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Highlights
� Patients with ALD exhibit upregulated hepatic miR-

873-5p alongside a decrease in GNMT levels.

� Inhibition of miR-873-5p reduced hepatocyte
death, ER stress, inflammation, and lipid
accumulation.

� miR-873-5p promoted NNMT expression, altered
NAD production, and affected SIRT1 activity.

� Elevated SIRT1 activity in vivo contributed to the
restoration of bile acid homeostasis and reduction
of inflammation.

Impact and implications
The role of miR-873-5p has not been explicitly
examined in the progression of ALD, a pathology with
no therapeutic options. In this study, inhibiting miR-
873-5p exerted hepatoprotective effects against ALD
through rescued SIRT1 activity and consequently
restored bile acid homeostasis and attenuated the
inflammatory response. Targeting hepatic miR-873-5p
may represent a novel therapeutic approach for the
treatment of ALD.
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Background & Aims: Current therapies for the treatment of alcohol-related liver disease (ALD) have proven largely inef-
fective. Patients relapse and the disease progresses even after liver transplantation. Altered epigenetic mechanisms are
characteristic of alcohol metabolism given excessive acetate and NAD depletion and play an important role in liver injury. In
this regard, novel therapeutic approaches based on epigenetic modulators are increasingly proposed. MicroRNAs, epigenetic
modulators acting at the post-transcriptional level, appear to be promising new targets for the treatment of ALD.
Methods: MiR-873-5p levels were measured in 23 liver tissue from Patients with ALD, and GNMT levels during ALD were
confirmed using expression databases (transcriptome n = 62, proteome n = 68). High-resolution proteomics and metab-
olomics in mice following the Gao-binge model were used to investigate miR-873-5p expression in ALD. Hepatocytes exposed
to 50 mM alcohol for 12 h were used to study toxicity. The effect of anti-miR-873-5p in the treatment outcomes of ALD was
investigated.
Results: The analysis of human and preclinical ALD samples revealed increased expression of miR-873-5p in the liver.
Interestingly, there was an inverse correlation with NNMT, suggesting a novel mechanism for NAD depletion and aberrant
acetylation during ALD progression. High-resolution proteomics and metabolomics identified miR-873-5p as a key regulator
of NAD metabolism and SIRT1 deacetylase activity. Anti-miR-873-5p reduced NNMT activity, fuelled the NAD salvage
pathway, restored the acetylome, and modulated the levels of NF-jB and FXR, two known SIRT1 substrates, thereby protecting
the liver from apoptotic and inflammatory processes, and improving bile acid homeostasis.
Conclusions: These data indicate that targeting miR-873-5p, a repressor of GNMT previously associated with NAFLD and
acetaminophen-induced liver failure. is a novel and attractive approach to treating alcohol-induced hepatoxicity.
Keywords: Alcohol-related liver disease; NIAAA model; microRNA; SIRT1; Nicotinamide adenine dinucleotide salvage pathway.
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Impact and implications: The role of miR-873-5p has not been explicitly examined in the progression of ALD, a pathology
with no therapeutic options. In this study, inhibiting miR-873-5p exerted hepatoprotective effects against ALD through
rescued SIRT1 activity and consequently restored bile acid homeostasis and attenuated the inflammatory response. Targeting
hepatic miR-873-5p may represent a novel therapeutic approach for the treatment of ALD.
© 2023 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
NAD is an important cofactor or substrate in a variety of redox
and non-redox reactions.1 Given the critical role of NAD in the
biological functions of the cell, its life cycle is finely tuned.
Although most NAD is recycled via the salvage pathway, its de
novo synthesis occurs via the kynurenine pathway, starting from
tryptophan (Trp) and the Preiss–Handler pathway. Interestingly,
external metabolic stimuli can reprogramme NAD homeostasis,
and its deficiency has been linked to ageing and diseases such as
cancer.2 Therefore, maintaining adequate redox homeostasis is
critical for cell survival.

Alcohol-related liver disease (ALD) is a complex and multi-
stage disorder that is considered one of the most common liver
pathologies and the main cause of liver transplantation.3 This
disease is characterised by an altered redox state primarily
caused by the hepatic oxidation of alcohol, resulting in increased
NADH levels and the overproduction of toxic acetaldehyde and
acetate.4 The increased NADH/NAD+ ratio leads to mitochondrial
overactivation, in which respiration and oxygen consumption
nearly double to restore NAD+, whereas simultaneously
attempting to metabolize toxic acetaldehyde. This is known as
the Swift Increase in Alcohol Metabolism (SIAM) pathway.5

Chronic alcohol consumption modulates both metabolic and
epigenomic homeostasis. Chronic alcohol consumption promotes
the increase in acetyl-CoA as a degradation product of acetal-
dehyde, leading to abnormal acetylation and altered enzymatic
activity. Furthermore, it overwhelms the oxidative capacity of
mitochondria and impairs the oxidation of NADH and acetalde-
hyde, which accumulates and promotes the overproduction of
reactive oxygen species (ROS).6 The absence of NAD+ disrupts the
tricarboxylic acid cycle and fatty acid oxidation, promoting lipid
synthesis and accumulation, which ultimately contributes to
lipid peroxidation and additional ROS generation. 4

Although alcohol abstinence is the cornerstone of early ALD
care, most patients fail to comply. Few suboptimal therapeutic
options for ALD are available, apart from liver transplantation3,7,
although there are few organ donors available. Thus, new ther-
apeutic approaches are needed. In this direction, small non-
coding microRNAs (miRNAs) are epigenetic modulators whose
expression is altered in ALD8, and whose regulation may open a
new window for further exploration of their role in the treat-
ment of ALD.

