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Structural basis for selective recognition of acyl
chains by the membrane-associated
acyltransferase PatA
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The biosynthesis of phospholipids and glycolipids are critical pathways for virtually all cell

membranes. PatA is an essential membrane associated acyltransferase involved in the

biosynthesis of mycobacterial phosphatidyl-myo-inositol mannosides (PIMs). The enzyme

transfers a palmitoyl moiety from palmitoyl–CoA to the 6-position of the mannose ring linked

to 2-position of inositol in PIM1/PIM2. We report here the crystal structures of PatA from

Mycobacterium smegmatis in the presence of its naturally occurring acyl donor palmitate and a

nonhydrolyzable palmitoyl–CoA analog. The structures reveal an a/b architecture, with the

acyl chain deeply buried into a hydrophobic pocket that runs perpendicular to a long groove

where the active site is located. Enzyme catalysis is mediated by an unprecedented charge

relay system, which markedly diverges from the canonical HX4D motif. Our studies establish

the mechanistic basis of substrate/membrane recognition and catalysis for an important

family of acyltransferases, providing exciting possibilities for inhibitor design.
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L
ong-chain fatty acids play a central role in a variety of
important biological processes in all living organisms. They
are prominent constituents of biological membranes, mainly

in the form of phospholipids, allowing cells to be functionally
constituted and differentiated from the environment1. Long-
chain fatty acids are used as energy storage and metabolic
intermediates as well as being modulators of signal transduction
pathways2,3. Moreover, the attachment of fatty acids to proteins
and glycans generates a significant amount of structural diversity
in biological systems4. This structural information is particularly
apparent in molecular recognition events including cell–cell
interactions during critical steps of development and host–
pathogen interactions. Fatty acids are usually activated for
subsequent reactions by esterification of their carboxyl groups
with the thiol group of coenzyme A (CoA) or that of the acyl
carrier protein (ACP), yielding acyl-thioesters5. Acyltransferases
are key enzymes that catalyse the transfer of activated acyl chains
to acceptor molecules of different chemical structure and
complexity6. Importantly, acyltransferases are involved in the
biosynthesis of triacylglycerols and a diverse group of naturally
occurring polyesters composed of 3-hydroxyalkanoic acids,
the most important storage lipids found in eukaryotes and
prokaryotes, respectively5. Moreover, acyltransferases participate
in the biosynthesis of the lipid A moiety of lipopolysaccharide,
modulating virulence of some Gram-negative human
pathogens7,8. Therefore, the understanding of the mechanism of
action for these enzymes at the molecular level, particularly those
firmly associated to the lipid bilayer, represents a major challenge.

The phosphatidyl-myo-inositol mannosides (PIMs) are
glycolipids of exceptional chemical structure found in abundant
quantities in the inner and outer membranes of the cell envelope
of all Mycobacterium species9. PIMs are based on a phosphatidyl-
myo-inositol (PI) lipid anchor carrying one to six Manp
residues and up to four acyl chains, with tri- and tetra-acylated
phosphatidyl-myo-inositol dimannoside (PIM2) and phosphatidyl-
myo-inositol hexamannoside (PIM6) as the predominant
species (Fig. 1a)10,11. PIMs are thought to be the precursors
of the two major mycobacterial lipoglycans, lipomannan and
lipoarabinomannan (LAM). PIMs, lipomannan and LAM are
considered not only essential structural components of the
mycobacterial cell envelope10–13 but also important molecules
implicated in host–pathogen interactions in the course of
tuberculosis and leprosy14,15. The biosynthesis of PIMs is
initiated by the phosphatidyl-myo-inositol mannosyltransferase
PimA (Rv2610c in Mycobacterium tuberculosis (M. tuberculosis)
H37Rv), which catalyses the transfer of Manp residue from
GDP-Man to the 2-position of the myo-inositol ring of PI,
to form phosphatidyl-myo-inositol monomannoside (PIM1) on the
cytoplasmic face of the plasma membrane (Fig. 1b)12,16. PimA was
found to be essential for Mycobacterium smegmatis (M. smegmatis)
mc2155 and M. tuberculosis growth in vitro and in vivo12,17. The
second mannosylation step involves the action of another essential
enzyme PimB (Rv2188c in M. tuberculosis H37Rv), which transfers
a Manp residue to the 6-position of the myo-inositol ring of PIM1

to form PIM2 (refs 17,18). Both PIM1 and PIM2 can be acylated
with palmitate at position 6 of the Manp residue transferred by
PimA by the acyltransferase PatA (Phosphatidyl-myo-inositol
mannosides AcylTransferase A; Rv2611c in M. tuberculosis
H37Rv), to form Ac1PIM1 and Ac1PIM2, respectively19–21. This
enzyme has been proved (i) to be important for the optimal growth
of M. smegmatis mc2155 and (ii) an essential enzyme for the
growth of M. tuberculosis in vitro10,21. Two models were originally
proposed for the biosynthesis of Ac1PIM2 in mycobacteria. In the
first model, PI is mannosylated to form PIM1. PIM1 is then
mannosylated to form PIM2, which is acylated to form Ac1PIM2.
In the second model, PIM1 is first acylated to Ac1PIM1 and then

mannosylated to Ac1PIM2. Recent evidence indicates that although
both pathways might co-exist in mycobacteria, the sequence of
events PI-PIM1-PIM2-Ac1PIM2 is favoured (Fig. 1b)13.
Finally, Ac1PIM2 can be further acylated on position 3 of the
myo-inositol ring to form Ac2PIM2. However, this acyltransferase
as well as most of the mannosyltransferases that catalyse the
formation of higher PIMs still remains to be identified10.

