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Sanitizing the water sources of local communities is important to control the spread of
microbial resistance genes, especially those for water-borne illnesses. The activities of
antibiotic resistance gene (ARG)-host pathogens pose a threat to public health, and it
has been estimated that the infection will lead up to 10 million deaths globally by the year
2050. Hence, in this study, we aim to analyze the efficiency of our municipal wastewater
treatment plant (WWTP) process in producing pathogen-free water by investigating the
microbial composition between influent and effluent water sites. Shotgun metagenomics
sequencing using the Illumina platform was performed on the influent and effluent
samples of six different WWTP sites located in Johore, Malaysia. After raw data pre-
processing, the non-redundant contigs library was then aligned against BLASTP for
taxonomy profiling and the Comprehensive Antibiotic Resistance Database for ARG
annotation. Interestingly, the alpha-diversity result reported that effluent site samples
showed higher abundance and diverse heterogeneity compared to the influent site. The
principal component analysis (PCA) and non-metric multidimensional scaling (NMDS)
plots also suggested that effluent sites showed high variation in the genetic material
due to loosely clustered sample plots, as compared to the tightly clustered influent
samples. This study has successfully identified the top three abundant phyla in
influent—Proteobacteria, Firmicutes, and Bacteroidetes—and effluent—Proteobacteria,
Actinobacteria, and Bacteroidetes—water. Despite the overlap within the top three
abundant phyla in influent and effluent sites (Proteobacteria and Bacteroidetes), the ARG
composition heat map and drug class phenotype plot bar exhibits a general trend of a
downward shift, showing the efficiency of WWTP in reducing opportunistic pathogens.
Overall, it was demonstrated that our municipal WWTP efficiently eliminated pathogenic
microbes from the influent water before its total discharge to the environment, though
not with the total elimination of microorganisms. This metagenomics study allowed
for an examination of our water source and showed the potential interaction of
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species and ARGs residing in the influent and effluent environment. Both microbial
profile structure and co-occurrence network analysis provide integrated understanding
regarding the diversity of microorganisms and interactions for future advanced water
sanitation treatments.

Keywords: WWTP (wastewater treatment plant), population, metagenomic, sewage, comprehensive antibiotic
resistance database, co-occurrence network, microbial community, antibiotic resistance genes

INTRODUCTION

The safety of our water system and water supply defines
the future health and well-being of a nation. Water-borne
pathogens are responsible for many types of illnesses, including
gastrointestinal illness, neurological illness, skin problems,
bloodstream infections, respiratory-related illness, and more.
Wastewater treatment plants (WWTPs) are common reservoirs
of a variety of pathogens. Domestic wastewater profiling shows
a high concentration of microbial and viral contaminants
accumulated from various locations within the agriculture,
hospital, industry, and household sectors. A well-functioning
WWTP is essential to a living community as it is often a
reservoir for clinical antibiotic-resistant bacteria with increased
resistance to antibiotics. Owing to the opportunistic nature of
pathogens, the high diversity of genetic material in WWTPs
encourages their vertical or horizontal transmission between
microorganisms to increase their survival capability (Osińska
et al., 2019). The antibiotic-resistant bacteria can transfer
their antibiotic resistance genes (ARGs) to human pathogens
and thus increase the prevalence of infection, especially via
the fecal–oral route (Osińska et al., 2019). Among microbial
pathogens, bacteria are a chief concern as they can grow
and replicate independently without a host cell (Al-Gheethi
et al., 2018). According to the World Health Organization
(WHO)’s One Health policy, analyzing the WWTP sources of
nearby local communities is important to ensure the public is
continuously provided with a clean environment (O’Brien and
Xagoraraki, 2019). Interdisciplinary approaches are needed in
all areas of the community to control this issue, ranging from
prevention, education, investments, and policy development.
Efficient technology is a necessary measure of protection against
pathogens, specifically to prevent them from growing and
spreading in drinking water. Any data that shed light upon
waterborne disease etiology or pathology will help to mitigate the
waterborne disease threat globally.

Microorganism diversity is reported annually, showing that
these living organisms evolve rapidly as a result of 3.8 billion
years of evolution (Shikha et al., 2021). Culture-independent
techniques are needed to explore the genetic diversity, ecological
roles, and population structures of uncultured microorganisms
that can be employed without the traditional method of isolation
and culture due to certain limitations. 16S metagenomics analysis
was the first bioinformatics analysis employed to dispense
microbial information. Yet, this metagenomics technique is

Abbreviations: WWTP, wastewater treatment plant; ARG, antibiotic resistance
gene; NR, non-redundant; CARD, Comprehensive Antibiotic Resistance Database;
PCA, principal component analysis; NMDS, non-metric multidimensional scaling.

limited to only generating microbial structure profiles, and it
shows an inability to retrieve in-depth information of functional
roles. Employing shotgun metagenomics is the recommended
technique to obtain taxonomy profiling information and related
functional roles, such as gene annotation, for a thorough analysis.
This study employs the examination of genetic material present
in an environment obtained from sampling and of the inherent
diversity of microscopic life, allowing fellows experts in this
field to conduct large-scale investigations in a shorter time
and with high confidence. Various fields have employed this
technology as one of the main investigation methods; this is
widely practiced in the health, agriculture, and ecology sectors,
such as when creating a microbiome profile of the gut flora
(Mancabelli et al., 2017; Saito et al., 2019; Xu et al., 2019).
The analysis of the profile generated from the metagenomics
process would indirectly answer queries regarding the presence
of ARGs and suggestions on how to combat public health
problems caused by environmental pathogens (Guazzaroni et al.,
2009). Hence, the employment of a metagenomics analysis using
the shotgun sequencing method suggests future initiatives for
pathogen removal.

Furthermore, shotgun metagenomics data can provide
beneficial insights into the interaction between and co-
occurrence of ARGs in a control population or environment
(Chaffron et al., 2010). The co-occurrence ARG network,
however, provides the basis for the potential ARG cluster
regulation initiatives and future studies. Nevertheless, it is
important to note that the final genomic-network interpretation
is computationally challenging and would have been limited
by factors such as community turnover and local niches of
the samples. Numerous studies have applied the metagenomics
network approach to find significant biological interactions to
generate a hypothesis, especially in tackling the issue of antibiotic
resistance of microbial species in the gastrointestinal tract (Zhang
et al., 2014), soils (Barberán et al., 2012), and activated sludge
(Ju et al., 2014).

Hence, we aim to evaluate the efficiency of Malaysia’s WWTPs
in producing drinking water that is safe from the pathogenic
microbiome by using the shotgun metagenomics technology.
This study aims to do the following: (1) compare the microbial
community profiles in the influent and effluent samples from a
WWTP; (2) analyze the presence of ARGs in influent and effluent
sites; (3) generate a co-occurrence network of influent-only and
effluent-only environments.

