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Abstract: Multisystem inflammatory syndrome in children (MIS-C) has been widely reported in
some children diagnosed with SARS-CoV-2. Clinical signs of MIS-C are manifested at 2 to 4 weeks
after SARS-CoV-2 infection, where elevated biomarkers of inflammation and cardiac dysfunction
are the hallmark of this syndrome when infection or exposure to SARS-CoV-2 has been confirmed.
However, after two years of acknowledgment, MIS-C treatment is still under research to reach safety
and effectiveness in the acute phase in children. Therefore, in this review, we discuss the potential use
of natural compounds with antioxidant and anti-inflammatory effects to reduce collateral damage
caused by hyperinflammation in MIS-C pathology for new research in treatment and interventions.

Keywords: multisystem inflammatory syndrome; children; nutraceutical compounds

1. Introduction

Early reports showed that children infected with the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) presented mild clinical symptoms or were asymptomatic [1].
Subsequently, children and adolescents who required intensive care unit admission during
or after coronavirus disease (COVID-19) were described with an unusual clinical picture
marked by fever and high levels of inflammatory markers [2–5]. As a result, the Royal
College of Paediatrics and Child Health (RCPCH) recognized this condition as “pediatric
multisystem inflammatory syndrome temporarily associated with SARS-CoV-2” (PIMS-TS),
as well as “multisystem inflammatory syndrome in children” (MIS-C) identified by the
U.S. Centers for Disease Control and Prevention (CDC) and the World Health Organization
(WHO) [6] based on initial laboratory tests, including positivity by SARS-CoV-2 infection as
a principal component. Therefore, for this review, we will refer to this syndrome as MIS-C.

First observational studies overlap MIS-C outcomes with other pediatric inflammatory
diseases such as Kawasaki disease (KD), bacterial toxic shock syndromes, bacterial sepsis,
and macrophage activation conditions [4,7,8]. MIS-C etiology is poorly understood, and
medical care is based on KD recognition because laboratory biomarkers are comparable,
and pharmacological treatment with intravenous immunoglobulins (IVIG) and aspirin has
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been beneficial in patients with MIS-C [9]. Nonetheless, nutritional support during and
post-hospitalization has been poorly approached in this condition.

The use of nutraceuticals in several diseases has been explored due to nutrition and
therapeutic potentials [10]. Nutraceuticals are generally understood as purified products
derived from human food with health benefits, including the prevention and treatment
of diseases [11]. Dietary supplements are ingested products with beneficial physiolog-
ical effects but are not essential to the diet [12]. Alternative supportive treatments for
the prevention and mitigation of COVID-19 infection and hyperinflammation have been
explored, including micronutrient supplementation or nutraceutical interventions with
interesting results in adults [13,14]. However, the information about its use in MIS-C is still
limited. Therefore, in this review, we discuss the potential use of nutraceuticals to mitigate
the inflammatory effects of MIS-C based on the acknowledgment of cellular and clinical
mechanistic data for KD, COVID-19, and MIS-C to date.

2. MIS-C Case Definition and Clinical Manifestations

In April 2020, the Paediatric Intensive Care Society recognized a critically ill in children
with characteristics of hyperinflammatory shock and evidence of SARS-CoV-2 infection.
The RCPCH introduced the term PIMS-TS and subsequently, the CDC and WHO published
case definitions for MIS-C in May 2020 [15,16].

According to WHO, children and adolescents (0–19 years) showing signs of MIS-C
have previous persistent fever for more than three days with any two of the following
conditions: external signs of inflammation (rash or bilateral non-purulent conjunctivitis
and oral cavity, hand, or foot alterations), hypotension or shock, cardiac abnormalities,
signs of coagulopathy, or acute gastrointestinal conditions [17]. CDC considers MIS-C
for individuals aged <21 years presenting fever for at least 24 h, laboratory evidence of
inflammation, evidence of clinically severe illness requiring hospitalization, and organ
involvement (respiratory, cardiac, renal, hematologic, gastrointestinal, dermatologic, or
neurological) [18]. These clinical symptoms require accompaniment by laboratory findings
of inflammation such as erythrocyte sedimentation rate (ESR), C-reactive protein (CRP)
or procalcitonin (PCT) levels [19], and evidence of SARS-CoV-2 infection or contact with
COVID-19 patients ruling out bacterial sepsis, staphylococcal or streptococcal shock syn-
dromes caused by infection with other pathogens [3]. Only CDC considers hospitalization
time as a criterion for MIS-C definition, and RCPCH did not include SARS-CoV-2 positivity
or epidemiologic link (Figure 1) [16].
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The American Academic of Pediatrics (AAP) defined MIS-C as the syndrome of an
individual under 21 years of age presenting fever, laboratory evidence of inflammation, and
proof of clinically severe disease requiring hospitalization, with multisystem (≥2) organ
involvement (cardiac, renal, respiratory, hematologic, gastrointestinal, dermatologic, or
neuro-logic), without a plausible alternative diagnosis, and positive for current or recent
SARS-CoV-2 infection by RT-PCR, serology, or antigen testing; or exposure to COVID-19
within the four weeks before the onset of symptoms [20]. In addition, the American
College of Rheumatology (ACR) published clinical guidance to define a case of MIS-C,
which includes: incessant fever (greater than 38 ◦C), epidemiological link to SARS-CoV-2,
and at least two suggestive clinical features (rash, changes in oral mucosa, conjunctivitis,
neurological symptoms, edema of hands/feet) (Figure 1) [21].

Clinical signs of MIS-C appear 2–4 weeks after SARS-CoV-2 infection, with a significant
proportion (75%) of antibodies to class-switched viral antigens indicating that most, if not
all, cases of MIS-C are the result of previous or unclear SARS-CoV-2 infection [5,22,23].
However, the range of SARS-CoV-2 virus detected by real-time polymerase chain reaction
(RT-PCR) is widely spread among children with MIS-C. It varies from 21% to 40% in studies
involving either method for the detection of SARS-CoV-2 [24–27].