Previouswork fromour laboratory has shown thatmiR-873-5p
post-transcriptionally modulates glycine N-methyltransferase
(GNMT), the major hepatic methyltransferase for S-adenosylme-
thionine (SAMe). Its downregulation disrupts mitochondrial
activity in non-alcoholic steatohepatitis (NASH).9 Considering the
common pathogenic features of non-alcoholic fatty liver disease
(NAFLD) and ALD10,11 and the involvement of miR-873-5p in
several liver diseases9,12 and hepatotoxicity13, we explored the
potential role of miR-873-5p in ALD.

This study shows that miR-873-5p is overexpressed in liver
samples from patients with ALD and in several preclinical mouse
models mimicking this pathology. By analysing unrelated human
JHEP Reports 2024
transcriptome and proteome databases, we found that GNMT
levels were reduced during the progression of ALD, whereas
nicotinamide N-methyltransferase (NNMT), another methyl-
transferase that consumes SAMe and the NAD precursor nico-
tinamide (NaM)14, was increased, showing a key intersection
between cellular metabolism and epigenetic regulation. The
negative modulation of miR-873-5p is hepatoprotective in both
in vitro and in vivo ALD models, fuelling NAD production and
subsequently activating SIRT1 deacetylase activity. In fact, the
recovery of the acetylome regulates key proteins such as NF-KB
and Farnesoid X receptor (FXR), which exert antiapoptotic and
anti-inflammatory effects. In ALD, the restoration of GNMT by
the inhibition of miR-873-5p prevents NNMT activity and sub-
sequent NaM oxidation, leading to NAD renewal via the salvage
pathway.14 Hepatoprotection by anti-miR-873-5p is counteracted
when SIRT1 activity and the NAD salvage pathway are inhibited.
Overall, our study showed that miR-873-5p is involved in
epigenetic alterations and mediates the progression of ALD, thus
supporting its application as a novel therapeutic target.

Materials and methods
Animal models and experimental protocol
CIC bioGUNE Animal Care and Use Committee and the local
authority (Diputación de Bizkaia) in compliance with the Euro-
pean Union guidelines approved the animal procedures pro-
tocols. To apply the DUAL and ethanol-binge (NIAAA model)
dietary mouse model of ALD described previously15, male C57BL/
6J mice (n = 12; 3 months old) were purchased from Charles
River (St Germain sur l’Arbresle, France). Following a five-day
acclimation period, the mice were divided into two groups. The
first group (n = 8) received a 10-day ad libitum diet of 5% liquid
ethanol, with subgroups receiving either anti-miR-873-5p or
miR-control injections on days 4 and 8. The second control group
(n = 4) received an isocaloric control diet. On day 11, mice were
orally gavaged with ethanol or control solution containing FitC-
dextran for permeability analysis. After 9 h, the mice were
euthanized, and blood and liver specimens were collected for
further analysis.

Human samples
In this study, human samples were obtained from various sour-
ces. For the analysis of has-miR-873-5p expression levels were
determined as previously described;16 human liver samples
were obtained from the Hospital Clinic of Barcelona. The gene
expression profile was obtained from a study conducted by
Argemi et al.17 Protein abundance data was sourced from an
unrelated database provided by Niu et al.18 All patients involved
in the clinical study provided their consent in accordance with
the principles of the Declarations of Helsinki and Istanbul.

Statistical analysis
Statistical analysis was performed using GraphPad Prism soft-
ware (GraphPad software, v.9.2.0, CA, USA), and values were
2vol. 6 j 100918
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expressed as mean ± SD. Groups were compared by ANOVA,
followed by post-hoc Bonferroni tests (for three or more groups)
or Student’s t tests (for two groups). A p value <0.05 was
considered statistically significant. For further details regarding
the materials and methods used, please refer to the CTAT Table
and Supplementary Data.
Results
Targeting miR-873-5p in primary hepatocytes increased
viability and exerted protective effects against alcohol-
induced stress
Our group has previously shown that miR-873-5p is involved in
mitochondrial dysfunction during the progression of NAFLD, and
has also provided evidence supporting anti-miR-873-5p as a
valuable therapeutic for many chronic liver diseases.9 ALD, one of
the most common liver diseases and a leading cause of liver
transplantation, currently lacks effective treatment. Since mito-
chondrial dysfunction is one of the first signs of alcohol-induced
liver injury19, we explored the implication of miR-873-5p in ALD.
Primary mouse hepatocytes incubated with 50 mM ethanol
(EtOH) for 12 and 24 h showed upregulation of miR-873-5p
expression (Fig. 1A) and downregulation of Gnmt mRNA
(Fig. 1B) and protein (Fig. 1C). In line with previously reported
findings9,13, exposure to anti-miR-873-5p resulted in a partial
reduction of miR-873-5p, leading to an increase in cellular Gnmt
content (Fig. 1D and E).9,13 Anti-miR-873-5p also reduced the
extent of ethanol-induced cell death, a major feature of alcohol-
induced liver injury20, as determined by the TUNEL assay, Trypan
blue staining (Fig. 1F and G), and expression of cell death markers
(Fig. S1A).