During recent years major efforts have been made to under-
stand the early steps of the PIM biosynthetic pathway at the
molecular level. In that sense, the crystal structures of the
mannosyltransferases PimA and PimB were reported, showing
the typical organization and catalytic machinery of GT-B
glycosyltransferases22–25. However, to date, no structural
information is available for PatA, an enzyme that is a member
of a large family of acyltransferases for which the molecular
mechanism of substrate recognition and catalysis remains not
well understood5,7,26,27. Here, X-ray crystallography, site-directed
mutagenesis and enzymatic activity data are used to define the
three-dimensional structure, acceptor/donor substrate binding,
membrane binding and catalytic mechanism of PatA from
M. smegmatis. Our results reveal that the enzyme has an a/b
architecture and shares with other important eukaryotic/
prokaryotic acyltransferases an acid/base catalytic mechanism
involving conserved histidine and aspartic/glutamic acid residues.

Results
Overall structure of PatA. The crystal structure of PatA from
M. smegmatis was solved using single-wavelength anomalous
dispersion with a K2PtCl4 derivative at 2.06 Å resolution in C 2
space group (PatA–C16-1). Two other crystal forms were
obtained in P 21 (PatA–C16-2) and P 42212 (PatA–C16-3) space
groups, and the corresponding crystal structures solved at 2.90
and 2.43 Å resolution, respectively, by using molecular replace-
ment methods (see Methods and Supplementary Information for
details; Supplementary Fig. 1; Supplementary Tables 1 and 2).
The high quality of the electron density maps allowed the trace of
residues 41 to 302 (PatA–C16-1), 48 to 295 (PatA–C16-2) and 48
to 303 (PatA–C16-3; Supplementary Fig. 2). We have decided to
use the PatA–C16-1 crystal form for our description since it
displays the highest resolution. A close inspection of the three
crystal structures revealed that the protein crystallized as a
monomer, displaying a high degree of structural flexibility in the
N- and C-terminal regions (coloured in green in Supplementary
Fig. 3; root-mean-square deviation (r.m.s.d.) value of 1.6 and
8.4 Å for Ca atoms in 41–47 and 288–302 residue ranges for the
N and C terminus, respectively). The central core of PatA consists
of a six-stranded b-sheet with topology b1� b2�b3� b4�b7

� b8 (b8 is antiparallel) surrounded by a-helices, with an overall
size of 45� 40� 40 Å (Fig. 2a,b). A long and open groove that
runs parallel to the protein surface contains the active site. This
groove is flanked by a4, b2, a8, b4, a9, a10 and the connecting
loops b1–a7 (residues 124–130), b2–a8 (residues 148–154), b3–a9

(residues 173–181), b4–b5 (residues 198–208), b6–a10 (residues
219–221) and a11–a12 (residues 282–291; Fig. 2c,d). Strikingly,
the groove also displays a narrow and deep, mostly hydrophobic
tunnel that runs perpendicular from its floor to the central core of
the protein (Fig. 2e,f). The walls of the tunnel comprise the entire
central b-sheet, two a-helices a7 and a8, and the connecting loops
b1–a7 (residues 124–130) and a8–b6 (residues 167–170). The
cavity extends entirely through the core and is closed at the
bottom by b8, the connecting loop a5–a6 and part of the a6

(Fig. 2b,e). Interestingly, the entrance of the hydrophobic pocket
displays several charged residues compatible to interact with a
buried carboxylate group of a fatty acid moiety, strongly
suggesting the pocket might play a role in the donor substrate
binding.
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Membrane association. PatA catalyses an essential step in the
biosynthesis of PIMs in M. tuberculosis10. The enzyme transfers a
palmitoyl moiety from palmitoyl–CoA to the 6-position of the
Manp ring linked to 2-position of myo-inositol in PIM1 or PIM2.
A close interaction of the enzyme with the cytosolic face of the
mycobacterial plasma membrane might be a strict requirement
for PIM1 or PIM2 modification by PatA. Supporting this notion,
PatA was found to co-localize with the mycobacterial membrane
fraction19,28. Analysis of the amino-acid sequence of the
enzyme revealed the lack of a signal peptide or hydrophobic
transmembrane segments, suggesting that PatA associates to only
one side of the lipid bilayer, a typical feature of peripheral
and monotopic membrane proteins24,29. To perform their
biochemical functions, these proteins very often display a high
content of solvent exposed positively charged residues in the form
of amphiphatic helices, promoting membrane surface interaction
with anionic phospholipids30. Protein–membrane interaction
appears to be mediated following different thermodynamic
steps: (i) peptide binding is initiated by the electrostatic
attraction of the positively charged residues to the anionic
membrane, (ii) most likely followed by the transition of
the peptide into the plane of binding and (iii) a change of the
conformation of the bound peptide31. The penetration of the
protein depends on the chemical nature of the lipids and peptides
involved and also on the mechanistic nature of the processes
involved, in which both location and timing of membrane
association can be tightly controlled. The electrostatic surface
potential of PatA revealed a clear solvent-exposed area adjacent to
the major groove that contain several hydrophobic patches
interspersed with clusters of positively charged residues32.
Specifically, this region comprises the a2, the amphiphatic
helices a3, a4 and a8, the connecting loop b2–a8 (residues
148–154), and likely the a1 and a12 helices located at the N and C
terminus of the protein (Supplementary Fig. 4). Interestingly, the
opposite side of PatA displays a negatively charged surface, which
would generate a significant electrostatic repulsion with the lipid

bilayer. Thus, the polar character of PatA certainly contributes to
determine the correct orientation of the enzyme into the
membrane (Supplementary Fig. 4).