The diagnosis method for SARS-CoV-2 infection is also controversial. RT-PCR and
antigen detection are relative indicators of viral load. SARS-CoV-2 spike (S) antigens were
detectable in the blood of children with MIS-C [28]. However, N and S antigens in acute
COVID-19 did not correlate strongly with RT-PCR [29]. On the other hand, the use of a
novel method (MSD S-PLEX CoV-2 N and S assays) demonstrated that, during the early
hospital course, SARS-CoV-2 N and S antigens are detectable in blood in most pediatric
patients with acute COVID-19, but in few cases of MIS-C [30]. Therefore, the RT-PCR
method for COVID-19 detection is not exclusive to MIS-C diagnosis, and serology and
epidemiological linkage are also considered. Currently, the ACR emphasizes that MIS-C
diagnosis should be confirmed on the basis of the totality of history, physical examination,
and laboratory studies [21].

Like KD, patients with MIS-C have different features of cardiac dysfunction, such as
valvulitis, coronary artery dilatation, myocardial dysfunction, and myocarditis [31–33].
In severe cases of MIS-C, patients require cardiac or respiratory support [34,35]. There-
fore, cardiac biomarkers and echocardiography should be monitored during the hospital
stay. The ACR has recommended monitoring troponin T and B-type natriuretic peptide
(BNP)/N-terminal proBNP (NT-proBNP) and assessment of BNP/NT-proBNP levels to
distinguish between MIS-C patients with and without left ventricular (LV) dysfunction [21].
However, a meta-analysis of laboratory cardiac markers for children with MIS-C and
COVID-19 revealed that only BNP was the key cardiac marker that showed differences
between patients with non-severe MIS-C and severe COVID-19 and between non-severe
and severe MIS-C patients. Meanwhile, neither troponin nor aspartate aminotransferase
showed notable differences in cardiac injury between MIS-C and COVID-19 patients [36].
Nevertheless, coronary artery aneurysms regressed in the first month in 80% of patients
with MIS-C, and this was not observed in KD patients [21,24,37].

Furthermore, MIS-C differs from KD concerning the age at presentation, as MIS-C
typically affects the oldest children and adolescents (with a range of 6 to 12 years), unlike
KD, which is more common before the age of 5 years [3,27,37,38]. Other interesting findings
include that severe manifestations of MIS-C occur less frequently in Caucasians compared to
the frequency expected in the general population (many of whom are of African-American
or Afro-Caribbean ethnicity) [23,38,39]. In addition, the ACR panel considers that patients
with MIS-C more commonly manifested LV dysfunction, shock, gastrointestinal, and
neurological symptoms than patients with KD [21].

3. Inflammatory Markers in MIS-C

Even though the immunopathologic mechanisms of MIS-C remain poorly under-
stood, high inflammatory markers have been identified, and patients with MIS-C were
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found to respond appropriately to therapy with immunomodulators or anti-inflammatory
drugs [40–43]. Due to the clinical course of MIS-C and its high variability, identification
of the distinct cellular, chemokines, cytokines, coagulation, and inflammatory markers is
essential to comprehend clinical evolution. In addition, it has been suggested that cells
involved in the innate and adaptive immune response are affected, as well as important
markers of coagulation and cardiac and hepatic function [44].

Most children with MIS-C presented anti-SARS-CoV-2 IgG antibodies, indicating a
past infection of at least 2–3 weeks (Table 1) [40]. The study by Anderson et al. [45] also
suggests that children with MIS-C have high SARS-CoV-2 spike immunoglobulin G (IgG)
titers compared with children with severe COVID-19. In addition, autoantibodies directed
against endothelial, gastrointestinal, and immune cells were found [46].

The first class of clinical parameters reported associated hyperinflammation, includ-
ing elevated acute phase reactants [5,41,44,47], accompanied by increased biomarkers of
coagulation [41,47–49] and cardiac function [39,43,50,51]. In the acute phase of MIS-C,
exacerbation of cytokines as some interleukins (IL), tumor necrosis factor-alpha (TNF-a),
and interferon-gamma (INF-γ) levels have been reported [48,51–55], as well as chemokines
including the IL-2 receptor agonist, C-C motif chemokine ligand 2 (CCL2), C-X-C motif
chemokine ligands 8, 9 and 10 (CXCL8, CXCL9, CXCL10), and monocyte chemoattrac-
tant protein (MCP)-1 [42,48,56–58]. In addition, changes in leukocyte count and distri-
bution are considered as circulating biomarkers [54,59–62], as well as significant changes
in serum biomarkers such as albumin [26,44,63,64], lactate dehydrogenase (LDH) [41],
creatinine [41,48], sodium [48,57,63], triglycerides [65,66] and zonulin [67,68] (Table 1).

Table 1. MIS-C circulating biomarkers altered.

Category Biomarkers References

Antibodies Anti-spike IgG e IgA [46]
Acute phase reactants ↑ C-reactive protein, procalcitonin, ferritin, erythrocyte sedimentation rate [5,41,44,47]

Coagulation ↑ D-dimer, fibrinogen, prothrombin T, partial thromboplastin time [41,47–49]
Cardiac function ↑ Troponin, brain type natriuretic peptide (BNP), Pro-BNP [39,43,50,51]

Cytokines ↑ IL-1a, IL-2, IL-6, IL-8, IL-17, IL-33, TNF-a, IFNγ [48,51–55]
Chemokines ↑ CCL2, CXCL8, CXCL9, CXCL10, MCP-1 [42,48,56–58]
Monocytes ↓Monocyte HLA-DR and CD86+ [52,69]

Dendritic cells ↓ Plasmacytoid dendritic cells [56,69]
Platelets ↓ Total count of platelets [24,50,53,70]

Neutrophils ↑ Total count of neutrophils [24,59–62,71]

Natural killer ↓ CD16+, CD56+
↑ CD38+ [60,69,72]

Lymphocytes B ↑ Plasmablasts, naive B cells [59,60,73]
Lymphocytes T ↓ CD4+, CD8+ [52,62,73–75]

Other laboratory markers
↓ Albumin, sodium

↑ Lactate dehydrogenase, alanine transaminase, creatinine, triglycerides,
creatine kinase, blood urea nitrogen, zonulin

[26,41,44,45,48,63–67]

Upward arrows indicate increased biomarker levels. Down arrows indicate decreased biomarker levels.