Proper surveillance and research analysis of employed
treatment in WWTPs are required to ensure efficient
removal of these pathogenic bacteria before the water is
released into a natural body of water (Von Sperling, 2007;
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Narayanan and Narayan, 2019). In this paper, we show the
efficiency of the municipal WWTP performance in reducing the
bacterial populations and the ARGs that persisted even after
the treatment. The ARG information retrieved was analyzed to
predict the co-occurrence interaction among the selected highly
pathogenic bacteria responsible for public health concerns and
the ARG clusters.

MATERIALS AND METHODS

Sample Collection
Six different WWTPs (Figure 1) were selected as the sampling
locations in this microbial shotgun metagenomics study. The
WWTPs included three main removal stages to eliminate the
contaminant or polluted materials: the primary, secondary, and
tertiary stages (Ward et al., 2008). The samples from the WWTPs
were collected on the 6–7 of November 2011 from 8 am to
4 pm. For each WWTP, samples of 1 L of wastewater were
collected in three separate sterile flasks. The influent wastewater
was taken before the first settling tank, while another 1 L of
effluent wastewater was taken after processing at the third plant
reactor. To sum up, six flasks in total were collected to represent
each WWTP. Thus, 36 collected samples were then stored in a
cooler during the collection time. Once the samples arrived at the
laboratory, 500 mL of each water sample was stored in 10 Falcon
tubes holding 50 mL each. Then, all sample tubes were stored in
the freezer at −20◦C until further use. Notably, the samples of
influent and effluent wastewaters collected were labeled as “I” and
“E,” respectively.

DNA Isolation and Shotgun Sequencing
All 12 previously collected samples were subjected to DNA
isolation using the E.Z.N.A R© Soil DNA extraction kit (Omega
Bio-tek, United States). The performance assay was performed
according to the manufacturer’s guidelines. Briefly, 50 ng of
samples underwent the fragmentation of∼300 bp as DNA sample
optimization in the M220 focused-ultrasonicator instrument
(Covaris, United States).

Total DNA was subjected to DNA libraries construction
and amplification using the TruSeqTM DNA Sample Prep Kit
(Illumina, United States) and the cBOT TruSeq PE Cluster Kit v3
(Illumina, United States) reagents, following the manufacturer’s
guidelines. The DNA libraries were sequenced using the Illumina
HiSeq technology with the TruSeq SBS Kit v3-HS (Illumina,
United States) set in the 300 cycles environment. The sample
DNA libraries were then pooled in an equimolar amount and
subjected to a paired-end (2 × 150 bp)-sequenced platform
according to the standard Illumina protocols. The raw reads were
stored in the fastq format. The number of raw reads produced
is presented in Supplementary Table 1. These reads were
further subjected to a typical downstream shotgun metagenomics
pipeline: (1) pre-processing and (2) clean reads analysis. High-
quality DNA sequences libraries used in this study have been
deposited in the NCBI Sequence Read Archive (SRA) with the
BioProject No. of PRJNA693629.

Sequences Raw Reads Pre-processing
The produced raw reads outputs were later subjected to
processing for quality assessment and quality checking. Linkers
sequences from the raw reads were removed. Using the
trimmomatic software (Bolger et al., 2014), the linker-free raw
reads were then trimmed at the bases with quality <20 at the
3′ end, removed if N content exceeded 10%, and discarded if
the sequences were <70 bp in length after quality trimming.
To further improve the quality and reliability of the raw reads
prior to investigation and analysis, the quality-trimmed reads
were performed onto the SeqPrep (GitHub - jstjohn/SeqPrep,
2021: Tool for stripping adaptors and/or merging paired reads with
overlap into single reads., no date) software for quality control.
Next, Sickle (Joshi and Fass, 2011) was applied to remove reads
with the length <50 bp, mean quality <20, and those with
ambiguous bases (N). The total number of clean reads of all
samples following pre-processing is presented in Supplementary
Table 2. We decided to further analyze the data as most of the
reads were of good quality. To ensure that there is no genomic
noise caused by a large number of data or contamination that
occurs in the reads, the pre-processed clean reads were further
performed onto the host genome removal software Burrows–
Wheeler Aligner (BWA) (Li and Durbin, 2010).

Sequence Assembly, Gene Prediction,
and Homolog Gene Clustering
Reads assembly was conducted using the SOAPdenovo v.1.06
software (Li et al., 2008). Clean data with the k-mer ranging
from 39 to 47 were assembled into the fasta format, and the
best assemblies, as shown in Supplementary Table 3, were
selected. To maintain the quality of the clean reads, only contigs
>500 bp in length were retained for further analysis, while the
rest was discarded.

The contigs produced were subjected to gene prediction using
the MetaGene software (Noguchi et al., 2006). Only coding
regions with the open-reading frame (ORF) in the assembled
contigs with the length >60 bp were retained and translated
into amino acid sequences. The statistics of metagenomic
sequencing and assembly results as well as the predicted ORF
information for all samples are displayed in Supplementary
Tables 3, 4, respectively.

Finally, all the predicted genes were clustered using the
CD-HIT (Cluster Database at High Identity with Tolerance)
software (Fu et al., 2012) to produce a non-redundant (NR) gene
catalog. The parameter, identity, and coverage were set in the
software as 95 and 90%, respectively. As for the results, only the
longest genes of each cluster were selected as the representative
sequences for the NR gene catalog construction. The removal
of redundant sequences in each sample prevented the over-
reporting of subsequent results along with the analysis.

Gene Profile Analysis
Using the ggvenn software (Yan, 2021), a Venn diagram
representing the gene profile of influent and effluent samples
retrieved from the MetaGene and CD-HIT processing stage was
generated. The gene profile size results for all 12 samples obtained
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FIGURE 1 | Geographical marking points of six chosen wastewater treatment plants as sampling stations in Johore, Malaysia, created using ArcGIS R© software by
Esri.

from the previous assembly method were treated as the input.
To further investigate the metagenomic composition of the two
source groups (influent and effluent), UpSet plots were produced
from the UpSet R (Conway et al., 2017), using the gene profile
size of samples as an input, according to their respective group.

Reads-Based Taxonomy Profiling
To retrieve the identity of each sequence, the NR gene
catalog was aligned with NR databases of NCBI using the
BLASTP v.2.2.28+ (Altschul, 1997). Only hits with a cut-
off e-value < 1e−5 were used. The NR database of NCBI
includes the Swiss-Prot, Protein Information Resources, Protein
Research Foundation, and Protein Data Bank. Meanwhile, the
translated protein sequences information was from the GenBank
and RefSeq databases. Taxonomy profiling of the clean reads
was conducted using the Kraken-miniDB database (Wood and
Salzberg, 2014) by the Kraken analysis. According to the
results, taxon abundances were assigned with each taxonomic
level such as domain, kingdom, phylum, class, order, family,
genus, and species. Only the domain-, phylum-, class-, order-,
family-, genus-, and species-level information were selected for
a thorough analysis in the study.