The acyl–CoA-binding site. Strikingly, one molecule of palmitic
acid was unambiguously identified in the difference electron
density maps of PatA–C16-1, PatA–C16-2 and PatA–C16-3
crystal structures (Fig. 3a–d). We believe that acyl molecule is
associated to the enzyme due to the hydrolysis of palmitoyl–CoA
during the isolation and purification of PatA from M. smegmatis
mc2155. Supporting this notion, the chemical structure of
Ac1PIM2 was clearly established by using a combination of
analytical techniques including mass spectrometry and two-
dimensional NMR20. The major acyl form observed,
corresponded to PIM2 with the glycerol moiety being
di-acylated by C16/C19 and the mannose residue transferred by
PimA bearing a C16. This structural profile was also identified in
its hexamannosylated derivative Ac1PIM6 (ref. 21). The acyl chain
is deeply buried into the hydrophobic pocket, and oriented with
the carboxylate group facing the groove and the acyl tail
extending into the globular core of the monomer (Fig. 3).
The residues that contact the bound palmitic acid are
highly conserved in the PatA mycobacterial homologues
(Supplementary Fig. 5). Interestingly, the comparison of the
three crystal structures revealed conformational flexibility in the
carboxylate moiety of the palmitate (Supplementary Fig. 3),
located in close proximity with the lateral chain of H126. The
R164 guanidinium group engages the side chain of Y83 and
D131. This tryptophan residue, together with M198, makes an
important van der Waals interaction with the acyl chain. The acyl
chain undergoes a kink at position C6 and terminates in a pocket
mainly formed by hydrophobic residues, including L122 and
L124 (b1), A133, W136 and L137 (a7), F144 (a7–b2 loop),
T146 (b2), F169 (a8–b3 loop), F235 and V237 (b7), M248 and
V250 (b8), and two cysteine residues C196 (b4) and C239 (b7).
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Figure 1 | Proposed pathway for the early steps of PIM biosynthesis in mycobacteria. (a) Chemical structure of PIM2/6 and their acylated forms

Ac1/2PIM2 and Ac1/2PIM6. (b) The two pathways originally proposed for the biosynthesis of Ac1PIM2 in mycobacteria are shown: (i) PI is mannosylated to

form PIM1. PIM1 is then mannosylated to PIM2, which is acylated to form Ac1PIM2; (ii) PIM1 is first acylated to Ac1PIM1 and then mannosylated to Ac1PIM2.

Our experimental evidence indicates that although both pathways might co-exist in mycobacteria, the sequence of events PI-PIM1-PIM2-Ac1PIM2 is

favoured. As an important part of the literature concerning PIMs studies refers to the nomenclature based on the Mtb H37Rv sequences, we also include

the Rv numbers to identify the proteins.
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Interestingly, the connecting loop a5–a6 (residues 101–106) and
part of a6 form a flexible and mostly hydrophobic cap that closes
the bottom of the cavity, suggesting that PatA might be able to
discriminate the length of the acyl chain groups (Fig. 3e,f). It is
worth noting that Ac1PIM2 was the main product formed in the
reaction when endogenous or crude mycobacterial phospholipids
from Mycobacterium phlei were used as the lipid acceptors
and a series of acyl–CoA derivatives of fatty acids were used as
14C-labelled donor substrates33,34. Palmitoyl–CoA (C16:0) gave
higher incorporation than myristyl–CoA (C14:0). Interestingly,
the oleyl–CoA (C18:1) was a much better substrate than
the saturated counterpart stearyl–CoA (C18:0). Finally, the
tuberculostearic acid (C19:1) had a low specific activity and the
small incorporation of label that was observed may be not
significant34.

How does PatA recognize CoA? To this end, the crystal
structure of PatA in complex with S-hexadecyl Coenzyme A
(S-C16CoA), a nonhydrolyzable analogue of palmitoyl–CoA, was
solved at 3.28 Å resolution in P 21 space group (PatA–S-C16CoA;
Supplementary Table 1; Fig. 4). The acyl chain of S-C16CoA is
localized into the hydrophobic tunnel, and superimposes very

well with the acyl chain moiety of palmitate observed in the
PatA–C16-1, PatA–C16-2 and PatA–C16-3 complexes. It is worth
noting that the position of the carboxylate group of palmitate
is different to that observed for the thioether in the
PatA–S-C16CoA complex. The 4-phosphopantetheinate moiety
of S-C16CoA is clearly defined in the electron density map, and
located at the entrance of the main groove, in close contact with a
highly conserved region flanked by the b2–a8 (residues 149–153),
b3–a9 (residues 174–180) and b4–b5 (residues 199–207) loops,
and two alpha helices, a9 (residues 181–190) and a10 (residues
221–230; Supplementary Fig. 6). The adenosine 30,50-diphosphate
(30,50-ADP) moiety of the ligand (disordered in other monomers
of the asymmetric unit) sticks out from the globular core and is
exposed to the bulk solvent, as observed in other acyl–CoA
modifying enzymes (Supplementary Fig. 7)35. The approximate
volume of the palmitoyl–CoA-binding pocket was ca.
2,801 Å3(ref. 36) To further validate the model, we designed
site-directed mutations predicted to impair the palmitoyl–CoA
interaction with PatA. Thus, the double substitution
F182W/L197W would block the groove region of PatA,
hindering the formation of the complex (Fig. 4b and
Supplementary Fig. 8). As depicted in Fig. 5a, the PatA
F182W/L197W variant could not (i) transfer a palmitoyl moiety
to PIM2, or (ii) hydrolyze palmitoyl–CoA, supporting the
proposed model (Supplementary Fig. 9).