MIS-C and severe COVID-19 have prominent systemic inflammation [68]. However,
recent evidence suggests some differences in the inflammatory profile in MIS-C versus
COVID-19, as analyzed by Zhao et al. [54], where children with MIS-C had lower levels
of LDH, total platelet count (PLT) and higher levels of ESR compared to children with
severe COVID-19. In contrast, lower levels of absolute lymphocyte count (ALC) and higher
levels of CRP, D-dimer, and absolute neutrophil count (ANC) were observed in patients
with MIS-C compared to non-severe COVID-19. In addition, patients with severe MIS-C
had increased levels of leukocytes, CRP, D-dimer, and ferritin compared to non-severe
MIS-C. In addition, MIS-C showed higher levels of CRP, D-dimer, ferritin, and creatinine
and low levels of leukocytes, ALC, PLT, albumin, and sodium versus KD [64]. Therefore,
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the evolution of inflammatory markers could be useful in order to assess the severity of
MIS-C [72].

Further research on principal pathways to induce cytokine storm revealed that during
the acute phase of MIS-C, altered antigenic presentation, measured by major histocom-
patibility complex (MHC) II cell surface receptor (HLA-DR) and CD86 expression, was
observed, although γδ T cells and CD4+CCR7+ T cells were activated [52,62]. Activation
markers of 4+ and CD8+ TCD cells were positively correlated with disease severity [75,76].
A consistently high frequency of these markers was identified in MIS-C, suggesting T-cell
activation and proliferation, particularly of CD8+ T cells with the expansion of T-cell re-
ceptor Vβ 21.3-expressing cells, which is a suggested signature of MIS-C, because this was
not observed in KD, TSS or acute COVID-19 [60,73,77]. Therefore, the authors suggest
that the innate and activating T-cell response could be dominant in the acute phase. Still,
during the resolution of MIS-C, there is a predominant effect of regulatory T cells, and
this could be taken into account for the immunomodulatory treatment depending on the
disease course [52].

Ramaswamy et al. [59] profiled MIS-C, adult COVID-19, and healthy pediatric and
adult individuals to identify a signature in MIS-C patients. The authors found high
expression of alarmin-related S100A genes in monocytes and neutrophils that could be
mediating part of the inflammatory response observed in MIS-C. In addition, they found
higher expression of perforin, granzyme A, and H in natural killer (NK) cells in MIS-
C versus healthy pediatric donors. Reduced expression of cytotoxic molecules such as
granzyme B [78,79] and perforins [62] have been described in the adult population with
COVID-19, but in children with MIS-C, both NK cells and CD8+ T cells exhibited elevated
cytotoxicity with potential relevance to tissue damage through pyroptosis pathways [63].

Hoang and colleagues [65] reported low CD16+CD56+ expression in children with
MIS-C compared to children with COVID-19, suggesting NK cell cytopenia. Moreover,
Vella et al. found that 80% of NK cells presented CD38+, suggesting an activation of the
innate response in addition to the adaptive immune defense mediated by CD4+ and CD8+
T cells [60]. These data indicate that, even though there is a decrease in the number of NK
cells, there is an increase in its activity and functionality.

Regarding B cells, effector B cells, and class-switched memory B cells, a decrease in blood
and an increase in circulating plasmablasts have been observed, which could have a potential
humoral response suggesting a potential target for MIS-C recovery [37,40,52,59,73,80,81].

Recent research employing proteomics revealed changes in complement activation and
coagulation pathways in the plasma of MIS-C and COVID-19 with acute respiratory distress
syndrome (ARDS). The MIS-C phenotype activated the Fc receptor γ (FcGR) and B-cell
receptor (BCR) pathways. FcGR receptors are crucial for an antibody-mediated immune
response, suggesting a solid implication of antibodies in the progression of MIS-C [68].
Furthermore, Fc receptors may indicate the IVIG treatment received by patients with MIS-C,
as previously established [82].

4. MIS-C Treatment

MIS-C treatment focuses on the clinical stabilization of hospitalized patients and the
prevention of multi-organic damage and long-term sequelae; for non-hospitalized patients,
antiplatelet agents have shown promising results. The ARC recommends using aspirin for
3–5 mg/kg/day in patients without bleeding [21].

MIS-C treatment in hospitalized patients is based on the KD approach, focused on
the use of IVIG and glucocorticoids [83–87]. The AAP, ACR, American Heart Association
(AHA), Helen DeVos Children’s Hospital Foundation (HDVCH), and Infection Diseases
Society of America (IDSA), as well as other worldwide health organizations, recommend
the continued use of IVIG at a dose of 1–2 g/kg, steroid therapy (2–3 mg/kg/d), and
antiplatelet therapy (aspirin) [88].

The use of IVIG has been recommended in KD patients to reduce coronary artery abnor-
malities [89,90], while its benefit in myocarditis remains unclear because the successful use
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of IVIG in coronavirus-associated myocarditis has been supported only by case reports [21].
The American Heart Association (AHA) suggests that, although the mechanism of action
of IVIG is unknown, there is a modulation of cytokine production, neutralization of toxins,
augmentation of regulatory T-cell activity, and regulation of antibody synthesis [91,92].