Species Composition Analysis
Overall composition profile of the NR gene catalog taxonomy
was analyzed using alpha-diversity metrics, specifically the
richness, abundance, Shannon (H), and Simpson 1-D index.
The full gene taxonomy profile obtained from the taxonomy
(Supplementary Table 6) binning was used as the input for the
alpha-diversity metrics analysis and performed onto the Vegan R
(Oksanen et al., 2008).

To analyze the contrast between the abundance of the
microbial population of the influent and effluent samples,
bar plots representing the phylum-, class-, order-, family-,

and genus-level results were generated using the built-in
functions of R. Among 192 phylum-taxa (Supplementary
Table 7), 353 class-taxa (Supplementary Table 8), 617 order-
taxa (Supplementary Table 9), 1089 family-taxa (Supplementary
Table 10), and 3435 genus-taxa (Supplementary Table 11),
only column sums of relative abundance value > 1% were
retained, while the discarded ones were newly classified under
“Other.” Furthermore, microorganisms with a percentage <1%
were labeled as “Other.” Each taxon in all levels is represented by
different colors.

Next, to evaluate the microbial community structure
between samples, principal component analysis (PCA) and
non-multidimensional scaling (NMDS) were generated. The
PAleontological STatistics (PAST) v.4.03 (Hammer et al., 2001)
was used to produce the ordination plots, in which each source
was represented by specific icons with the Bray–Curtis set as the
matrix distance. The phylum and genus composition profiles
were used as the input to explore the relationship of bacterial
community structure in the wastewater samples. Relative
loading values of PCA (Supplementary Table 13) and NMDS
(Supplementary Table 14) used to build the ordination plots
are reported for future reproducibility. Using PAST software,
the similarity percentage breakdown (SIMPER) calculation
option was also performed onto the same data used for PCA
and NMDS, for further interpretation of the two ordinations
plot and structure.

Antibiotic Resistance Gene Functional
Abundance Profiling
To analyze the abundance of antibiotic resistance function
of the shotgun metagenomics samples, an analysis of the
Comprehensive Antibiotic Resistance Database (CARD) ARG
was carried out via the in-built website Resistance Gene Identifier
tool (Alcock et al., 2019). This database contains a wide range
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of reference genes related to antibiotic resistance from a variety
of organisms, genomes, and plasmids. In addition, Antibiotic
Resistance Ontology (ARO) is the core database of CARD, and it

provides a functional classification for the CARD analysis. Reads
were annotated using the best hit to the database, with a 95%
identity and 95% alignment coverage set as the query parameters.

FIGURE 2 | (Continued)
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FIGURE 2 | (A) Venn diagram consisting of two sets of groups: influent (blue) and effluent (yellow). The UpSet R plots of the gene profile from (B) six influent and (C)
six effluent WWTP samples.

The taxonomy information of the best hit in the NR database
was used to predict the taxonomy of each gene, and the relative
abundance of each taxonomic level was counted by summing the
abundance of each gene belonging to it. Only perfect and strict
hits against the database will be retained in the analysis, such as
an e-value < 1. All antibiotic resistance annotations produced
from the analysis such as the CARD ID, name, ARG family,
drug class phenotype, and resistance mechanisms are displayed
in Supplementary Table 15.

Box plots of the antibiotic resistance type abundancy
profile (Supplementary Table 16) and drug class profile
(Supplementary Table 17) for each sample were produced and
displayed in Figures 8, 9 to analyze the phenotypic profile of
ARG. The samples were grouped considering respective sources
to observe the differences in phenotype. Next, an overview
displaying an annotated heat map of ARGs with a sum abundance
of >0.1% was generated to compare wastewater samples using the
relative abundance of ARG values as an input.

Then, the resistomes from eight ARGS families—blaTEM,
blaSHV, blaCTX-M, blaOXA, Tet, Sul, Cat, and MDF types—
were selected to be discussed in-depth in this study, as these listed
ARG families were few of the most concerning pathogens for
human health. Retrieved values were plotted into a heat map in R.

Co-occurrence Gene Network
Construction and Analysis
To identify potential ARG-host interaction of 8 selected
ARGs, a gene co-occurrence network was constructed using
12 samples from the 2 water sources. The correlation matrix
between the ARG pairs of influent and effluent samples
was statistically calculated using pairwise a Spearman’s

correlation rank test (Spearman, 1904) with the Vegan R
package (Oksanen et al., 2008). The value produced by the
matrix represented the co-occurrence correlation of the ARGs
in which a positive matrix indicated a positive correlation,
while a negative value indicated a negative interaction.
The matrix values were input into Gephi R© (Bastian et al.,
2009) to plot the gene network, using built-in functions.
The generated network consisted of the ARG–ARG, ARG–
species, and species–species interactions with the Force Atlas
2 layout format.

To produce a good network, only statistically significant values
of p-value < 0.01 with a correlation coefficient >0.8 were plotted
in the constructed network for an easier interpretation (Barberán
et al., 2012; Mandakovic et al., 2018; Yasir, 2020). Meanwhile,
the node size was scaled based on the abundance of ARGs
in the metagenomics data. Furthermore, using the constructed
network, the topological properties of the co-occurrence gene
meta-network information are listed in Supplementary Table 19.

Statistical Analysis
A non-parametric Wilcoxon rank-sum test (Wilcoxon, 1945) was
used to analyze the difference between the microbial community
and functional diversity using the IBM SPSS Statistics 26.0 (IBM,
2019), Vegan (Oksanen et al., 2008), ggbiplot (Wickham, 2016),
and indicspecies R (De Caceres and Legendre, 2009), specifically
in the analysis of the domain, phylum, class, order, family,
genus, resistance mechanism, and drug class profile. Meanwhile,
analysis of similarities (ANOSIM) statistical tests (Clarke and
Warwick, 1994) were employed on the ordination plots. In brief,
any p-value < 0.05 was statically significant. Finally, Spearman’s
correlation rank test (Spearman, 1904) was performed in the R
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environment (R Core Team, 2021) to retrieve the matrices value
for co-occurrence meta-network generation.