Cell death is a highly coordinated phenomenon involving
multiple signalling pathways, including oxidative stress, endo-
plasmic reticulum (ER) stress, andmitochondrial dysfunction.21,22

As oxidative stress is a by-product of ethanol metabolism and a
driver of cell injury, mitochondrial ROS and CYP2E1 activity were
analyzed.23,24 A decrease inmitochondrial ROS levels, determined
by MitoSOX staining (Fig. 1H), and reduced CYP2E1 oxidative
activity (Fig. 1I) were detected in the anti-miR-873-5p-treated
hepatocytes exposed to ethanol, supporting its protective role.

Increased ROS production, including that induced by CYP2E1
activity, can directly affect the ER, promoting ER stress and even
increasing K+ channels.25,26 Therefore, we used a specific
ER-tracker to stain K+ channels and measured the ER response to
alcohol exposure. The staining showed that the ethanol-induced
ER perturbations were reversed when we negatively modulated
miR-873-5p levels (Fig. 1J), which was also confirmed by changes
in other ER stress signalling markers (Fig. S1B).26 To study ER
functionality, we examined Ca2+ release capacity using the
method described by Grynkiewicz et al. in primary hepatocytes
exposed to ethanol27 with a specific Fura-2 acetoxymethyl (AM)
ester label. Anti-miR-873-5p provided more ER protection than
miR-Control in response to thapsigargin after an ethanol insult,
as demonstrated by increased Ca2+ release28 (Fig. 1K).

Interestingly, lipid droplet accumulation was partially
reversed in anti-miR-873-5p-treated hepatocytes (Fig. S1C).
Fructose was then added as another steatogenic source during
EtOH exposure, as the combined effect poses a major challenge
for the cells. Both steatosis and ER stress were ameliorated with
anti-miR-873-5p (Fig. S1D and E).
JHEP Reports 2024
Altogether, the inhibition of miR-873-5p reduced ethanol-
induced cell death and attenuated ER stress and the progres-
sion of steatosis in primary hepatocytes.

Knockdown of miR-873-5p protected from chronic ethanol-
induced liver injury in vivo
Regarding in vivo ALD models, the dysregulation of miR-873-5p
was also confirmed in the DUAL and ethanol-binge (NIAAA
model) dietary mice model. The DUAL model synergistically
combined the effects of alcohol in the form of 10% vol/vol alcohol
in sweetened drinking water and the Western diet for 10 and 23
weeks1, whereas the ethanol-binge mice model described by Gao
consists of 10 days of ad libitum oral feeding with a Lieber–
DeCarli liquid ethanol diet (5% volume) and an ethanol-binge
on day 11 (31.5 % volume).29 As previously established,
miR-873-5p specifically targets Gnmt expression in mouse
hepatocytes.12 Consistent with these findings, our current study
shows a progressive increase in miR-873-5p expression in the
liver of the different mouse models compared with the liquid
diet control group, which was accompanied by a corresponding
decrease in GNMT levels (Fig. 2A-C and Fig. S2A-C).

Given the promising results obtained in primary hepatocytes,
the 10-day Gao-binge mouse model mimicking the early stage of
ALD was used to investigate the potential benefits of anti-miR-
873-5p administration in vivo. On days 4 and 8, mice were
treated with either 60 lg anti-miR-873-5p, or an unrelated
miR-control conjugated with invivofectamine via tail vein
injection (Fig. S2D). The significantly reduced expression of
miR-873-5p was confirmed in anti-miR-873-5p-treated mice,
together with increased Gnmt mRNA and protein expression
(Fig. 2D and E and Fig. S2E and F). No differences were observed
in liver weight (Fig. S2G).

Moreover, ethanol-fed anti-miR-873-5p mice exhibited less
liver damage, measured by TUNEL staining, haematoxylin and
eosin, caspase-3 activity assays, Western blotting, and ApopTag
staining (Fig. 2F–I and Fig. S2I), which was supported by lower
BAX and higher BCL-2 levels (Fig. S2J and K). The analysis of
serum transaminases showed that treatment with anti-miR-873-
5p decreased the levels of alanine transaminase and aspartate
transaminase, both known as serum markers of liver damage
(Fig. 2J).