Using glucocorticoids in combination with IVIG is more effective than monotherapy
with IVIG in patients without contraindications to glucocorticoids and is associated with
shorter ICU stays [50,93]. The monotherapy with glucocorticoids needs more investigation,
and the experts do not recommend its use alone until more evidence is feasible (Figure 2).
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Figure 2. Effect of pharmacological treatment for MIS-C on clinical signs at admission, organ
dysfunction and inflammation. Downward arrows indicate the decrease in signs, symptoms, and
markers of inflammation by treatment with aspirin (trapezoid), IVIG (circle), and steroids (hexagon).
Abbreviations: CRP, C-reactive protein; ESR, erythrocyte sedimentation rate; ICU, intensive care unit;
IVIG, intravenous immunoglobulin.

The use of antibiotic therapy is only recommended by AAP for mild and severe
illness or shock. Anticoagulant therapy is suggested as prophylaxis or therapy in patients
with eject fraction <35% or thrombosis evidence [88]. In patients with a higher risk of
complications by IVIG or refractory disease, the experts recommend the intensification
with higher doses of glucocorticoids, as well as the use of anakinra, a recombinant human
IL-1 receptor antagonist [91,92,94,95], or the TNF-a inhibitor infliximab [21,93,96].

5. Nutraceuticals, Alternative or Complementary Therapy?

In order to discuss the use of nutraceuticals in a disease context, it is imperative to
describe its definition and different conceptualization versus functional food and dietary
supplements. In this sense, Stephen DeFelice coined the term nutrition and pharmaceutical
as a nutraceutical in 1986. In 2003, Karla referred to functional food as “food that is being
cooked or prepared using scientific intelligence, with or without knowledge of how or why
it is being used. If this preparation is used for prevention or treatment of disease, it is called
nutraceutical” [97]. The Oxford English Dictionary defines functional food as a foodstuff
containing chemical or biological additives to produce a beneficial physiological effect on
the consumer, as well as nutraceutical [12]. While the term “dietary supplement” refers to a
product added to a diet that bears vitamins, minerals, amino acids, or any other ingredient
that supplements the diet by increasing the total daily intake [97].
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Despite the nutraceutical term has been applied indistinctly to functional food and
dietary supplement, the discussion about it reveals the need for an integrative definition
based on scientific evidence as well as was discussed by Aronson in 2017 [12], based
on the DeFelice lecture in 2014 about the term nutraceutical and the scientific evidence,
highlighting that study design and cell demand may influence negative results. According
to the interest of this review, we will discuss the use of nutraceuticals as purified products
derived from human food with health benefits, including the prevention and treatment of
disease, which includes the use of dietary supplements and functional foods.

Nutrition interventions in health and disease have been widely implemented in
community settings using complementary and alternative medicines. In the European
Union, the use of non-pharmacological interventions has been raised in the last decades.
These strategies are often applied to offset the use of conventional drugs [98]. However, its
uses as a complementary or alternative therapy are still controversial and influenced by
experiences and perceptions more than the knowledge of scientific evidence.

In a recent systematic review of the potential factors that influence the use of comple-
mentary and alternative medicine, the top reasons were having good expectations of its
benefits and safety and dissatisfaction with conventional medicine. In addition, illnesses
such as cancer, diabetes, cardiovascular disease, and human immunodeficiency virus were
associated with the acceptability of the use of complementary medicine, where commonly
used drugs cannot be satisfactorily effective, and people tend to seek this therapy as a way
of meeting their needs or filling a gap left by conventional medicine [99].

Likewise, in the study of the factors that affect consumers’ decision to take nutraceuti-
cals, the experience of those who have used these products may have contributed to the
positive perception of its health benefits. In addition, people who perceived that nutrient
intake was inadequate from diet alone decided to take nutraceuticals. On the other hand,
the high cost of nutraceuticals and their lack of knowledge were barriers to their use. An
interesting aspect is that consumers rarely mention clinical evidence because of a lack of
access to clinical evidence due to obstacles to understanding scientific literature. Therefore,
the primary resource of information were friends, family, and mass media, more than
healthcare professionals [100].

In other public surveys, people were more inclined to use nutraceuticals or dietary
supplements if a registered medical practitioner prescribed them. Still, clinicians have
divided opinions because most consider nutraceuticals relatively safe for consumption, but
they recognize the need to undergo documented clinical trials such as pharmaceuticals [101].
However, many health professionals recommend using nutraceuticals influenced by their
personal use or work experience and not by high-quality information sources [102]. The
use of nutraceuticals for health and disease remains controversial and limited by the gap
between clinical evidence and users’ knowledge. Consequently, nutraceutical researchers
need to increase efforts in the critical choice of the compounds to be tested, the study design,
the scope of the results, and its proper and simplified communication to users.

6. Nutraceuticals in Inflammatory Diseases and COVID-19

The etiology of different chronic and degenerative diseases is widely reported to
be related to persistent and dysregulated inflammation [103–105]. Indeed, this process
emerges as the key player at molecular and cellular levels for the appearance and de-
velopment of subsequent chronic inflammation-related disorders, such as cardiovascular
diseases, hypertension, diabetes, and pulmonary diseases, including COVID-19 and MIS-C
(Figure 3) [106–109].
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Recently, interest in functional foods for treating these conditions has increased, mainly
antioxidant-rich foods and other bioactive compounds focused on potential pharmacologi-
cal activities. Modern medicine develops new drugs and therapeutic supplements against
chronic and viral diseases and avoids severe inflammation [110–112]. It is well known that a
healthy diet can enhance the immune system and reduce injury induced by chronic or acute
inflammatory processes. In addition, the deficit in the consumption of exogenous antioxi-
dants and the decrease in the endogenous antioxidant system has been linked to alterations
in body functions [113]. In this context, studies have shown that several foods and natural
products are important sources of bioactive compounds such as nutraceuticals, vitamins,
and micronutrients with anti-inflammatory [114], antioxidant [115], antithrombotic [116],
antidiabetic [117] and antidiuretic [118] activities that play an important role in health
care. Therefore, in this review, we have suggested that the intervention with functional
foods could be a potential therapeutic tool to reduce SARS-CoV-2-induced inflammatory
responses and the long-term effects it would have produced, as MIS-C [119,120].