The phosphatidylinositol mannosides binding site. Although
we were unable to co-crystallize PatA in complex with
Ac1PIM1/Ac2PIM1, Ac1PIM2/Ac2PIM2 or their deacylated
analogs, the three-dimensional structure suggests the possible
binding mode for the polar head of PIM1 or PIM2 acceptor
substrates within the active site. Docking calculations placed
the polar head of PIM2, the better substrate of PatA making
important interactions within a region located at the end of the
main groove and comprising helices a4 and a8, and the con-
necting loops b1–a7 (residues 83–90), b2–a8 (residues 148–154)
and a11–a12 (residues 282–291; Fig. 6)13,28. As a consequence, the
O6 atom of the Manp ring linked to position 2 of myo-inositol in
PIM2 is predicted to be positioned favourably for activation by
H126 and to receive the palmitate group from palmitoyl–CoA
(Fig. 6; distance H126 NE2 atom to Manp O6 atom is 2.8 Å). The
model also predicts an important role of residues E149, R164 and
H284 to bind PIM2 in the active site. In the model, E149 OE1
atom is found at 2.9 Å of the Manp residue O4 atom and R164
NH2 atom is placed at 3.1 Å of the O2 atom of the Manp ring,
whereas H284 ND1 atom is at only 2.5 Å of myo-inositol O3
atom. The myo-inositol moiety and the Manp ring linked to
position 6 of myo-inositol in PIM2 also interact with Y80 and
Q287. The approximate volume of the PIM2-binding pocket was
ca. 1741 Å3 (ref. 36). Interestingly, docking calculations put the
myo-inositol and Manp moieties of PIM1 in an equivalent
position to that observed for PIM2, leaving free space in the
pocket, a fact that might account for the acceptor substrate
specificity of PatA (Supplementary Fig. 10). To experimentally
validate the proposed model, we designed three single-point
substitution, E149A, R164A and H284A, predicted to impact the
PIM2 interaction with PatA (Fig. 6c; Supplementary Fig. 8). As
depicted in Fig. 5a, the transferase activity of all PatA variants was
severely compromised, nevertheless preserving the capability to
hydrolyse palmitoyl–CoA (Supplementary Fig. 9).

Structural similarity with other acyltransferases. Structure
homologue search using DALI server revealed only one protein
with significant structural similarity, that of the glycerol-3-
phosphate acyltransferase from Cucurbita moschata (CmGPAT;

α3

β1
α4

α2

α6 β2

α7 β3

β8

α8
α9

β4 α10

β7

α11

α12

C

N

C

Nα4

β8

β7

β1

β4

β2
β3

α7

α8

α6

α9

α4
Main groove

Main groove
entrance

Tunnel

Tunnel

Main groove

Active
site

β5

β6

90°

90°

90°

a b

c d

e f

Main groove
Tunnel

Figure 2 | Overall structure of PatA. (a,b) Cartoon representation showing

the general fold and secondary structure organization of PatA. Secondary

structure elements are labelled. The central core b-sheet is shown in

orange. (c,d) Surface representation of PatA showing the location of the

main groove and the active site. The groove entrance is flanked by two

important a-helices, a11–a12. The groove ends up into a cavity mainly

flanked by a4. (e,f) The main groove runs perpendicular to a hydrophobic

tunnel, which is deeply buried into the core of PatA.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10906

4 NATURE COMMUNICATIONS | 7:10906 | DOI: 10.1038/ncomms10906 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


pdb codes 1IUQ and 1K30; Z-score of 8.9; r.m.s.d. value of 3.9 Å
for 164 aligned residues; Fig. 7a)37,38. CmGPAT catalyses the
transfer of an acyl chain either from acyl–acyl-carrier protein
(acyl–ACP) or acyl–CoA, to the sn-1 position of glycerol-3-
phosphate, to form 1-acylglycerol-3-phosphate39. Importantly,
CmGPAT is able to use palmitoyl–CoA as a donor substrate,
as PatA does, using a bi–bi-ordered mechanism40. CmGPAT
belongs to a large family of glycerol-3-phosphate acyltransferases
(GPAT), which are critical in the biosynthesis and regulation
of phospholipids composition in prokaryotic and eukaryotic
cells41–43. The structure of CmGPAT is composed of two
domains: (i) a helical domain comprising the first 78 residues
of the protein displays a four-helix bundle architecture of
unknown function, and (ii) an a/b domain, consisting of a
nine-stranded continuous b-sheet surrounded by 11 a-helices
(Fig. 7a). As depicted in Fig. 7a, the central b-sheet of CmGPAT
superimposes well with that observed in PatA, with the exception
of its outermost strands b1, b2 and b9, which are missing in PatA
(see also Supplementary Fig. 11).

A combination of site-directed mutagenesis and activity
measurements provided experimental support on the location
of the acceptor-binding site in CmGPAT (Fig. 7b–d)44. The
replacement of R235, R237 and K193 by serine resulted in
inactive enzymes. However, the CmGPAT variants retained the
ability to bind stoichiometric quantities of acyl–ACPs, consistent

with the location of these residues in the positively charged
acceptor-binding pocket, and in close proximity to the
catalytic HX4D motif37,38,44. Interestingly, the suggested
PIM1/PIM2-binding site in PatA is located in the same region
of the glycerol-3-phosphate-binding site in CmGPAT (Fig. 7d).
A sulfate ion observed in the crystal structure of CmGPAT
superimposed very well with the phosphate moiety of the inositol
ring of PIM1 or PIM2 (Fig. 7d). It is worth noting that, as
acceptors exhibit a marked diversity of chemical structures
compared with acyl–CoA or acyl–ACP donors, the acceptor-
binding sites reflect this variability by showing different
rearrangements of secondary structural elements (Fig. 7d).

The location of the acyl–CoA and acyl–ACP-binding site in
CmGPAT has been a matter of strong debate37,38. On the basis of
sequence conservation analysis, a structural model in which the
acyl chain runs over the entrance of the main groove of the
protein was first proposed37. Molecular surface calculations
revealed the existence of three tunnels with sufficient space to
accommodate the acyl chain of palmitoyl–CoA45. Furthermore,
enzymatic analysis of chimeric CmGPAT and Spinacea oleracea
GPAT revealed that a region comprising residues 128–187 is
important for acyl–CoA selectivity. This region completely
covered the narrowest and most hydrophobic of the three
tunnels, tunnel-2 (Fig. 7b,c), which was proposed to be involved
in fatty-acid recognition38. Strikingly, the acyl-binding pocket
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identified in the crystal structures of the palmitoyl–PatA
and PatA-S-C16CoA complexes superimposed very well with
tunnel-2 of CmGPAT (Supplementary Fig. 11). On the basis of
the experimental location of the S-C16CoA in PatA, a palmitoyl–
CoA molecule was fitted into tunnel-2 and subjected to energy
minimization (Fig. 7d,e; Supplementary Fig. 11; see Methods for
details). First, the palmitate moiety accommodates into the
hydrophobic tunnel. The walls of the tunnel are covered with

mainly conserved, hydrophobic and aromatic residues including
L135 (b3), P145 and I148 (a7), I159 (a8), T163 (a8–b4 loop),
F165 (b4), F180 (a10), L186 (b5), L226 and W228 (b6), L274 and
L276 (b7) and L305, with F120 and I123 (a6) making up the cap.
Interestingly, the CoA-binding site observed in PatA is also
conserved in CmGPAT. Specifically, the acyl donor is located in
the region corresponding to the entrance of the main groove
(Fig. 7c,e). The two a-helices a9 and a10, flanking the entrance of
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The palmitoyl moiety is deeply buried into the hydrophobic tunnel, whereas the coenzyme A moiety extends outwards through the side of the main groove.