Regarding ethanol metabolism, anti-miR-873-5p-exposed
mice showed a reduction in hepatic ethanol and a tendency
towards reduced acetaldehyde levels (Fig. 2K and L). Together
with alcohol dehydrogenase (ADH), CYP2E1 and catalase can also
mediate ethanol oxidation.24 As opposed to ROS-producing
CYP2E1, catalase is an antioxidant enzyme that converts
hydrogen peroxide into water and oxygen.4 Interestingly, the
activity of catalase was increased in mice with miR-873-5p
silencing (Fig. 2M). In relation to the redox status, we found a
decreased ratio of reduced glutathione (GSH)/oxidised gluta-
thione disulfide (GSSG) in mice fed with ethanol, which showed
a recovery trend in anti-miR-873-5p-treated mice (Fig. 2N).
Furthermore, the relative mRNA expression levels of inflamma-
tory markers (Il6, Il1b, Cxcl1, Ccl2) were decreased in the
treatment group (Fig. 2O).

To investigate whether the hepatoprotective mechanism of
miR-873-5p alleviates ER stress, we examined different markers
involved in this signalling pathway. Anti-miR-873-5p inhibited
the activation of IRE1a (Fig. 2P and Fig. S2O), affecting Xbp1
3vol. 6 j 100918



ED

A B C

F

G

H

0

1

2

3
R

el
at

iv
e 

m
iR

-8
73

-5
p

ex
pr

es
si

on
 (f

ol
d-

ch
an

ge
)

12 h 24 h

*
**

0

1

R
el

at
iv

e 
G

nm
t

m
R

N
A 

ex
pr

es
si

on
(fo

ld
-c

ha
ng

e)

n.s.1.5

12 h 24 h

Control
EtOH 50 mM

*

0

1

2

3

4

R
el

at
iv

e 
G

nm
t

m
R

N
A 

ex
pr

es
si

on
(fo

ld
-c

ha
ng

e)

###

EtOH 50 mM + miR-ctrl
EtOH 50 mM + anti-miR-873-5p

Control

*

***

0
5

10
15
20
25

R
el

at
iv

e 
m

iR
-8

73
-5

p
ex

pr
es

si
on

 (f
ol

d-
ch

an
ge

)

*
#

TU
N

EL
 

ce
ll 

de
at

h 
ra

te
 (%

)

40
30

0

20
10

EtOH 50 mM + anti-miR-ctrl
EtOH 50 mM + anti-miR-873-5p

Control

#

*
***Control Anti-miR-ctrl Anti-miR-873-5p

TU
N

EL
/D

AP
I

EtOH 50 mM, 12 h

Tr
yp

an
 b

lu
e

ce
ll 

de
at

h 
ra

te
 (%

)
40
30

0

20
10

#*
Control Anti-miR-ctrl Anti-miR-873-5p

EtOH 50 mM, 12 h

TR
YP

AN
 B

LU
E

M
ito

So
x 

(%
) 100

50

0

EtOH 50 mM + anti-miR-ctrl
EtOH 50 mM + anti-miR-873-5p

Control

##
*

Control Anti-miR-ctrl Anti-miR-873-5p
EtOH 50 mM, 12 h

M
ito

SO
X/

D
AP

I

I J

K

400

600

800

1,000

1,200

C
YP

2E
1 

ac
tiv

ity
(n

M
 6

-h
yd

ro
xy

ch
lo

rz
ox

az
on

e/
μg

/μ
l)

#
**

ER
-tr

ac
ke

r/D
AP

I Anti-miR-873-5p
EtOH 50 mM, 12 h

Control Anti-miR-ctrl

0
20
40
60
80

100

ER
 tr

ac
ke

r (
%

)

#*

50

100

150

Pe
ak

ca
lc

iu
m

fl u
x

(n
M

/s
)

p = 0.16

**

EtOH 50 mM + anti-miR-ctrl
EtOH 50 mM + anti-miR-873-5p

Control (MEM0%)

0 20 40 60
0

100

200

300

Time (sec)

[C
a2+

]c
yt

o,
 n

M

Thapsigargin

GAPDH

GNMT
1 ± 0.09 0.79 ± 0.6*
Control

12 h
EtOH 50 mM

Fig. 1. Anti-miR-873-5p protects against alcohol toxicity in primary hepatocytes exposed to 50 mM EtOH for 12 h. (A) Relative mRNA expression of miR-873-
5p in primary hepatocytes after 12 and 24 h with 50 mM ethanol. GNMT downregulation was also confirmed by (B) mRNA expression and (C) western blotting.
(D) Cell death rates determined by TUNEL staining (blue colour for nuclear saining DAPI/green colour for TUNEL positive nuclei. Red arrows indicate positive
apoptotic nuclei) and (E) Trypan blue (the blue staining passes through porous membranes of dead cells). (F) Mitochondrial ROS production measured by MitoSox
(blue colour for nuclear staining DAPI, red colour for MitoSOX staining). (G) CYP2E1 activity in primary hepatocytes measured by 6-hydroxychlorzoxazone
production. (H) ER stress was measured with ER-tracker dye (blue indicating nuclear staining with DAPI and red indicating ER -tracker staining). Two

Research article

4JHEP Reports 2024 vol. 6 j 100918



=

expression (Fig. 2Q). In addition, other ER stress markers such as
Atf4, Atf6, and Xbp1s were decreased in ethanol-fed mice treated
with anti-miR-873-5p (Fig. 2Q and Fig. S2O).