Given that hyperinflammation in MIS-C is associated with SARS-CoV-2 infection,
it is important to know non-pharmacological interventions in clinical trials to reduce
inflammation during COVID-19 or improve patient prognosis during hospitalization. In
the search for nutraceutical compounds as adjuvants in KD, TSS, or COVID-19 in children,
nutraceutical interventions have only been carried out in adult subjects with COVID-19.
We found only one intervention with vitamin C in children with KD to evaluate changes
in the diameter of the brachial artery [121]. In clinical trials, the most commonly used
nutraceuticals with anti-inflammatory and antioxidant properties tested as complementary
treatment versus COVID-19 were curcumin, omega-3 fatty acids, quercetin, and vitamins
A, C, and D3 (Table 2).
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Table 2. Clinical trials evaluating the effects of nutraceuticals in COVID-19 and KD.

Compound Population/Disease Treatment Study Design Results
Intervention vs. Control Ref.

Curcumin

40 adults
COVID-19

I = nano-curcumin
capsules—160 mg/day/2 weeks

Triple-blind,
placebo-controlled, RCT

↓ Transcription factor that controls Th1
cytokine and INF-g on day 7 [122]

48 adults
COVID-19

I = nano-curcumin
capsules—160 mg/day/6 days

Double-blind,
placebo-controlled, RCT ↓Milder symptoms [123]

46 outpatients (adults)
COVID-19

I = capsules with 500 mg of
curcumin + 5 mg piperine

Double-blind,
placebo-controlled, RCT ↓Weakness [124]

Omega-3 fatty acids
Adults with COVID-19

I = hydroxychloroquine + 2 g of
DHA + EPA for 2 weeks
C = hydroxychloroquine

Single-blind, controlled, RCT ↓ Body pain, fatigue, appetite, ESR, CRP [125]

128 adults
Severe COVID-19 I = one capsule of 1000 mg/14 days Double-blind, RCT

↑ Survival rate and higher levels of arterial
pH, HCO3

↓ BUN, Cr, and K
[126]

Palmitoylethanolamine
(PEA)

Unvaccinated adults recently
infected with COVID-19

I = 1.2 g of PEA daily
C = placebo tablets daily/4 week Double-blind, RCT ↓ P-selectin, IL-1β, and IL-2 concentrations [127]

Quercetin

152 COVID-19
outpatients

I = 400 mg/daily/30 days
C = without quercetin

Controlled, open-
label, RCT

↓ Frequency and length of hospitalization,
need for non-invasive oxygen, progression

to ICU, and deaths
[128]

42 COVID-19 outpatients
I = first 7 days with 600 mg/daily,

following 7 days with 400 mg/daily
C = standard care

Controlled, open-
label, RCT ↓ LDH, ferritin, CRP, and D-dimer [129]

Vitamin A
I = 91 adults

Ctrl = 91 adults
Infected with COVID-19

I = 25,000 IU/d oral vitamin A/10 days
C = hydroxychloroquine Triple-blind controlled trial

↓ Fever, body ache, weakness and fatigue,
paraclinical symptoms, WBC count, and

CRP
[130]

Vitamin A, B, C, D and E
I = 30 adults

Ctrl = 30 adults
COVID-19

25,000 IU daily of vitamins A, 600,000 IU
once during the study of D, 300 IU twice
daily of E, 500 mg four times daily of C,

and one amp daily of B complex for 7 days

Single-blinded, RCT ↓ ESR, CRP, IL-6, TNF-a, and
hospitalization time [131]
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Table 2. Cont.

Compound Population/Disease Treatment Study Design Results
Intervention vs. Control Ref.

Vitamin C

I = 39 children with acute KD
Ctrl = 17 healthy children

I = intravenous infusion of 100 mL of 0.9%
saline containing 3 g of vitamin C over 10 min

C = placebo (100 mL 0.9% saline)
Placebo-controlled, RCT

↑ Percent change in diameter of the brachial
artery induced by reactive hyperemia in

19 patients with a history of KD
[121]

I = 31 adults
Ctr = 31 adults

COVID-19
I = 500 mg of vitamin C daily/14 days RCT ↑Mean survival duration [132]

30 adults with severe
COVID-19 infection

I = single oral dose of 500,000 IU
C = placebo Open-label, RCT No effects [133]

Vitamin D3

218 adults
mild-to-moderate COVID-19

I = single oral dose of 500,000 IU
Ctrl = placebo

Multicenter, double-blind,
sequential,

placebo-controlled, RCT.
No effects [134]

207 patients ≥65 years
COVID-19

I = single oral dose 400,000 IU
C = standard-dose 50,000 IU Multicenter, open-label, RCT ↓ Overall mortality at day 14. The effect

was no longer observed after 28 days [135]

151 adults with COVID-19
and vitamin D deficiency

(serum < 25 nmol/L)

I = high-dose booster (≥280,000 IU) up to
7 weeks Retrospective ↓ Risk of COVID-19 mortality [136]

200 adults
With moderate to severe

COVID-19

I = single oral dose 200,000 IU
Ctrl = Placebo

Post hoc analysis of
multicenter, double-blind,
placebo-controlled, RCT

No effect in cytokines, chemokines, and
growth factor in hospitalized patients with

moderate to severe COVID-19
[137]

240 adults
mild-to-moderate COVID-1

I = single oral dose of 200,000 IU
C = placebo

Multicenter, double-blind,
placebo-controlled, RCT No effects [138]

95 adults
COVID-19

I = 50,000 IU per month, or 80,000 IU or
100,000 IU or 200,000 IU/2–3 months,
n = 66), or daily supplementation with

800 IU (n = 1).
C= without vitamin D supplements (n = 28)

Intervention study ↑ 3-month survival in older
COVID-19 patients [139]

129 workers
COVID-19

I = 50,000 IU/week for 2 weeks, followed
by 5000 IU/day for the rest of the study

C = 2000/day
Intervention study Asymptomatic SARS-CoV-2 [140]
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Table 2. Cont.