The 2mFo-DFc electron density map countered at 1 s for the palmitate ligand is shown.
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Figure 5 | Enzymatic activity of selected PatA variants. (a) In the upper panel, the acyltransferase activity of purified PatA and variants involved in

substrate binding are shown (see Supplementary Fig. 9 for duplicates). Reaction mixtures contained crude membranes from M. smegmatis mc2155 and

GDP-[14C]-mannose as a tracer (lane 1), supplemented with PimA (lanes 2–7) and palmitoyl–CoA (lanes 3–7) and purified PatA (lane 3), PatA-H284A

(lane 4), PatA-E149A (lane 5), double mutant PatA-F182W/L197W (lane 6) and PatA-R164A (lane 7). The lipids were extracted from reaction mixtures

and analysed by TLC and autoradiography as described in Methods section. In the lower panel, the hydrolytic activity against palmitoyl–CoA is shown.

(b) In the upper panel, the acyltransferase activity of purified PatA and variants involved in catalysis are shown (see Supplementary Fig. 9 for duplicates).

Reaction mixtures contained crude membranes from M. smegmatis mc2155 and GDP-[14C]-mannose as a tracer (lane 1), supplemented with PimA (lane

2–6) and palmitoyl–CoA (lanes 3–6) and purified PatA (lane 3), PatA-D131A (lane 4), PatA-E200A (lane 5) and PatA-H126A (lane 6). In the lower panel,

the hydrolytic activity against palmitoyl–CoA is shown as determined by spectrophotometric analysis. All enzymatic activities measurements were

determined in duplicates (Supplementary Fig. 9)
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acyl–CoA to the main groove of PatA, are structurally equivalent
to a11 (residues 201–222) and a12 (residues 251–265) in
CmGPAT (Fig. 7e). The substitution of L261 (a12) by an
aromatic residue, which is located at the interface of a11–a12

helices, caused major changes in the selectivity of CmGPAT for
acyl–ACP derivatives44. Overall, major secondary structural
elements are structurally preserved across both families of
acyltransferases supporting a common binding mode for
palmitoyl–CoA.

The catalytic mechanism of PatA. Analysis of the cleft running
over the surface of PatA revealed a catalytic site reminiscent to
that observed in the serine protease family of enzymes. In serine
proteases, the cleavage of the peptide bond is mediated by
nucleophilic attack of the serine hydroxyl group on the scissile
carbonyl bond. The active site comprises a catalytic triad
consisting of the Og atom of the serine, the imidazole ring of a
histidine, and the carboxylate group of an aspartic/glutamic
acid, involved in a charge relay system that increases the
nucleophilicity of the serine hydroxyl and modulates the pKa
of the central histidine as a general base or acid during the
catalytic cycle45. In all crystal structures of palmitoyl–PatA and
PatA–S-C16CoA complexes, the carboxylate OE2 oxygen atom of
E200 was found at 2.8 Å of the ND1 nitrogen atom of the
aromatic imidazole ring of the invariant H126 (Fig. 8a). It is
worth noting that when the individual palmitate molecules
observed in the three crystal structures of palmitoyl–PatA were
superimposed, they showed important structural flexibility at the
carboxylate region (Supplementary Fig. 3c), suggesting that the
carboxylate group is not in a catalytically competent position in
the crystal structures. Moreover, the palmitate is not a substrate
neither an inhibitor of the reaction catalysed by PatA
(Supplementary Fig. 12). Our binary complexes correspond
most likely to the hydrolysis reaction product of palmitoyl–
CoA, thus one of the oxygen atoms found in the palmitate
that interacts with H126 most likely come from a water
molecule activated by H126. The S-C16CoA coordinates in
PatA–S-C16CoA crystal structure were used to generate
palmitoyl–CoA atomic coordinates by substitution of C16 atom
with a carbonyl group followed by energy minimization. Docking
calculations placed the Manp moiety attached to the 2-position of
myo-inositol in PIM2 with its O6 atom favourably positioned to
receive the palmitate group from palmitoyl–CoA (Fig. 8b;
see Online Methods for details). We propose a model in which
H126 acts as the general base to abstract a proton from the
hydroxyl group at position 6 of the Manp ring linked to
the 2-position of inositol in PIM1 or PIM2, to facilitate the
nucleophilic attack on the thioester of palmitoyl–CoA (Fig. 8d).
The E200 gets involved in a charge relay system with H126 and
the HO6 atom from the Manp moiety, contributing to the
appropriate structural arrangement of the imidazole ring of the
histidine residue and modulating its pKa to act as a base in
the first step and as an acid in the second step, providing protonic
assistance to the departing CoA leaving group. It is worth noting
that the H126-E200 hydrogen bond was found in a syn
orientation relative to the carboxylate45. The result of the
nucleophilic attack is a covalent bond between the mannose
ring of PIM1 or PIM2 and palmitate. As depicted in Fig. 5b, the
functional role of H126 and E200 was clearly confirmed, since
their substitution by alanine completely inactivated the enzyme
(Supplementary Fig. 9).