Since alcohol disrupts lipid metabolism and leads to lipid
accumulation30,31, we studied the effects of anti-miR-873-5p on
lipid metabolism. Silencing of miR-873-5p reduced liver stea-
tosis, as measured by Sudan red staining, hepatic triglycerides,
and cholesterol levels (Fig. 2R-T and Fig. S2P).

Consequently, the inhibition of miR-873-5p facilitates ethanol
clearance, promotes cell survival, and shows anti-oxidant and
anti-inflammatory effects, and ultimately prevents steatosis.
Proteomic insights into the Gao-binge mouse model treated
with an miR-873-5p antagonist
To further characterise the mechanism by which anti-miR-873-
5p therapy improves ALD, we mapped the proteome of
ethanol-binge mice model liver tissues using Liquid
chromatography–mass spectrometry (LC-MS) technology. The
overall differences in the proteome between groups are
represented as a volcano plot in Fig. 3A and Fig. S3A. In total, 959
proteins were detected in the liver as being differentially
expressed between the non-treated and anti-miR-control
ethanol-fed group. Specifically, 223 proteins differed in expres-
sion between the anti-miR-873-5p and anti-miR-control groups;
a heatmap of the 25 top upregulated and downregulated
proteins resulting from miR-873-5p silencing is shown in Fig. 3B.
An in-depth study using Ingenuity Pathway Analysis (IPA)
revealed the canonical pathways affected in mice receiving an
alcohol-fed diet compared with control mice. Processes affected
included the sirtuin signalling pathway, NAD, glutathione
metabolism, and fatty acid metabolism (Fig. S3B). Considering
the predicted activation, chronic ethanol consumption activates
signalling pathways such as EIF2, nicotine degradation, or mTOR
and decreases activity in insulin secretion/receptor signalling or
cholesterol biosynthesis (Fig. S3C). In addition, ethanol degra-
dation has some impact in this model, as it is predicted to
increase acetate, NADH, and acetyl-CoA levels (Fig. S3D) as
described previously.4

IPA analysis revealed the canonical pathways with proteins
differentially expressed in the miR-Ctrl and anti-miR-873-5p
groups. Among them, NAD synthesis and sirtuin signalling
pathways were highlighted (Fig. 3C). Furthermore, considering
their activation z-score, ethanol degradation II, xenobiotic
metabolism by PXR and AHR, and the sirtuin signalling pathway
were the canonical processes activated by anti-miR-873-5p
therapy in the ethanol-binge mice model (Fig. 3D and Fig. S3E).
In contrast, necroptosis, liver fibrosis, ferroptosis, IL-8, and EIF2
signalling pathways appeared to be diminished in the anti-miR-
873-5p group of the ethanol-binge mice model compared with
the anti-miR-control group (Fig. 3D). Interestingly, the IPA results
suggest SIRT1 as one of the top predicted upstream regulators in
the anti-miR-873-5p group (z-score 2.385) (Fig. 3E and Fig. S3F).