RESULTS

Metagenome Sequencing Overview
The PCR amplification and Illumina sequencing step performed
produced high-quality metagenomics libraries for all 12 samples.
Hence, high-quality contig sequences were retrieved successfully
for the analysis, approximately within the range of 110,539–
260,732 contigs with the bp lengths around 194,040,642 and
35,362,274, respectively (Supplementary Table 3). During the
ORFs retrieval during the gene prediction step, a range from
295,038 to 549,163 ORFs with a total length of 180,456,013
and 288,008,513 bp were reported (Supplementary Table 4).
This gene profile information is deemed appropriate for
the investigation of microbial profiles between influent and
effluent water sources.

Gene profiles retrieved from the NR gene catalog construction
were analyzed to observe overlapping similarities in genes
composition between samples. A total of 1,152,400 (36.5%)
sequences were reported similar between these two groups.
Interestingly, the number of sequences identified in effluent
samples only was 45.9% larger compared to the influent samples
at 17.6%, approximately 1,450,231 vs. 554,516, respectively
(Figure 2A). Accordingly, the number of sequences reported to
be uniquely present in the influent-only group was proposed
as the size of sequences of pathogenic bacteria, eukaryotes,
or viruses that will be eliminated upon treatment. Next, it is
observed only influent samples exhibited the largest gene profile
size (293,450) as compared to effluent samples gene profile size
(8453) (Figures 2B,C), suggesting that the genomic composition
of influent water samples is more homogenous within groups,
while effluent samples may have large heterogeneity in the
genomic composition.

Alpha-Diversity
The alpha-diversity analysis was performed to examine the
diversity between the influent and effluent samples using the
richness, abundance, Shannon, and Simpson diversity indices.
The observed values from all four alpha-diversity indices
indirectly reported the environment’s community heterogeneity
structure. All four diversity indices reported a larger value of
mean in the effluent group as compared to the influent group
(Figure 3). The observed results suggest that the effluent genomic
composition is richer in species, and larger in the abundance
value with infinite diversity, as compared to the influent source.
This result aligns with findings retrieved from gene profile
analysis as the effluent profile suggested high heterogeneity in
sequences as compared to the influent profile.

Taxonomic Composition Profiling
Only the mean differences between the two sources of archaea,
bacteria, and “Other” were reported to be statistically significant,
while the domains of the eukaryotes and viruses did not
show statistically significant differences between the means of

TABLE 1 | Tabulated information of domains grouped into respective sources,
consisting of the number of samples per group (N), mean ± standard deviation
(SD), and the mean difference calculated.

Domain Source N Mean ± SD Mean difference p-Value

Archaea Influent 6 46.09 ± 17.63 517.24 0.002*

Effluent 6 563.33 ± 109.84

Bacteria Influent 6 903371.98 ± 21822.51 −476423.38 0.002*

Effluent 6 426948.59 ± 136065.36

Eukaryota Influent 6 750.20 ± 222.59 2154.99 0.937

Effluent 6 2905.18 ± 4792.02

Other Influent 6 374.71 ± 193.71 −288.97 0.015*

Effluent 6 85.74 ± 87.22

Viruses Influent 6 3837.33 ± 4651.39 6855.88 0.093

Effluent 6 10693.21 ± 7709.28

The symbol “*”indicates a p-value < 0.05.

sources (Table 1). Interestingly, only bacteria and “Other” were
observed to have a negative mean difference, suggesting that only
these two domains were reduced successfully in the bioreactor.
Meanwhile, eukaryotes, archaea, and viruses showed positive
values, indicating an increase of abundance profile in the effluent
source. Approximately, 52.4% of the bacteria domain coming
from the influent source was eliminated after being treated in the
WWTP. This elucidates the efficiency of wastewater treatment to
eliminate pathogenic bacteria in outsourced water. The analysis
of this domain is the first step in understanding the efficiency
of the employed system in WWTPs, specifically toward the
bacteria domain.

Bar plots were generated to figuratively elucidate the pattern
of microbial taxa in influent and effluent water. According
to Wilcoxon rank-sum statistical tests, the mean difference of
relative abundance of phyla, class, order, family, and genus
communities between the two sources showed strong statistically
significant differences of 0.0021, 0.0067, 0.0049, 0.0046, and
0.0064, respectively. This confirms that WWTP eliminates
bacterial community abundance with significant efficiency in
all taxa levels.

In Figure 4A, Proteobacteria, Bacteroidetes, and Firmicutes
were the dominant phyla observed in the influent samples, while
Proteobacteria, Actinobacteria, and Bacteroidetes were the top
three in the effluent samples. Intriguingly, only Proteobacteria
(67%), Bacteroidetes (78%), and Firmicutes (58%) phyla showed
a downward trend from influent to effluent composition
(Supplementary Table 7).

In class-level bar plot (Figure 4B), only Gammaproteobacteria
(84%), Betaproteobacteria (19%), Flavobacteria (84%), and
Bacteroidia (92%) showed reduction from influent to effluent
(Supplementary Table 8). Only three out of eight tested
class-level taxa produce a p-value > 0.05. Meanwhile,
in the order-level (Figure 4C), Pseudomonadales (85%),
Burkholderiales (46%), Bacteroidales (84%), Aeromonadales
(93%), Alteromonadales (95%), Rhodocyclales (94%),
Enterobacteriales (87%), and Neisseriales (59%) were reduced
(Supplementary Table 9), with 11 order-level taxa show
statistically significant mean difference between the two
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FIGURE 3 | Alpha-diversity metrics of six influent and six effluent samples.

sources. As for the microbial composition in the family-level
(Figure 4D), only 9 taxa were reported with p-value < 0.05,
with 7 out of 14 filtered taxa showing efficient elimination
from influent to effluent, specifically Pseudomonadaceae
(85%), Oxalobacteraceae (86%), Flavobacteriaceae (88%),
Aeromonadaceae (95%), Comamonadaceae (35%), Shewnellaceae
(97%), and Bacteroidaceae (90%) (Supplementary Table 10).

The same community profile variation was observed in
the genus-level bacterial community analysis. The top three
genera with the highest prevalence in the influent source were
Pseudomonas, Others, and Janthinobacterium, while Others,
Pseudomonas, and Actinobacteria_norank were the top three
reported in the effluent source (Figure 4E). Among 24 genera,
only 19 genera taxa shifted into lower concentration from
an influent to an effluent source; Shewanella (97%), Prevotella
(97%), Chryseobacterium (96%) Aeromonas (95%), Tolumonas
(93%), and Bacteroidetes (90%) were the genera with greatest
differences larger than 90% (Supplementary Table 11). Despite
being reported as statistically significant in producing the mean
difference of all analyzed taxa levels, further elucidation is
necessary before concluding the effectiveness of the treatment
employed to eliminate bacterial pathogens in the filtering system
specifically for investigating the potential of pathogen-activity
risk presence in both water sources.

