX (8) and Zn(OTf)2 gave 75% yield of alkynylation

product 9a (Table 1, entry 8). The use of Zn(OTf)2 in catalytic

amount led to a lower yield (Table 1, entry 9), and a larger

excess resulted in decomposition of the starting material only

(Table 1, entry 10). Although other Lewis acids could also be

used (Table 1, entries 11 and 12) [29], no better results than

with Zn(OTf)2 were obtained (Table 1, entry 7). Importantly, in

contrast to our previous work with benzothiophenes [19], high

selectivity for C2 alkynylation was observed.

Table 1: Optimization of the alkynylation of benzofuran (7a).

Entrya Equiv 8 Additiveb T [°C] Yield

1 1.2 – 23 <5%
2 1.2 – 60 <5%
3 1.2 TFA 60 42%
4 1.2 Zn(OTf)2 60 56%
5 1.2 Zn(OTf)2c 60 <5%
6 1.2 Zn(OTf)2 40 48%
7 1.2 Zn(OTf)2 82 36%
8 2 Zn(OTf)2 60 75%
9 2 Zn(OTf)2d 60 37%

10 2 Zn(OTf)2e 60 0%
11 2 Zn(NTf)2 60 57%
12 2 Yb(OTf)3 60 62%

aReaction conditions: 7a (0.20 mmol) and AuCl (0.01 mmol) in acetoni-
trile (0.8 mL) under air for 26 h, isolated yield; bsame amount as 8;
cwithout gold catalyst; d0.2 equiv; e4.0 equiv.
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Scheme 2: Scope of the reaction.

Scheme 3: Alkynylation of 7-methoxybenzofuran (7j) [31].

The scope of the reaction was then investigated (Scheme 2).

Substitution by diverse functional groups was first examined on

the C5 position. An electron-rich methoxy group was well toler-

ated, giving the desired alkynylation product 9b in 73% yield.

The reaction was also successful with a bromide substituent

(product 9c), making the method orthogonal to classical cross-

coupling chemistry [30]. In presence of an aryl or an alkyl

substituent, alkynylation was also obtained in 72% and 50%

respectively (products 9d and 9e). Benzofurans substituted at

the C7 position could also be used, as demonstrated by the effi-

cient formation of alkynes 9f and 9g. In contrast, when

7-methoxybenzofuran (7j) was used, no C2 alkynylation prod-

uct could be isolated. Instead, a mixture of C4 and C6 alkyny-

lated benzofurans 9j and 9j’ was obtained (Scheme 3) [31].

Substitution on the furan ring was also possible at the C3 pos-

ition (product 9h), but the use of 2-methylbenzofuran (7i) led to

very a low yield in the alkynylation reaction.

Finally, we wondered if the alkynylation method could also be

successful in the case of more complex benzofuran-containing

natural products and drugs. We were pleased to see that the

alkynylation of 8-methoxypsoralen (2) was indeed possible. The

major product 10 bearing the acetylene group at the C5’ pos-

ition was obtained in 37% yield (Scheme 4) [32]. Although the

yield was still moderate, this was one of the first examples of

direct alkynylation of a marketed drug. It also gave access in a

single step to an interesting furocoumarin derivative with an

extended chromophore, which could be important for

phototherapy.

Mechanistically, the reaction could proceed either via π-acti-

vation of the triple bond by the gold catalyst followed by conju-

gate addition of the benzofuran, α-elimination and 1,2-shift, or

oxidative addition of TIPS-EBX (8) onto the gold catalyst

(either at the Au(I) or Au(0) oxidation level) followed by elec-
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Scheme 4: Alkynylation of 8-methoxypsoralen (2).

trophilic auration and reductive elimination [33]. The role of the

zinc Lewis acid is not completely clear at this stage, but it may

act by complexing the carboxylate group of the hypervalent

iodine reagent, enhancing its electrophilic reactivity [19,34]. In

fact, a complete shift of the 1H NMR signals of TIPS-EBX (8)

was observed when Zn(OTf)2 was added, whereas no signal

shift was observed when mixing the Lewis acid and benzofuran

(7a) [35].

In conclusion, the first direct alkynylation method of benzofu-

rans has been developed. Key for success was a cooperative

effect between a gold catalyst and a zinc Lewis acid, together

with the use of the hypervalent iodine reagent TIPS-EBX (8).

Preliminary results obtained with 8-methoxypsoralen (2)

demonstrated that the reaction could also be applied to more

complex furocoumarin natural products.

Experimental
General procedure for the alkynylation of benzofurans:

TIPS-EBX (8, 342 mg, 0.800 mmol, 2.0 equiv), AuCl (4.6 mg,

0.020 mmol, 0.050 equiv), Zn(OTf)2 (289 mg, 0.800 mmol,

2.0 equiv) and benzofuran 7 (0.40 mmol, 1.0 equiv) were added

into CH3CN (2.0 mL) under air. The mixture was stirred for

26 hours at 60 °C. Then the mixture was concentrated in pres-

ence of silica gel and purified directly by column chromatog-

raphy.

Supporting Information
Supporting Information File 1
Experimental part.

[http://www.beilstein-journals.org/bjoc/content/

supplementary/1860-5397-9-204-S1.pdf]
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