These findings suggest that alcohol degradation and sirtuin
signalling pathways are important mechanisms affecting
anti-miR-873-5p-mediated protection.
positive cells have been highlighted by red arrows and the intense area is dem
followed by maximal release. For all graphical bar charts, upper bars represent S
one-way ANOVA, followed by post hoc Bonferroni tests for three or more groups.
Ctrl are shown; #p <0.05; ##p <0.01 and ###p <0.001 vs. miR-Ctrl are shown.E
oxygen species.
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Anti-miR-873-5p modulated SIRT1 activity and the acetylome
in ALD
It is known that the activity of SIRT1 is impaired with the pro-
gression of ALD.32 Considering that SIRT1 may be the upstream
regulator of the hepatoprotective effects observed in the
anti-miR-873-5p treatment group and given the importance of
SIRT1 during ALD progression33, we examined the role of SIRT1
in anti-miR-873-5p-treated and anti-miR-control ethanol-fed
mice. The treated group exhibited higher hepatic SIRT1 activity
compared with miR-control mice, as shown in Fig. 4A, with no
changes in Sirt1 mRNA expression levels (Fig. 4B), suggesting
that anti-miR-873-5p has a transcriptional-independent effect.
Given that SIRT1 is an important deacetylase enzyme, we
performed a comprehensive acetylome analysis. As depicted in
Fig. 4C, treatment with anti-miR-873-5p led to a significant
reduction in the acetylated proteome in the livers of the ethanol-
binge mouse model. Furthermore, mass spectrometry analysis
revealed 10 acetylated proteins with a mass addition of +42.01
that displayed significant differences between the control and
the anti-miR-control groups, and five proteins between the
ethanol groups treated with or without anti-miR-873-5p (Fig. 4D
and E and Table S6).34,35
Enhanced SIRT1 activity restored bile acid and inflammation
homeostasis through its direct targets
The maintenance of adequate bile acid (BA) homeostasis is
essential. Patients with advanced ALD show a shift in their BAs
pool towards more toxic species, together with cholestasis and
increased plasma levels of BAs.35–37 Farnesoid X receptor (FXR)
plays a key role in the aforementioned phenotype35, as chronic
alcohol consumption causes the hyperacetylation of FXR, altering
its activity.35,38 The silencing of miR-873-5p in ethanol-fed mice
resulted in decreased FXR acetylation levels (Fig. 5A), which is
consistent with the restored expression pattern of BA synthesis
genes (Fig. 5B). The liver BA composition in ethanol-fed mice
treated with anti-miR-873-5p showed increased levels of
hydrophilic species, such as alpha-murocholate; beta-MCA; and
omega-MCA (non-conjugated), and tauro-alpha-MCA (conju-
gated) (Fig. 5C and Fig. S5A), potentially attenuating the toxicity
of BAs. On the other hand, anti-miR-873-5p restored primary
conjugated glycocholic acid and taurocholic acid, together with
secondary conjugated BAs (taurodeoxycholic acid, taur-
oursodeoxycholic acid and taurolitholic acid), to their control
levels (Fig. 5D and E, Fig. S5A).

In addition, the mRNA levels of Ntcp, a BA uptake trans-
porter35, were restored in the anti-miR-873-5p group (Fig. 5F),
which could facilitate the uptake of BAs from serum, suggesting
that anti-miR-873-5p can prevent the EtOH-induced serum
overaccumulation of BAs (Fig. 5G and Fig. S5A). This idea is also
sustained by the trend seen in major secondary BAs species in
the livers of anti-miR-873-5p mice (Fig. 5H). Similarly, anti-miR-
873-5p restored the expression of the transporters Mdr1 and
Mrp2, whereas the expression of Mrp3 was not affected (Fig. 5F).
These data suggest that anti-miR-873-5p promotes proper
homeostasis in the enterohepatic circulation.
arcated by a dotted line. (I) ER calcium release after addition of thapsigargin
D. Student’s t tests were used for statistical analysis between two groups and
Statistical significance is represented as *p <0.05; **p <0.01 and ***p <0.001 vs.
R, endoplasmic reticulum; GNMT, glycine N-methyltransferase; ROS, reactive
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Regarding inflammation, alterations in the function of the NF-
jB regulatory complex are observed in alcoholic liver disease.39

Naturally, acetylation affects NF-jB activity.20 In this study,
anti-miR-873-5p restored acetylated NF-jB back to control levels
(Fig. S5B), possibly via SIRT1 activity40, as is consistent with an
improvement in the inflammatory response observed in the
ethanol-binge mice model.

These results suggest that treatment with anti-miR-873-5p
activates SIRT1 deacetylase activity, restores the acetylome, and
modulates targets such as FXR and NF-jB involved in the phys-
iopathology of ALD.
JHEP Reports 2024
NAD synthesis and recycling increased SIRT1 activity in
ethanol-fed mice
As mentioned above, SIRT1 is a NAD-dependent deacetylase,
and so it relies on NAD to perform its function. NAD, which can
either be oxidised to NADH or recycled to NaM via the salvage
pathway, is depleted by alcohol metabolism, decreasing the
overall NAD/NADH ratio and subsequently several metabolic
pathways. Consistent with the literature2,41,42 and in line with
the results obtained in the IPA analysis, treatment with anti-
miR-873-5p increased NAD+ (Fig. 6A) and decreased NADH
levels (Fig. 6B) in ethanol-fed mice, leading to a restored
7vol. 6 j 100918
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NADH/NAD ratio (Fig. 6C). In addition, genetic analysis showed
that the de novo and recycling (or salvage) pathways were
upregulated in the anti-miR-873-5p treatment group compared
with the miR-control group (Fig. 6D). The same phenotype was
observed in ethanol-treated primary hepatocytes when miR-
873-5p expression was silenced (Fig. 6E), suggesting that the
increased SIRT1 activity may be driven by increased NAD
synthesis.

Nnmt, a methyltransferase that degrades NaM using SAMe in
response to ER stress43, appears to be increased during ALD
progression. Treatment with anti-miR-873-5p prevented this
upregulation (Fig. 6F) and decreased its activity (Fig. 6G) in the
ethanol-binge mice model. This methyltransferase determines
the link between NAD metabolism and the methionine cycle
(Fig. S6A), and its elevation is associated with worse effects.44
JHEP Reports 2024
In line with this evidence, the quantitative analysis of liver
metabolites from NAD synthesis and recycling revealed
increased Trp, decreased nicotinamide mononucleotide (NaMN),
and increased nicotinamide (NaM) levels, two precursors of NAD
via the salvage pathway, upon treatment with anti-miR-873-5p
(Fig. 6H). These effects are expected when NNMT is
downregulated.