Ordination
Once the global pattern of microbial phyla and genus taxa were
observed, we further analyzed the difference in the composition
of the samples. Both ordination plots were generated using
the phylum taxa and genus input from the NR catalog. As
displayed in Figure 5A, samples from the influent water were

seen clustered abundantly in a tight community as compared
to effluent samples, which are plotted sporadically and in a
large dispersal manner. It can be seen that Proteobacteria,
Bacteroidetes, and Firmicutes play a large role in contributing
to the principal component of the influent samples compared
to contributing toward effluent sites (Supplementary Table 13).
Meanwhile, there are overlapping of variables of contributors
seen in Figure 5B, such as Pseudomonas, Tolumonas, Shewanella,
and Aeromonas, which indicates that several taxa are highly
correlated (Supplementary Table 14). However, these mentioned
genus taxa are interpreted to be contributing toward the influent
site composition and JK1052E; these are displayed to have
similar properties as the influent group. Similarly, both PCA of
phylum- and genus-level elucidates high variation of properties
of the effluent group, further indicating of high heterogeneity
microbial taxa structure.

The stress-value of both NMDS plots generated show a
p-value < 0.1, elucidating differences between the samples
for both the phyla (stress-value = 0.0707) and genus levels
(stress-value = 0.09741) compositions. The stress-value indicates
the generated NMDS ordination space is fair and has a good
representation of objects. As shown in the NMDS plot of
the phyla (Figure 6A) and genus levels (Figure 6B), influent
samples were clustered closer as compared to the effluent
samples, which were dispersed widely along with the ordination
value. Regardless of slight variance between the phylum-
and genus-level profiles of NMDS, there was a general trend
of influent samples composition behaving similarly, while
effluent samples displayed a looser community structure.
According to SIMPER multivariate analysis, measurement
of PAST v.403 (with Bray–Curtis dissimilarity) conducted,
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FIGURE 4 | Bar plot of relative (A) phyla-taxa, (B) class-taxa, (C) order-taxa, (D) family-taxa, and (E) genus-taxa abundance in six influent and six effluent WWTP
samples. All taxa levels were reported with p-value < 0.05 (Wilcoxon rank-sum statistical test).
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FIGURE 5 | Principal component analysis (PCA) of the (A) phylum-level and (B) genus-level microbial taxa composition.

FIGURE 6 | Non-multidimensional scaling of (A) phylum-level (ANOSIM statistical test of the Bray–Curtis similarity index, p-value = 0.0015) and (B) genus-level
(ANOSIM statistical test with the Bray–Curtis similarity index, p-value = 0.007) microbial taxa composition.

phyla- and genus-level ordination plots structure were highly
contributed by Proteobacteria and Pseudomonas with an average
contribution of 69.32 and 47.63% (Figures 6A,B, respectively).
These mentioned taxa are likely to be the major contributors
to any difference seen between influent and effluent sites with
respect to each level.

Antibiotic Resistance Gene Phenotype
Profile
The CARD database enables the retrieval of ARG and its
phenotype information such as the resistance mechanism and
drug classes annotation. As presented in Figure 7 total of 12 types
of resistance mechanisms were identified in our water samples.
Among all mechanisms, only three failed to show a statistically
significant difference between the mean of influent and effluent—
(1) target replacement, (2) target alteration + target replacement
combination, and (3) target protection mechanisms—while the
rest were reported with a p-value < 0.05. The mean value of
influent in all mechanisms was higher compared to the mean

of effluent. Moreover, the percentage difference between the
sources was >10%. The combination of “reduce permeability to
antibiotic+ by absence” was reported with the greatest reduction
(88%), while the target protection mechanism was reported with
the smallest reduction of 12% only (Supplementary Table 16).
Surprisingly, the combination of “target alteration + target
replacement” was calculated at −13%, showing an ARG increase
to be a mechanism to move from influent to effluent composition.
Overall, the results indirectly indicated that the treatment
efficiently reduced ARG before discharging the water into the
community. Nevertheless, further analysis of the mechanism
combined with an increment of percentage is required, especially
regarding the phenotype of the bacterial community used as a
biological treatment in the bioreactor.

In Figure 8 total of 27 drug classes were retrieved from the
identified ARG in all 12 samples. Only 15 drugs were reported to
be statistically significant in the mean difference of influent and
effluent. All drug classes show a downward shift from influent
to effluent, except for the polyamine and sulfonamide. These
drug classes were also observed to have percentage differences
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FIGURE 7 | Box plots of the ARG resistance mechanism phenotype between influent and effluent samples.

ranging from 79 to 7% (Supplementary Table 17). Drug classes
with a difference >50% were phenicol (79%), cephamycin (79%),
penam (76%), aminoglycoside (70%), MDR (62%), nitrofuran
(58%), triclosan (58%), nucleoside (56%), fosfomycin (56%),
glycopeptide (52%), and cephalosporin (51%). Only five drug
classes were reported with an increase in value from influent
to effluent water (aminocoumarin, fluoruinolone, carbapenem,
polyamine, and sulfonamide). Interestingly, sulfonamide in the
effluent samples shows a drastic increase of six times. Results
obtained from analyzing the drug classes phenotype profile of
ARG indirectly display the efficient performance of the treatment
stages in eliminating pathogenic bacteria that imparted multidrug
resistance capacity.

Antibiotic Resistance Gene Composition
Profile
A total of 243 ARG categories, and specifically 1029 ARGs, were
initially retrieved upon blasting our NR library into the CARD

database (Supplementary Table 18). A total of 582 ARGs were
shared among all 12 samples from both sources. Meanwhile, only
65 ARGs were uniquely shared in influent-only and 185 ARGs in
effluent-only samples. The shared ARG value difference between
influent and effluent samples may elucidate the heterogeneity of
pathogen structures between both sources. The difference in the
mean of the ARG composition profile between the two sources
has been shown to be statistically significant with a Wilcoxon
rank-sum test p-value of 0.0017. However, only 402 out of 1029
ARGs were observed to have a p-value < 0.05. The top five
most abundant ARGs were macB, evgS, PvrR, adeL, and tetA(48),
whereas macB, tetA(48), cbrA, evgS, and arnA were in the top
five observed for the effluent samples. Furthermore, only 64 out
of 1029 ARGs were observed to have a downward shift when
comparing the mean difference between influent and effluent
sources (Supplementary Table 18). Nevertheless, despite having
shared the resistomes in both influent and effluent samples,
macB (p-value = 0.0025), PvrR (p-value = 0.0025), evgS (p-
value = 0.0025), and adeL (p-value = 0.0051) have the largest
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FIGURE 8 | Box plots of the ARG drug class phenotype, grouped between influent and effluent. *MDR, multidrug resistance; *MLS,
macrolide–lincosamide–streptogramin.

mean difference between two sources, specifically 25, 82, 75, and
78%, suggesting the WWTP filtering system efficiently eliminates
ARGs before water discharge.