In CmGPAT, the catalytic site is also located at the base
of the large groove of the protein, displaying the sequence
HX4D, a well-conserved motif among the GPAT family of
acyltransferases27. H139 and the adjacent D144 were proposed to
promote a charge-relay system to facilitate the nucleophilic attack
on the thioester of the acyl–CoA26,37,38,46. In PatA, H126
occupies the same location to that observed for H139 in
CmGPAT. However, the aspartic acid D131 of the HX4D motif
displays a completely different arrangement when compared with
D144 (Fig. 8c). Specifically, the carboxylate group of D131 makes
a strong hydrogen bond with the side chain OH of Y83, and
additional electrostatic interactions with the lateral chains of
W130, Y163 and R164, suggesting a structural role for this
residue. In that sense, the replacement of D131 by alanine
preserved 37% of the enzymatic activity for PIM2 (Fig. 5b;
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Figure 9 | Structure weighted sequence alignment of PatA with eukaryotic/prokaryotic acyltransferases. (a) The protein sequences were extracted

from UniProt accession numbers A0QWG5 from M. smegmatis (PatA_Msmeg); P24205 from Escherichia coli (MSBB_ECOLI); O06659 from Shigella flexneri

(MSBB2_SHIFL); P0ACV0 from E. coli (HTRB_ECOLI); P45239 from Haemophilus influenzae (HTRB_HAEIN); P10349 from C. moscata (GPAT_CUCMO);

Q43869 from Spinacia oleracea (GPAT_SPIOL); P0A7A7 PlsB from E. coli (PLSB_ECOLI); Q7UBC6 PlsB from S. flexneri (PLSB_SHIFL); O80437 from

Arabidopsis thaliana (GPAT6_ARATH); O15228 from Homo sapiens (DHAPAT_HUMAN); Q8L7R3 from Arabidopsis thaliana (LPCT1_ARATH); Q99943 from

H. sapiens (PLCA_HUMAN); and Q53EU6 from H. sapiens (GPAT3_HUMAN). Conserved positions are shown in black and grey background. Conserved

hydrophobic residues are indicated with an h. The secondary structural elements corresponding to the 3D structure of PatA are shown above the alignment.

Catalytic amino acids and those involved in palmitate binding are indicated as asterisks and black circles, respectively. (b) Structural similarity of

M. tuberculosis H37Rv and M. smegmatis mc2155 PatA. Catalytic amino acids are indicated as asterisks. Amino acids involved in palmitate and pantotheinate

binding are indicated as black and white circles, respectively. Residues proposed to interact with PIM1 and PIM2 based on the dockings are shown as white

and black triangles, respectively. Amino acids mutated are underlined.
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Supplementary Fig. 9). Altogether, the structural information
strongly supports a common catalytic mechanism for both
families of enzymes.

Discussion
Amino-acid sequence alignment revealed that PatA has strong
resemblance to HtrB and MsbB, two key acyltransferases involved
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in the biosynthesis of bacterial lipopolysaccharides (Fig. 9a)47,48.
HtrB and MsbB catalyse the last steps of Kdo2-lipid A
biosynthesis in Gram-negative bacteria, consecutively adding
the secondary lauroyl and myristoyl residues to the distal
glucosamine unit. Both enzymes prefer acyl–ACP donors but
can also function with acyl–CoA substrates7,8. The fact that HtrB,
MsbB and PatA preferentially use lauroyl (C12), myristoyl (C14)
or palmitoyl (C16) derivatives might suggest the occurrence of a
hydrocarbon ruler mechanism for acyl moieties recognition.
PatA, HtrB and MsbB enzymes are distantly related to the
glycerol-3-phosphate (GPAT), lysophosphatidic acid (LPAAT),
dihydroacetone phosphate (DHAPAT) and 2-acylglycero-
phosphatidylethanolamine (LPEAT) families of acyltransferases
(Fig. 9)5,27. GPAT, LPAAT, DHAPAT, and LPEAT display highly
conserved residues distributed in four regions, and named as
blocks 1–4 (refs 27,41). According to multiple sequence
alignments among the HtrB, MsbB, GPAT, LPAAT, DHAPAT
and LPEAT families, weighted by structural alignment of PatA
and CmGPAT, a common core can be defined (Fig. 9). It is worth
noting that we respected the classical names of blocks 1–4 as
reported in the literature, introducing two new regions as blocks 0
and 5. Critical residues and their interactions in the reaction
centre are essentially preserved in all these acyltransferase
families, strongly supporting a common catalytic mechanism.
Interestingly, the alignment suggests that members of the GPAT,
LPAAT, DHAPAT and LPEAT families display a conserved
aspartate residue that participates in the charge relay system with
the conserved histidine of the HX4D motif (block 1)26,49. In
contrast, HtrB, MsbB and PatA seem to use a glutamate/aspartate
residue located in block 3, suggesting a divergence among these
families of acyltransferases. The structural divergence of the
carboxylate group acting as a pKa modulator of the catalytic
histidine residue might be due to the requirement of the
acyltransferases to accommodate acceptor molecules of different
nature, as observed in PatA and CmGPAT. Nevertheless, the
hydrophobic nature of residues involved in fatty-acid recognition
is well conserved, suggesting a common binding mode.

Finally, Ac1PIM2 appears to be a metabolic end product that
accumulates at high steady-state levels in the cells as well as a
precursor for more polar forms of PIMs, lipomannan and LAM10.
Interestingly, the four enzymes involved in the biosynthetis
of Ac1PIM2, the phosphatidyl-myo-inositol synthase PgsA1
(Rv2612c in M. tuberculosis H37Rv), PimA (Rv2610c), PimB
(Rv2188c in Mtb H37Rv) and PatA (Rv2611c), were found
to be essential for the growth of M. smegmatis and/or
M. tuberculosis10,12,17,50. Importantly, the amino-acid sequences
of M. smegmatis and M. tuberculosis versions of PatA displayed
74% identity and 84% similarity (Fig. 9b). All residues that
participate in the catalytic mechanism and palmitoyl binding,
as well as those proposed to interact with the CoA and PIM2

substrates are strictly conserved between both proteins. Thus, the
structural data presented here offers exciting possibilities for
inhibitor design and the discovery of chemotherapeutic agents
against this major human pathogen.