Compound Population/Disease Treatment Study Design Results
Intervention vs. Control Ref.

Vitamin D3

129 adults
COVID-19

I = 100,000 IU (50,000 IU at first day and
eight days of hospitalization)

C = without vitamin D3

Randomized, open-label,
single-center study

↓ Time of hospitalization, CRP (at day 9)
frequencies of CD38++CD27 transitional
and CD27-CD38+ mature naive B cells
↑ Neutrophil and lymphocyte count and

CD27-CD38-levels in DN B cells

[141]

50 adults
COVID-19

I = 25,000 IU/daily/4 days, followed by
25,000 IU/week/6 weeks

C = placebo

Double-blind,
placebo-controlled, RCT

↓ Hospital stay and need for
supplemental oxygen [142]

86 adults
COVID-19

I = 10,000 IU/day/14 days
C = 2000 IU/day/14 days

Multicenter, single-blind,
prospective, RCT

↑ Anti-inflammatory cytokine IL-10, levels
of CD4+ T cells
↓ Hospital stays

[143]

106 adults
COVID-19 and circulating
25(OH)D3 concentration of

<30 ng/mL

I = 25 µg daily (3000 to 6000 IU per day)
up to 30 and 60 days

C = placebo

Multicenter, double-blind,
placebo-controlled, RCT.

Correct vitamin D deficiency/insufficiency
in patients with COVID-19

↑ Blood lymphocyte percentage
[144]

69 adults
Mild to moderated COVID-19

I = 5000 IU/day/14 days
C = 1000 IU/day/14 days Multicenter, RTC

↓ Time to recovery for cough and
gustatory sensory loss among patients

with suboptimal vitamin D status
[145]

321 recruited subjects for
preventive treatment of

COVID-19

I = 4000 IU VD/daily/30 d
C = placebo/daily/30 d Double-blind, parallel, RTC

↓ The risk of acquiring SARS-CoV-2
↑ Serum levels of 25-hydroxyvitamin D3,
independently of vitamin D deficiency

[146]

30 old patients’ recovery after
COVID-19 infection

I = 2000 IU/day/for 6 weeks
C = placebo Pilot study, double-blind trial ↑ Serum creatine kinase levels returned to

optimal values [147]

Vitamin D3 magnesium
and vitamin B12

73 adults with COVID-19
without oxygen support

I = 1000 IU/d + magnesium
150 mg/d + vitamin B12,500 mcg/d Cohort study

↓ The proportion of patients with clinical
deterioration requiring oxygen support,

intensive care support, or both
[148]

Up arrows indicate an increase, or down arrows a decrease, in the specified characteristics of the intervention group when compared to the control group. Abbreviations: BUN = blood
urea nitrogen; C = control or compared group; I = intervention; RTC, randomized controlled trial.
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7. Potential Nutraceutical Compounds for MIS-C

MIS-C is characterized by a hyperinflammatory state featuring loss of tissue home-
ostasis and endothelial dysfunction due to cytokine storm that develops an oxidative
stress environment and promotes tissue damage leading to multisystem failure. Based on
nutraceuticals used for COVID-19 treatment, we discuss its potential action as a comple-
mentary treatment for hyperinflammation in MIS-C (Figure 4).

Life 2022, 12, x FOR PEER REVIEW 12 of 26 
 

 

 

Figure 4. Potential nutraceutical compounds for complementary treatment of MIS-C by its antioxi-

dant and anti-inflammatory properties to regulate cytokine storm and reduce organ damage. 

7.1. Curcumin 

Currently, one of the most studied phytochemicals in the field of anti-inflammatory 

diseases is curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1, 6-heptadiene-3, 5-dione) 

[149], a non-toxic natural polyphenol that also exhibits antioxidant properties. A wide 

range of studies highlights its beneficial effects on cardiovascular disease [150], diabetes 

[151], rheumatoid arthritis [152], and inflammatory bowel diseases [153]. Many studies 

have shown that curcumin can regulate transcription factor kappa B (NF-κB), mitogen-

activated protein kinase (MAPK), transcription factor-activated protein 1 (AP-1), and pro-

tein kinase serine/threonine (AKT) signaling pathways [154–156]. Curcumin also sup-

presses or downregulates the expression of some growth factors and cytokines such as 

TNF-α, IL-1, IL-6 and IL-8, epidermal growth factor, estrogen receptors, and adhesion 

molecules (VCAM-1 and ICAM-1) [157–159] and plays an important role in pulmonary 

edema induced in COVID-19-related lung conditions [160]. Moreover, in the natural 

course of COVID-19, pneumonia-like symptoms appear, which increase acute lung injury 

due to respiratory stress, which is reduced by curcumin supplementation [161,162]. How-

ever, one limitation of its application in healthcare is that curcumin has low solubility and 

poor bioavailability, which has been demonstrated in rats, mice, and human studies 

[163,164]. The use of nanoparticles in clinical trials has been a promising therapy for in-

creasing bioavailability and modulation of transcription factors that regulate inflamma-

tion [122]. 