For the heat map, only ARGs with a sum row total of 0.1%
were selected for the plotting in an explicit analysis. In all 12
samples, a sum of 205 out of 1029 ARGs was selected. In Figure 9,
only two major ARG activities were seen in the map, specifically
at both ends of the generated heat map. On the right side of the
map, several ARG unidentified in the influent sites were reported
to be present in the effluent groups. A total of 17 ARGs resistant
toward different magnitudes of drug classes were abundant in
the treated water, and not in respective influent counterparts.
Meanwhile, the left end of the map shows remaining ARGs in
effluent water even after being treated in the WWTP, indicating
the possibility of incomplete elimination of several pathogens in
WWTPs. Further analysis is required to understand and predict
the possible factors influencing the increase in resistomes.

In total, eight ARG families of interest were further analyzed
to observe potential pathogenicity in both sources. From the
retrieved CARD output, 40 resistomes were associated with the
chosen ARG family of interest. ARGs with high abundance in

the influent samples were successfully reduced in the effluent
samples, as indicated by the representative color changes from
red to blue (Figure 10). Several resistomes with a relatively small
abundance profile reported an increase in value in the discharge
effluent water. This phenomenon may be caused by the presence
of different microbial populations—specifically the pathogenic
organisms vs. the bacteria used as bioremediation or favoring the
bioreactor’s internal environment.

Co-occurrence Gene Network
We had utilized a correlation-based network approach to explore
the non-random co-occurrence patterns of species–species,
ARG–species, and ARG–ARG in the municipal WWTP. These
meta-networks provide novel information regarding related
ARGs and species to our ARG of concern in both water
conditions. Only pairwise items of strong Spearman rank’s
correlation value (ρ rho-value > 0.8) and significant value (FDR-
adjusted p-value < 0.01) were retrieved to ensure that only
statistically robust interactions were explored. Using the filtered
interactions ρ value, gene networks consisting of nodes and edges
of ARG–ARG, ARG–species, and species–species were generated
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FIGURE 9 | Heat map of the 0.1% ARG in all six influent and six effluent WWTP samples.

FIGURE 10 | Heat map of 40 selected ARG from 8 interest ARG families, in all 6 influent and 6 effluent WWTP samples.

via Gephi R©, respective to each source. The co-occurrence meta-
network patterns were used to elucidate and propose potential
species host of pathogenic ARG. Although both gene networks
consist of 1352 nodes, the influent gene network has a smaller
edges (interactions) value of 28,025 compared to the effluent gene
network of 33,932 (Figure 11). This information may suggest

possible differences in the strength of interaction between the
nodes (species and/or ARG) in respective sources. Both networks
were reported with a modularity index >0.4: 0.683 for the
influent and 0.691 for the effluent, respectively. The modularity
index values indicate the networks having a concrete modular
network structure and not being random, further interpreted as
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FIGURE 11 | Co-occurrence meta-network analysis showing the correlation between ARG–ARG, ARG–species, and species–species analyzed in (A) influent-only
and (B) effluent-only water environments. Only connections with positive strong Spearman’s ρ rho-value > 0.8 and statistically significant p-value
FDR-adjusted < 0.01 were displayed in the network. In addition, in the networks, the size of the nodes is proportioned to eigenvector degree, while the width of lines
between nodes is proportioned to the correlation coefficient of Spearman’s ρ rho-value. The nodes are colored according to the calculated modularity classes, and
they represent either an ARG or species taxa.

a strong community (i.e., modules, hubs, and clusters) structure
(Newman, 2006). As seen in the topography of the influent
meta-network (Figure 11A), the ARG and bacterial species were
plotted into two big hubs, while the effluent meta-network
(Figure 11B) displayed four large and dense hubs. There are
11 and 14 modularity classes displayed in the influent and
effluent networks, respectively. These modularity class values

represent the groups of microbial taxa that potentially share
the same ecological niche without direct interaction. The largest
modularity class exhibited in the influent and effluent meta-
network is 11 (brown-cluster; 20.86%) and 7 (brown-cluster;
16.35%), respectively. Analysis on the network in the influent
sites shows ErmH (Streptomyces spp.), Fox1 and Fox5 (Klebsiella
spp.) and QnrB20 (Escherichia coli) nodes as the main hub in
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FIGURE 12 | Zoomed and filtered co-occurrence meta-network analysis from the previous global network showing the interaction between selected ARG from eight
ARG family types and neighboring nodes in (A) influent and (B) effluent environment.

class 11, indicating the ARG with the most interaction with
other ARGs and species. Meanwhile, there is only one main hub
identified in the effluent network generated, which is E. coli.

Additionally, the meta-network also enables a possible
interaction between resistomes of interest and potential
pathogenic hosts of concern. The association of clusters in the
meta-network can be better illustrated by extracting the selected
nodes from the global network and visualizing them separately
in a new network. We generated a filtered influent and effluent
network (also known as sub-global network) using selected
ARG of concern from eight ARG families. Enterobacteriales
and Aeromonas sobria have shown an interaction with the
selected ARG in the influent environment (Figure 12A), while
Serratia marcescens was identified in the effluent environment
(Figure 12B). This is a very interesting finding as it may be laid as
a foundation for future research in understanding the interaction
between microbial population and potential gene transfer for
antibiotic resistance-acquired ability in pathogens. Nevertheless,
the generated meta-networks that visualize the potential of
the microbiome population interacting and co-occurring in
favored niches as results for the influent and effluent global
meta-networks differ significantly.

DISCUSSION

All 12 samples of influent and effluent water were collected to
investigate the input and output of the wastewater treatment
ability to control pathogenic risks and ameliorate environmental