Methods
Expression and purification of PatA in M. smegmatis. A truncated version of
PatA lacking the first 12 residues of the protein (PatA; MSMEG_2934)28, was
purified as previously described with the following modifications. M. smegmatis
mc2155 cells transformed with the corresponding plasmid pJAM2-patA were
grown in MM63 medium (15 mM (NH4)2SO4, 10 mM KH2PO4, 18mM
FeSO4.7H2O, pH 7.0) supplemented with 1 mM MgSO4, 0.025% (v/v) tyloxapol
and 0.2% (w/v) succinate and 20 mg ml� 1 of kanamycin. When the culture reached
OD600¼ 0.6 the expression of PatA was induced by adding 0.2% acetamide. After
16 h at 37 �C, cells were collected at 4,000g for 10 min and resuspended in 50 mM
Tris-HCl pH 7.5, 500 mM NaCl, 40 mM imidazole (solution A) containing protease
inhibitors (Complete EDTA-free, Roche). The cells were resuspended in solution A
(1 g of cells per 5 ml of solution A) and disrupted by sonication in 15 cycles of 60 s

pulses with 90 s cooling intervals between the pulses. PatA was solubilized from the
mycobacterial membrane by the addition of 2 mM CHAPS. The suspension was
gently stirred during 1 h at 4 �C and centrifuged at 11,000g for 20 min. The
supernatant was applied to a HisTrap Chelating column (1 ml, GE HealthCare)
equilibrated with solution A. The column was then washed with solution A until no
absorbance at 280 nm was detected. Elution was performed with a linear gradient
of 40–500 mM imidazole in solution A at 1 ml min� 1. The resulting PatA
preparation displayed a single protein band when run on a 12% NuPAGE Bis–Tris
precast gel stained with SimplyBlue SafeStain (Invitrogen). The purified
recombinant PatA protein was stored at 4 �C and then concentrated for
crystallization screening by using a Vivaspin 20 spin concentrator (Vivascience)
with a 10-kDa-molecular mass cutoff.

Site-directed mutagenesis. The PatA-H126A, PatA-D131A, PatA-E149A,
PatA-R164A, PatA-E200A and PatA-H284A mutants, and double mutant
PatA-F182W/L197W were synthetized by GenScript using the pJAM2-patA
construct, and further expressed and purified to apparent homogeneity as
described for the recombinant PatA enzyme.

PatA–C16 complex crystallization and data collection. Three crystal forms
were obtained, referred thereafter as PatA–C16-1, PatA–C16-2 and PatA–C16-3.
The first and second crystal forms were obtained by mixing 0.25 ml of PatA at
5 mg ml� 1 in 20 mM Tris-HCl pH 7.5 with 0.25 ml of mother liquor containing
100 mM Tris-HCl pH 7.0, 230 mM MgCl2 and 12–16% (w/v) PEG 8,000. Crystals
grew in 7–15 days and were transferred to a cryo-protectant solution containing
25% ethylene glycol and frozen under liquid nitrogen. Complete X-ray diffraction
data sets were collected at beamline I03 (Diamond Light Source, Oxfordshire, UK)
and processed with XDS program51. The second crystal form of PatA diffracted to
a maximum resolution of 2.9 Å and crystallized with four molecules in the
asymmetric unit and space group P 21 (Supplementary Table 1; PatA–C16-2).
The first crystal form of PatA diffracted to a maximum resolution of 2.06 Å and
crystallized with two molecules in the asymmetric unit and space group C 2
(Supplementary Table 1; PatA–C16-1). The third crystal form was obtained by
mixing 0.25 ml of PatA at 5 mg ml� 1 in 25 mM Tris-HCl pH 7.5, 150 mM NaCl
with 0.25 ml of mother liquor containing 100 mM Tris-HCl pH 8.5 and 20%
ethanol. Crystals grew in 3 days and were transferred to a cryo-protectant solution
containing 25% sucrose and frozen under liquid nitrogen. A complete set of X-ray
diffraction data were collected at beamline X06SA Swiss Light Source (Villigen,
Switzerland) and processed with XDS program. PatA–C16-3 crystals diffracted
to a maximum resolution of 2.43 Å and crystallized with one molecule in the
asymmetric unit and space group P 42 21 2 (Supplementary Table 1).

PatA-S-C16CoA complex crystallization and data collection. One crystal form
was obtained by mixing 0.25 ml of PatA at 5.1 mg ml� 1 in 1 mM S-hexadecyl
Coenzyme A (S-C16CoA; stock solution at 10 mM in 20 mM Tris-HCl pH 7.5) and
20 mM Tris-HCl pH 7.5 with 0.25 ml of mother liquor containing 100 mM HEPES
pH 7.5, 500 mM ammonium sulfate and 30% (v/v) 2-methyl-2,4-pentanediol.
Crystals grew in 7–15 days and were directly frozen under liquid nitrogen.
A complete X-ray diffraction data set was collected at beamline I03 (Diamond
Light Source) and processed with XDS program51. PatA-S-C16CoA diffracted
to a maximum resolution of 3.28 Å and crystallized with four molecules in the
asymmetric unit and space group P 21 (Supplementary Table 1).