7.2. Omega-3 Fatty Acids 

On the other hand, several studies have shown that consumption of omega-3 fatty 

acids, such as α- linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic 

acid (DHA), can reduce inflammation processes [165–170]. In addition, high consumption 

of omega-3 PUFAs results in the reduction of proinflammatory cytokines such as IL-1β, 

IL-6, IL-8, and TNF-β; inhibits adhesion molecules expression (VCAM, ICAM, and 

Figure 4. Potential nutraceutical compounds for complementary treatment of MIS-C by its antioxidant
and anti-inflammatory properties to regulate cytokine storm and reduce organ damage.

7.1. Curcumin

Currently, one of the most studied phytochemicals in the field of anti-inflammatory dis-
eases is curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1, 6-heptadiene-3, 5-dione) [149],
a non-toxic natural polyphenol that also exhibits antioxidant properties. A wide range
of studies highlights its beneficial effects on cardiovascular disease [150], diabetes [151],
rheumatoid arthritis [152], and inflammatory bowel diseases [153]. Many studies have
shown that curcumin can regulate transcription factor kappa B (NF-κB), mitogen-activated
protein kinase (MAPK), transcription factor-activated protein 1 (AP-1), and protein kinase
serine/threonine (AKT) signaling pathways [154–156]. Curcumin also suppresses or down-
regulates the expression of some growth factors and cytokines such as TNF-α, IL-1, IL-6
and IL-8, epidermal growth factor, estrogen receptors, and adhesion molecules (VCAM-1
and ICAM-1) [157–159] and plays an important role in pulmonary edema induced in
COVID-19-related lung conditions [160]. Moreover, in the natural course of COVID-19,
pneumonia-like symptoms appear, which increase acute lung injury due to respiratory
stress, which is reduced by curcumin supplementation [161,162]. However, one limitation
of its application in healthcare is that curcumin has low solubility and poor bioavailability,
which has been demonstrated in rats, mice, and human studies [163,164]. The use of
nanoparticles in clinical trials has been a promising therapy for increasing bioavailability
and modulation of transcription factors that regulate inflammation [122].
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7.2. Omega-3 Fatty Acids

On the other hand, several studies have shown that consumption of omega-3 fatty
acids, such as α- linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic
acid (DHA), can reduce inflammation processes [165–170]. In addition, high consumption
of omega-3 PUFAs results in the reduction of proinflammatory cytokines such as IL-
1β, IL-6, IL-8, and TNF-β; inhibits adhesion molecules expression (VCAM, ICAM, and
selectins) [171] and other important anti-inflammatory mechanisms including regulating
cell membrane phospholipids composition [172], modulation of lipid rafts implicated in
viral infections [173] decreasing expression of proinflammatory genes by inactivation of
NF-κB [174] and acting like a metabolic regulator of inflammatory responses through
G-protein-coupled receptor 120 (GPR120) [175]. In addition, it has demonstrated that the
production of DHA derivatives, known as immunological mediators such as resolvins,
maresins, prostaglandins, thromboxanes, leukotrienes, and protectins [173,176], could be
a novel way to regulate inflammation through the expression of IL-1β and TNF-α and
limiting tissue infiltration by neutrophils [177,178]. Moreover, omega-3 main antiviral
properties are related to the cell lipid metabolism in the replication cycle and modulate
interferon activity [179]. In adult patients with COVID-19, the use of EPA and DHA reduces
CRP and ESR levels and body pain when administered with hydroxychloroquine [125]. In
addition, when used alone, it could increase the survival rate [126].

7.3. Vitamins

Several studies have demonstrated an inverse association between vitamin intakes,
such as A, C, D, and E, and the risk of inflammatory disorders related to cardiovascular and
respiratory diseases, including COVID-19. This could be due to its antioxidant capacity for
scavenging the oxidative free radicals and its anti-inflammatory properties contributing to
restoring endothelial function. Vitamin A (in its multiple forms; retinoic acid, retinol, retinal)
is an essential micronutrient that increases angiogenesis. Reparative collagen synthesis also
plays an important role in intestinal immunity and epithelial integrity and promotes healthy
colonization of the intestinal mucosa with commensal bacteria [180–182]. These retinoids
bind to specific receptors in the cytoplasm and the nucleus, thus affecting cell division,
differentiation, RNA and protein synthesis, and lysosome-membrane stabilization [183].
These actions are primarily mediated by all-trans-retinoid acid, 9-cis retinoic acid, and
13-cis retinoic acid. All-trans retinoic acid is a represent ligand for the family of nuclear
retinoic acid receptors (RARα, β, and γ) and retinoid X receptors (RXRα, β, and γ), the
latter being also activated by 9-cis retinoic acid and 13-cis retinoic acid [184].

The deficiency of vitamin A and its metabolites is a public health problem that can
cause micronutrient malnutrition, disturb the microbiota symbiosis, slow growth, impair
innate immunity, and have adverse health consequences for people and animals [185,186].
On the other hand, a reduction in circulating vitamin A concentration leads to an elevated
release of proinflammatory cytokines such as IL-6, IL-1β, and TNF-α. At the hepatic level,
this excess of cytokines increases CRP and alpha-1-acid glycoprotein (AGP) [187]. On the
other hand, in COVID-19 patients, vitamin A plasma levels are reduced, which is related to
acute respiratory syndrome due to vitamin A having immune regulatory functions [188]. It
also reduces fever, body aches, weakness and fatigue, paraclinical symptoms, WBC count,
and CRP levels [130]. However, excessive utilization of vitamin A often results in local and
systemic toxicity [189].

On the other hand, vitamin C or ascorbic acid protects against atherogenesis by
inhibiting LDL oxidation, impairing the production of ROS by vascular cells, and limiting
cellular responses to oxidized LDL. In addition, this acts as a cofactor for prolyl hydroxylase
in the extracellular matrix, the enzyme responsible for collagen biosynthesis, and it has also
been considered an anti-cancer agent. In addition, vitamin C has an immune modulator
function, which could be explained by the present high intracellular concentrations in
lymphocytes [190]. Two action mechanisms of ascorbic acid have been described. The
ascorbic acid (shape reduced) enters cells using sodium-dependent vitamin C transporters.
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In contrast, the dehydroascorbic acid (oxidized form) enters cells via glucose transporters
(GLUTs) and then interacts with different enzymatic systems involved in the regulation of
numerous biological processes [190–192].