health nationwide, regardless of the location. The WWTPs were
designed to filter foreign biohazard residuals and pathogenic
organisms, both physically and chemically, within a flow of
treatment stages such as aerobic activated sludge and anaerobic
digestion sludge. At the primary stage, large and bulky
objects were blocked from entering the bioreactor to prevent
clogging (Archis and Nathanson, 2010). Next, the solid matter
undergoes sedimentation at the bottom of the tanks, whilst
lighter substances and oil will float. The large sediments were
removed and the remaining liquid in the tank was sent to
the secondary treatment. Following sedimentation, the water
is transferred to the aeration tank for further breakdown at
the secondary stage via the presence of aerobic bacteria to
remove organic components. In some treatment plant systems,
a bacteria-growing filter is positioned in the tiles to trap
the organic matter when the water passes through it for
efficient decomposition. Hence, at this stage, the wastewater
is mixed with a small amount of sludge with a high level
of oxygen concentration to promote the growth of aerobic
bacteria that will remove or consume organic impurities. At
the tertiary stage, several methods can be used to further
disinfect sewage beyond the primary and secondary treatments.
However, the third stage also involves the process of removing
the remaining high levels of nitrogen and phosphorous using
anaerobic bacteria. To ensure the effluent water is finally
safe and drinkable, special equipment and a chemical system
of disinfection automation instrument are used to sanitize
the water effectively before releasing it into the environment
(Ward et al., 2008).
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In this study, the gene profile and alpha-diversity analysis
reported that the effluent samples were represented with a bigger
gene profile size, diverse heterogeneity, higher taxa abundance,
and species richness compared to the influent water samples.
The findings show the potential of non-pathogenic microbial
composition to increase and grow its way to be observed as
the dominant taxon in the effluent source. Our ordination
plots further supported the observation of high variation in the
genetic material seen in effluent sites. Previous microbial diversity
studies on the sewage system also reported similar findings in
the downstream water at the Ganges River, which showed a
higher unique OTUs library compared to the upstream water
(Reddy and Dubey, 2021). It is highly significant to associate
the taxonomic richness observed in the WWTP microbial
communities with ambient nitrogen and carbon availability
within the sewage system (Johnson et al., 2015), biochemical
presence (Numberger et al., 2019), and possible anthropogenic
factors (Bojarczuk et al., 2018). The WHO’s One Health
approach explains the spread and maintenance of resistance by
analyzing all potentially involved ecosystems, including water
bodies (Mackenzie and Jeggo, 2019). Interventions such as
surveillance, control, and mitigation are carried out to combat
bio-threats for the better health of individuals, populations, and
the ecosystem. Conventional techniques such as ion exchange,
carbon adsorption, evaporation, chemical precipitation, and
membrane processes were the conventional methods of treating
wastewater from domestic or industrial water (Vijayaraghavan
et al., 2007; Wang and Chen, 2009; Narmadha and Kavitha, 2012;
Shivajirao, 2012; Rajasulochana and Preethy, 2016). The current
treatment uses the efficient green technology bioremediation
method, which is a cost-effective and eco-friendly method,
without generating by-products during pollutant degradation.
The conventional methods of treating wastewater did not return
the profitable price to performance ratio. The rapid growth of
development aligned with exponential human population growth
is deemed a time-saving and cost-effective method.

In the analysis of taxonomic composition profiles, only
bacteria and archaea domains were showing statistically
significant differences in mean value from influent to effluent.
The bacteria domain was expected to show a reduction due
to the overall aim of WWTPs to remove the pathogenic host,
while the gradual archaea abundance was suggested to occur
due to consensus of the non-pathogenic nature of archaea as
primitive microorganisms and also been utilized in WWTPs
as a collaborative partner of bacteria to remove pathogens
during bioremediation (Aminov, 2013; Krzmarzick et al., 2018).
Meanwhile, we suggested the non-significant difference value
increase seen in the virus and eukaryote domains observed
from influent to effluent water is due to a slight variation
in the filtration and/or disinfection performance of different
WWTP locations. Microfiltration for eukaryotic organisms and
ultrafiltration of viruses in the secondary treatment stage removes
microorganisms in wastewater. Prior to discharge, the treated
water undergoes further disinfection with ultraviolet (UV) rays
to deactivate unremoved microorganisms, especially for the
domains with protective structural layers such as capsids of
viruses. Double-stranded viruses, such as retrovirus and reovirus,

exhibited high resistance capacity toward sedimentation or
inactivation throughout the whole WWTP treatment process
(Chahal et al., 2016; Corpuz et al., 2020). The remaining
microorganisms of viruses and large-sized eukaryotes can
multiply, grow, and populate the treated water even after being
discharged. At the phylum-level taxa profile, Proteobacteria,
Bacteroidetes, and Firmicutes were reported as the most abundant
phyla in influent samples. Bacteroidetes and Firmicutes were
reported as common human gut flora (Eckburg, 2005). However,
Firmicutes were treated in the bioreactor and replaced with
Actinobacteria, which showed an upward shift in the effluent
samples. Analytical results from previous studies reported that
Proteobacteria was also the most dominant phylum within the
bacterial communities in soil (Roesch et al., 2007) and sewage
(Oksanen et al., 2008; McLellan et al., 2010; Guo et al., 2015;
Nascimento et al., 2018; Yasir, 2020). This finding supports the
notion that the study of the bacterial composition of sewage
provides a basis for the understanding of bacterial composition
from human activities (Su et al., 2017). All of the top four
phyla are curated in the Human Oral Microbiome Database
and are significantly associated with illnesses such as asthma,
gastrointestinal tract disease, and urinary tract infections (Rizzatti
et al., 2017). Our analysis of the microbial composition profile of
the other taxonomic levels displays the same decreasing pattern.
Interestingly, species-wise, all six highly virulent pathogens
species—Enterococcus faecium, Staphylococcus aureus, Klebsiella
pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa,
and Enterobacter spp. (ESKAPE)—decreased from influent to
effluent. The identified pathogens with a priority of ARG in
all three categories also exhibited WWTP efficiency to control
human pathogenic risks; the critical category (E. coli, Serratia
spp., Proteus spp., Morganella spp.), high category (Helicobacter
pylori, Salmonella spp.), and medium category (Streptococcus
pneumoniae) were all observed to show a downward shift in
the discharge water, albeit with a small relative mean difference
(Asokan et al., 2019). Furthermore, the identified ARGs from our
samples showed a similar reduction in the composition profile,
indicating the WWTP filtering treatment stages function well
and are moderately efficient. Despite not fully reducing these
priority pathogens to a total of 0%, the low density of these
opportunistic hosts is sufficient to control the bacterial quorum-
sensing activities and improve the risk of water-borne infections
(Zhang and Li, 2016; Maddela et al., 2019; Sivasankar et al.,
2019). With the reduction of most opportunistic hosts within
the sludge of WWTP in the effluent water, the occurrence of a
significant reduction in abundance value of ARG in the effluent
samples is expected. Despite being observed to have a richer
microorganism profile, the pathogenicity of the effluent site
showed less activity compared to the influent group (Figure 10).
This shows that WWTP efficiency is not characterized by the
total removal of microorganisms but through the performance
of eliminating the opportunistic microorganisms carrying
pathogenic genetic materials.