PatA structure determination and refinement. PatA crystals of form C 2
(PatA–C16-1) were soaked with 10 different platinum salts at 1 mM concentration
for a time period of 130–145 min (HR2-442, Hampton Research) followed by flash
freezing in liquid-N2. Anomalous data were collected at the theoretical L–I
absorption edge of Pt (13,879.9 eV–0.8933 Å). Oscilation images were collected at
I04 beamline (Diamond Light Source) with an oscillation angle of 0.2 for a total of
1,800 images using a Pilatus 6M-F pixel detector. Data were collected with an
attenuated X-ray beam (5% transmission) and a 0.04-s exposure time per image.
Data were integrated and scaled in XDS and experimental phases determined using
the SHELXC/D/E package52. Data of a PatA crystal soaked with 1 mM K2PtCl4
for 130 min were used for experimental phasing with a 2.5-Å data cutoff applied,
giving a mean value |DF|/s(DF) in the highest resolution shell of 0.9. The
substructure determination located two Pt atoms in the asymmetric unit
(CC¼ 33.64, CC(weak)¼ 20.71 and CFOM¼ 54.35). Experimental phases were
determined and subsequently used for initial cycles of model building and density
modifications by SHELXE. Buccaneer53 and the CCP4 suite54 were used for further
model extention. The structure determination of PatA–C16-1, PatA–C16-2,
PatA–C16-3 and PatA–S-C16CoA were carried out by molecular replacement
using Phaser55 and the PHENIX suite56 and the PatA–Pt structure as model
(Supplementary Table 2). Followed by cycles of manual rebuilding and refinement
using Coot57 and phenix.refine58, respectively. The structures were validated by
MolProbity59.

Molecular docking calculations. The crystal structure of mycobacterial PatA in
complex with S-C16CoA (PatA–S-C16CoA) was investigated using the structure
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preparation function in MOE2013.08 (ref. 60). First, S-C16CoA coordinates in
PatA–S-C16CoA crystal structure (chain A) were used to generate palmitoyl–CoA
atomic coordinates by substitution of C16 atom with a carbonyl group. Then the
model was prepared using the Amber12EHT force field, an all-atom force field,
combining two-dimensional Extended Hueckel Theory (EHT) and Amber12 force
field, with Born solvation, and hydrogen atoms were added using Protonate3D
function61,62. The docking site of PIM1 and PIM2 was defined by 14 residues of the
PatA–S-C16CoA crystal structure. PIM2 structure was retrieved from the PDB
(ligand code XPX) and after substitution of acyl chains with acetyl groups, the
molecule was energy minimized using MOE with a 0.1 kcal mol� 1 Å� 1 r.m.s.
gradient threshold. PIM1 structure was constructed by removing one mannose ring
of PIM2. The PIM1 and PIM2 structures were submitted to conformational search
using LowModeMD with default parameters in MOE2013.08 (ref. 63). The same
procedure was carried out with PIM1, in which a mannose residue GOLD (Genetic
Optimization for Ligand Docking; Cambridge Crystallographic Data Center
(CCDC), version 5.2.2) was used with default genetic algorithm parameter
settings64,65 for all calculations, with the exception that the search efficiency
parameter was set to 200% to improve predictive accuracy by calculating the
optimal number of genetic algorithm operations for the ligand due to their large
flexibility. The ASP scoring function implemented in GOLD was used to rank the
docked poses; this fitness function has been optimized for the prediction of ligand-
binding positions66,67. PIM1 and PIM2 were docked into the PatA–palmitoyl–CoA
complex. Only docking poses having a C6-hydroxyl group of the mannose closed
to the thioester of palmitoyl–CoA were kept for analysis. The best solutions were
assessed by their respective docking score and by visual inspection.

PatA acyltransferase activity assay. PatA transferase activity was measured in
the assay with mycobacterial membranes28. Briefly, M. smegmatis mc2155 cells
were broken by sonication and the membrane (100,000g pellet) fraction was
obtained by differential centrifugation. The reaction mixtures contained 250 mg of
membrane proteins, 1.2 mg of purified PimASM, 10mg of purified PatA or the
mutated versions, 0.1 mCi GDP-[14C]mannose (specific activity of 55 mCi mmol� 1,
ARC Inc.), 0.12 mM palmitoyl–CoA (Sigma-Aldrich) in DMSO with final
concentration in the reaction mixture 2% (v/v), 62 mM ATP, 10 mM MgCl2, and
25 mM Tris-HCl pH 7.5 in the final volume of 50 ml. Reactions were incubated
100 min at 37 �C and stopped with 300 ml of CHCl3/CH3OH (2:1, by volume).
The samples were left rocking 30 min at room temperature, and centrifuged at
1,500g for 10 min. The organic phase (bottom) was analysed by thin layer
chromatography on aluminium-coated silica 60 F254 plates (Merck) developed in
CHCl3/CH3OH/conc. NH4OH/H2O (65:25:0.5:4), and quantified by scintillation
spectrometry28. All enzymatic activity measurements were determined in
duplicates. Following the same procedure, palmitate was assayed as a possible
inhibitor or substrate at different concentrations (Supplementary Fig. 12).

PatA palmitoyl–CoA hydrolytic activity assay. The hydrolytic activity of
PatA and PatA variants against palmitoyl–CoA was measured as following a
methodology described for other acyltransferases68,69. A typical reaction contained
20 mM Tris-HCl pH 8.3, 0,2 mM disulfide (5,50-dithiobis-(2-nitrobenzoic acid))
(DTNB), 0,06 mM palmitoyl–CoA and 4 mM PatA or its variants. All reactions
were carried out at 37 �C in a CARY 300 Bio UV Visible/Spectrophotometer. The
spectrum of the product TNB� 2 formed after the interaction of the DTNB and the
CoA liberated from the hydrolysis of the substrate palmitoyl–CoA by the enzyme,
was measured continuously at 412 nm during 20 min. All enzymatic activity
measurements were determined in duplicates (Fig. 5).

Structural analysis and sequence alignment. The sequence of PatA from M.
smegmatis (A0QWG5) was subjected to basic local alignment search tool (BLAST)
and several orthologs in Mycobacteria sp. were found. Afterwards, they were
aligned using the ClustalW server (http://www.ebi.ac.uk/Tools/msa/clustalw2/).
The structure weighted sequence alignment was performed using PROMALS3D
server (http://prodata.swmed.edu/promals3d/promals3d.php). For labelling the
conserved and similar residues, BoxShade server was used (http://embnet.vital-it.
ch/software/BOX_form.html). Structural analysis and graphics for publications
were performed with PyMOL (version 0.99) and Chimera70.
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