To further confirm that both sirtuin (SIRT1) activity and the
nicotinamide adenine dinucleotide (NAD) salvage pathway are
essential to the hepatoprotective effect of anti-miR-873-5p, we
modulated SIRT1 and nicotinamide phosphoribosyltransferase
(NAMPT) activities with EX527 and FK866 inhibitors, respec-
tively. The ability of anti-miR-873-5p to exert protection in pri-
mary hepatocytes was largely abrogated when SIRT1 and NAMPT
activities were blocked (Fig. 6I).
8vol. 6 j 100918
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Overall, anti-miR-873-5p treatment rescued the NAD salvage
pathway, increased both NAD synthesis and SIRT1 deacetylase
activity, and restored the acetylome, delaying ALD progression.
Therefore, our study introduces anti-miR-873-5p as a novel
therapeutic approach to ALD.

Dysregulation of miR-873-5p and its targets was associated
with impaired NAD metabolism and upregulation of NNMT in
patients with ALD
To investigate whether miR-873-5p could also be associated
with ALD progression in humans, we measured the expression
of miR-873-5p in liver biopsies from control subjects (healthy
tissue from resected patients) (n = 8) and patients with ALD
(n = 15). A marked elevation in miR-873-5p levels was
observed in the livers of patients with ALD when compared
with healthy controls. Simultaneously, there was a notable dec
JHEP Reports 2024
rease in GNMT, affirming a distinct inverse relationship in
human subjects (Fig. 7A). Furthermore, the analysis of another
cohort from an independent data repository showed signifi-
cantly reduced levels of GNMT during the progression of ALD
(Fig. 7B). These results are consistent with previous reports on
the modulation of one-carbon metabolism in this chronic liver
disease.9,12

Decreased SIRT1 mRNA expression was also found in livers
from patients with ALD relative to healthy controls (Fig. 7C). The
progression of ALD is known to impair SIRT1 activity32, which
could be related to defects in NAD metabolism. In this sense, we
observed that most of genes related to the synthesis or recycling
of NAD were affected during the progression of ALD in patients
(Fig. 7D), and the proteome database analysis showed that some
enzymes were also affected at advanced stages of ALD (Kleiner
score)45 (Fig. 7E).
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Notably, our findings reveal a significant increase in NNMT
levels during the progression of ALD in patients, as shown in
Fig. 7G. Additionally, we observed an inverse correlation be-
tween NNMT and GNMT expression at the protein (Fig. 7H) and
mRNA levels (Fig. 7I). These results suggest that the
dysregulation of the methionine cycle is associated with elevated
NNMT expression, which may be involved in reducing SAMe
excess and restoring the SAMe/S-adenosylhomocysteine (SAH)
methyl donor ratio.46 However, this mechanism comes at the
cost of decreased NAM levels and subsequently diminished
overall NAD production.

Overall, the findings from this study in patients with ALD
present compelling evidence that the dysregulation of miR-873-
5p and its target genes, particularly GNMT, significantly
contribute to the pathogenesis of ALD. These dysregulations have
a direct impact on NAD metabolism and the activity of SIRT1,
further emphasising their importance in the disease process.
Discussion
Despite the increased public awareness of alcohol-related
hepatotoxicity, alcohol consumption is increasing at an alarm-
ing rate. For decades, treatment options for ALD were limited to
symptom elimination or alcohol abstinence, with dietary and
lifestyle modifications represent cornerstones.47,48 ALD accounts
for approximately 3.8% of deaths worldwide, making it the
leading cause of death from liver disease49,50 and is the main
indication for liver transplantation in the USA.47 As a result,
pharmacotherapies for ALD remain an unmet need that must be
addressed.

Altered epigenetic mechanisms are a remarkable side effect of
alcohol abuse caused by excessive acetate and NAD depletion,
and play an important role in the progression of ALD. Among
epigenetic modifiers, miRNA expression is known to be altered in
this pathology.8 Here, we show that hepatic levels of miR-873-5p
are increased during the progression of ALD in both patients and
mouse models, highlighting it as a novel therapeutic target.
Together with elevated miR-873-5p levels, the expression of
Gnmt, its direct target, was markedly downregulated with
disease progression in mice.

The presence of GNMT and its regulation by anti-miR-873-5p
in diverse cell types, such as cholangiocytes, suggests that the
modulation of miR-873-5p could have implications beyond its
impact on specific cell populations, indicating its potential
significance in diverse biological processes.12 Notably, the
treatment of hepatocytes with anti-miR-873-5p does not affect
cell survival13, but protects the liver against chronic and acute
alcohol consumption in vivo. Importantly, the presence of Gnmt
is crucial for the effect of anti-miR-873-5p in hepatocytes, as
previous results have shown that the silencing of miR-873-5p in
Gnmt-/- mice has no protective effects.9,12 In mice treated with
anti-miR-873-5p, ER stress markers, inflammation, cell death,
and overall liver injury were downregulated, whereas alcohol
clearance and antioxidant activity improved.