Correlation networks analysis is one of the most commonly
applied methods to oversee patterns in the highly populated
taxonomic group (Forsberg et al., 2012). The generated meta-
network has been demonstrated as an applicable approach to
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predict associations of ARGs-ARGs and ARGs-species in both
influent and effluent environments. Patterns of co-occurrence
between nodes can show distinct niches, which may further
explain the favorable conditions of certain species toward
enrichment and survival (Freilich et al., 2010). In this study,
only positive correlation Spearman’s ρ rho-value > 0.8 cut-
offs were included. According to Faust and Raes (2012),
positive correlations between nodes of a network may imply co-
occurrence, co-colonization, and/or co-aggregation. According
to the observation of effluent group meta-network, we suggested
that effluent sites may have more diversified niches with high
habitat heterogeneity (Olesen et al., 2007). As observed, it
is worth highlighting the presence of E. coli as one of the
main nodes with the most interaction within the network
in both networks. Previously, E. coli have been reported
several times in being poorly removed in WWTP (Anastasi
et al., 2012). Although WWTPs were designed to remove
E. coli via the biological and physicochemical methods in
WWTPs (Frigon et al., 2013), the evidence of this intestinal
pathogen persisted abundance in the environment near the
effluent discharges sites raise concerns that need to be solved
soon. Next, the co-occurrence network of influent and effluent
water environment also listed a different module structure,
which reveals those different environmental conditions play
a big role in population interactions and associations. An
application based on this finding may lead to a future study
toward the pathogenicity of the species and their involvement
in an inefficient WWTP treatment setting. In the sub-global
networks, the three identified species from influent and effluent
explicit meta-networks were from the Gammaproteobacteria
class and Proteobacteria phyla. Despite not being listed as
a category of pathogens for either ESKAPE or the WHO,
Enterobacteriales, A. sobria, and S. marcescens may display a
higher association with acquiring highly pathogenic ARGs than
other species hosts.

Previously, PCR has been a conventional method for obtaining
ecological data, such as the microbial profile, enabling the
analysis of the total microbial communities present and its
genetic potential within the environment. Yet, this technique’s
major disadvantage is that it requires sequence information of
the specific target gene of interest, as “unknown” taxons are
inevitably limited to be analyzed using PCR. Hence, employing
base sequences studies such as NGS, the shotgun metagenomics
method is the recommended method in the present microbial
ecologist’s toolbox as sequencing lays out big data information
to be analyzed computationally, eliminating laborious workbench
protocols. The introduction of metagenomics approaches allows
for PCR-independent assessment for molecular investigation of
biological activities within a community (Shah et al., 2010).
Currently, studies on the pathogenic composition of wastewater
are extended toward the investigation of potential horizontal
or lateral gene transfer acquired between species or hosts (Jiao
et al., 2017; Fouz et al., 2020; Nguyen et al., 2021). The nature of
the wastewater treatment with a high concentration of bacterial
communities increases the possibility of acting as a reservoir
for gene transfer for some time. Such acquisition between
species may occur as a response to the harsh and less-than-ideal

internal environment of the wastewater treatment bioreactor for
survival. Analyzing the intrinsic and extrinsic resistomes from
our sample would provide a deeper understanding to confirm
or dispute the hypothesis that a wastewater bioreactor could
act as a reservoir for a gene-acquired process to happen as
there is a risk of changing ARG distribution patterns (Aarestrup,
2015). The current study would also benefit from extending
the analysis into the identification of contigs representing
the plasmid (Eberhard, 1990) and protein-coding of mobile
gene elements (MGEs), which are key vectors in assisting the
horizontal gene transfer (HGT) between species. Employment
of the PLSDB (Galata et al., 2019) and MGEfinder (Durrant
et al., 2020) to retrieve information of plasmid and MGE
present in current contigs, to evaluate the potential of HGT
occurring in the municipal WWTP bioreactor. As of now,
it is still difficult to determine the functions and roles of
the identified microbial taxa in the bioreactor, either as key
players in bioremediation or minor taxa. Furthermore, the
interaction between bacteria or community in the WWTP
bioreactor, irrespective of the treatment stage, remains elusive.
The sequence of contigs retrieved from this study would allow
us to further address the bioremediation technology, specifically
in the annotation of the role the taxa plays (i.e., aerobic
activation or anaerobic sludge) in the sanitation of wastewater
(Zhang et al., 2012). Understanding the potential HGT risk
will act as the first step in combating bacterial pathogens and
delay the development of resistance (Aarestrup, 2015). The
extracted information on associations retrieved from the co-
occurrence meta-networks could be further utilized to obtain
an in-depth understanding of the interactions between and
within microbial populations but only with correct approaches
to analysis (Williams et al., 2014; Freilich et al., 2018). Next,
despite being able to perform the analysis of meta-network, we
did not investigate the correlation of the presence of microbial
taxa composition profile with any environmental factors such
as temperature pH, depth of bioreactor ponds, presence of
metal particles pollutants, and more. The study of metal-
resistance genes (MRGs) together with our findings or ARGs
in this study will provide further understanding and better
interpretation toward microbial composition and the potential
emergence of resistance genes as both antibiotic and metal
provide a drive for HGT and natural selection to take place
(Reddy and Dubey, 2019).

Our bioinformatics pipelines used high-performance tools
that produce results with high accuracy and sensitivity. Gene
noise cancellation was performed to ensure that the refined
data are human genome free by using the BWA software. The
NR catalog of ORF contigs was used to omit the possibility
of analyzing overestimated data. The RGI used to align a
constructed contigs library against CARD establishes deep
enrichment of ARG information and sequence concentration.
However, some novel types of ARGs in the NR catalog library
might be missed as the RGI aligns to the database based on the
similarity search that could lead to the underestimation of data.
Still, some limitations could be addressed to further understand
the effect of wastewater treatment technology in the filtering of
pathogenic microbes. A validation test could be employed to
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test the presence of significant taxa of interest and thus confirm
that data were retrieved from our in vivo metagenomics, which
would conform to the extent and enhance the confidence of the
results discussed.

CONCLUSION

This research provides the basis for understanding the activity of
the microbiome and its interaction within a specific environment.
There is a global awareness among microbiologists toward
the threat of potential emerging pathogenic bacteria with new
genetic materials. Hence, the relevancy of this metagenomics
study to be carried out is that it will contribute to filling
the knowledge gaps in the microbial profile structure of the
influent and effluent environment and the expected interactions
between species depending on the environment. This study has
successfully reported and exhibited solid evidence of the influent
and effluent water profiles of microbial composition, ARGs,
and the potential ARG–species associations in a national-scale
analysis. Overall, all influent and effluent wastewater samples
exhibit highly similar values in terms of their taxa composition
profile patterns, indicating an efficient filtering and digestion
system. The outcome of the study has met the health and
environmental protection requirement such that the municipal
WWTP sanitations have effectively minimized health risks,
especially those stemming from water-borne infectious diseases,
and environmental concerns of pathogen-contaminated effluent
and influent water.
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