Humans cannot synthesize ascorbic acid; therefore, excellent sources of vitamin C
are citrus fruits, berries, tomatoes, potatoes, and green leafy vegetables. Nevertheless,
even though vitamin C is reported to present anti-inflammatory properties increasing the
secretion of proinflammatory cytokines such as IL-10, this is exacerbated by accumulation
in leukocytes, decreasing the levels of cytokines such as interferon-y, TNF-a, and IL-6,
especially in patients with pneumonia. In vitro studies also report that vitamin C has
proinflammatory properties, promoting the proliferation of fibroblasts and lymphocytes,
phagocytosis processes, and the generation of ROS [193,194]. This vitamin deficiency has
been associated with impaired immunity. In addition, under conditions of physiological
stress, including infection, trauma, and surgery, reduced plasma levels and administration
reduces monocyte adhesion. However, vitamin C consumption increases interferon pro-
duction and upregulates immunological cells (lymphocytes and natural killer cells) as an
antiviral response [195,196]. In children with KD, the intravenous infusion of vitamin C
increased the percent change in the brachial artery diameter induced by reactive hyper-
emia [121]. Therefore, it could be considered for cardiovascular improvement in MIS-C,
but clinical evidence is needed.

Other vitamins with cardio and respiratory protection characteristics are vitamin E
or α-tocopherol. The supplementation with vitamin E inhibits proinflammatory cytokine
production, modulates adhesion molecule expression and endothelium-derived NO syn-
thesis, and improves innate natural killer (NK cell) response [195]. Moreover, vitamin
E intake gives protection of cell membrane integrity from the detrimental effects of free
radicals [197]. The use of vitamin E combined with vitamins A, C, B, and D, reduced ESR,
CRP, IL-6, TNF-a, and hospitalization time in adults with COVID-19 [131].

The possible role of vitamin D in SARS-CoV-2 infection in children could be explained
initially by its antiviral activities and its use in adults with COVID-19 [134–148]. It has been
postulated that vitamin D intake reduces inflammatory state and plays an essential role in
endothelial function, mediated by vitamin D receptors (VDRs). Many studies have shown
an association between vitamin D and CRP, IL-6, and IL-10 ratio [198]. Vitamin D deficiency
has been reported in several chronic conditions associated with increased inflammation and
dysregulation of the immune system [199–201]. Vitamin D modulates immune function
too. Vitamin D receptor (VDR) is expressed by most immune cells, including B and T
lymphocytes, monocytes, macrophages, and dendritic cells. The signaling of vitamin D
and VDR together has an anti-inflammatory effect [202]. Some studies have reported that
vitamin D treatment could be helpful for COVID-19 prevention [140,146] or treatment
because vitamin D plays an essential role as a modulator of immunocompetence [203–205],
regulates B and T cells [141,143], reduces CRP levels [141], mortality [135,136,139], the time
of hospital stay [142,143] and the need of oxygen support [142,148]. However, there is no
consensus about doses and therapeutic schemes because of high variability among clinical
trials. The classic functions of vitamin D are to regulate calcium-phosphorus homeosta-
sis and to control bone metabolism. Still, recent studies showed that severe vitamin D
deficiency in children with MIS-C increased the risk of cardiovascular events [206].

7.4. Polyphenols from Pomegranate

Another rich source of a wide variety of bioactive compounds with anti-inflammatory
properties is pomegranate (Punica granatum), an ancient fruit used in traditional medicine
in several cultures and also gained considerable recognition as a functional food in the
modern era. Several studies suggested that pomegranate can exert antiatherogenic [207],
antidiabetic [208], antioxidant [209], antihypertensive [210], anti-inflammatory effects,
and regulate lipid metabolism in metabolic-disorder-associated diseases [119]. In the last
decades, different classes of phytochemicals identified from pomegranates such as ellag-
itannins (castalagin), flavonoids (procyanidins), lignans (punicatannin C), triterpenoids
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(ursolic acid), fatty acids (punicic acid), and organic acids (citric acid) has linked to health-
promoting activities [211–213]. Most studies regarding pomegranate fruit, as well as
its different compounds (peel powder, juice, extract, and oil), exert health benefits in
respiratory conditions such as lung cancer, asthma, chronic obstructive pulmonary dis-
ease, and alveolar inflammation inhibiting the production and downregulation of the
expression of proinflammatory cytokines and modulates NF-κB, Nrf2, NLRP3 and MAPK
pathways [214–219]. These beneficial effects are attributed to its constituents, ellagic acid,
ellagitannins anthocyanins, and ellagic acid acting individually or synergistically. In ad-
dition, pomegranate juice has a potent antiviral activity, which has been proven in HIV
and various influenza types research, linking the role of glycoproteins and pomegranate
chemical compounds; additionally, fresh pomegranate juices inhibit the replication from
these viruses [220,221].

8. Conclusions

After more than two years of the COVID-19 pandemic, the pathomechanisms of
MIS-C are not yet fully understood, and it is well-recognized that cytokine storm is a key
to organ dysfunction. Therefore, the use of IVIG and steroids are the pharmacological
recommended treatments. However, complementary therapy based on natural compounds
could be feasible by its potential antioxidant and anti-inflammatory activities. As many
combinations could have these actions, the perspective of the use of nutraceuticals used for
COVID-19 in adults as curcumin, omega-3 fatty acids, and vitamins (A, C, D, and E), have
been shown promised results by their ability to reduce inflammatory markers and better
prognostic during the hospital stay. Therefore, future clinical trials are needed to support
MIS-C treatment with natural compounds.
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