In this study, we used a proteomics approach to identify
SIRT1, a NAD-dependent deacetylase, as an upstream regulator of
the signalling pathways modulated in ethanol-fed, anti-miR-
873-5p-treated mice. The liver metabolises 80% of ingested
alcohol, producing harmful metabolites such as acetaldehyde via
ADH and acetate/acetyl-CoA via mitochondrial aldehyde
JHEP Reports 2024
dehydrogenase (ALDH). Both reactions require NAD+ as the major
cofactor.4 As ethanol metabolism depletes the NAD supplies,
NAD+-dependent enzymes, such as sirtuin deacetylases, lose
their functionality in ALD33, triggering aberrant acetylation that
leads to pathophysiological consequences. Interestingly,
anti-miR-873-5p therapy restored not only SIRT1 deacetylase
activity, but also hepatic NAD levels and the acetylome.

Regarding the hepatic NAD pool, although most of NAD is
recycled via the salvage pathway, its de novo synthesis occurs via
the kynurenine pathway, starting from Trp and the Preiss–
Handler pathway.2 Consistent with our proteomic analysis,
metabolomic studies using LC-MS showed higher NaM levels, a
precursor for the NAD salvage pathway, together with lower
NaMN and higher Trp contents in anti-miR-873-5p-treated mice,
suggesting that compared with the anti-miR-control group, the
recycling metabolism is fuelled to restore NAD levels without
depleting Trp stores.

Although the role of NaM as a potential SIRT1 inhibitor is
controversial, this molecule can be used to rapidly synthesise
NAD and induce the deacetylase activity of SIRT1 via the salvage
pathway.51 Our data confirm that the inhibition of miR-873-5p
restores the NAD/NADH ratio and enhances SIRT1 deacetylase
activity via the salvage pathway. However, the treatment loses its
protective effect in the presence of FK866, an inhibitor of NAMPT,
the rate-limiting enzyme from the NAD recycling pathway.

To understand how anti-miR-873-5p boosts the salvage
pathway, it is worth noting that GNMT is a major hepatic
methyltransferases and a direct target of miR-873-5p.9,12,13

NNMT is another methyltransferase that not only inhibits NAD
synthesis by degrading NaM in response to ER stress, but also
appears elevated in patients with ALD during disease progres-
sion.2,43,44 Herein, when GNMT decreases, NNMT is augmented.
This was confirmed following the analysis of the human
proteome and genome databases. In ethanol-fed mice treated
with anti-miR-873-5p, the expression of Nnmt was decreased,
corresponding to higher levels of Gnmt together with reduced
NNMT activity. It is plausible that the anti-miR-873-5p-
dependent expression of Gnmt competes with Nnmt for avail-
able SAMe, thereby preventing the consumption of NaM and,
thus, promoting the salvage pathway.

Consistently, the rescuing of hepatic NAD levels and NAD-
dependent SIRT1 deacetylase activity restores the liver acet
ylome in anti-miR-873-5p-treated mice, modulating the levels
and activity of those proteins regulated through acetylation. We
analysed two major hallmarks of the progression of ALD:
cholestasis and inflammation. FXR is a nuclear receptor that
controls the synthesis, secretion, and reabsorption of BAs, and
its deficiency is associated with cholestasis in ALD.35 SIRT1 acts
as a positive regulator of FXR and prevents its hyperacety
lation.35,52 The study of BA species in the liver of Gao-binge
model mice by LC-MS revealed that anti-miR-873-5p modu-
lates the pool of BA to a less hydrophobic, less toxic level,
possibly through FXR activation. The increase in secondary BAs
(taurodeoxycholic acid, tauroursodeoxycholic acid and taur-
olitholic acid) also results from the improved enterohepatic
circulation of BAs in the anti-miR-873-5p group. The overall
reduction in serum total BAs in the anti-miR-873-5p treated
group supports this hypothesis.

SIRT1 has also been identified as a master regulator of
inflammatory and oxidative stress processes by inhibiting the NF-
12vol. 6 j 100918



jBP65 subunit through themodulationof Lys-310acetylation.53,54

Consistently, the silencing of miR-873-5p reduced acetyl–NF–jB
levels in ethanol-fed mice, together with the expression of
inflammatory markers Il1b, Il6, Cxcl1, and Ccl2. Since knocking
down miR-873-5p also has a hepatoprotective effect by main-
tainingmitochondrial activity9, thismay additionally explain how
JHEP Reports 2024
the GSSG/GSH ratio was restored and mitochondrial ROS levels
were reduced in the anti-miR-873-5p mice group.

Therefore, the use of anti-miR-873-5p provides new solutions
to the unmet pharmacological need in ALD, by boosting the NAD
salvage pathway and restoring the hepatic acetylome during ALD
progression.
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