
entropy

Article

Magnetic Resonance Imaging Segmentation via Weighted Level
Set Model Based on Local Kernel Metric and Spatial Constraint

Jianhua Song 1,* and Zhe Zhang 2

����������
�������

Citation: Song, J.; Zhang, Z.

Magnetic Resonance Imaging

Segmentation via Weighted Level Set

Model Based on Local Kernel Metric

and Spatial Constraint. Entropy 2021,

23, 1196. https://doi.org/10.3390/

e23091196

Academic Editor: Zoran H. Peric

Received: 9 August 2021

Accepted: 7 September 2021

Published: 10 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, China
2 Electronic Engineering College, Heilongjiang University, Harbin 150080, China; 2171313@s.hlju.edu.cn
* Correspondence: songjianhua@mnnu.edu.cn

Abstract: Magnetic resonance imaging (MRI) segmentation is a fundamental and significant task
since it can guide subsequent clinic diagnosis and treatment. However, images are often corrupted by
defects such as low-contrast, noise, intensity inhomogeneity, and so on. Therefore, a weighted level
set model (WLSM) is proposed in this study to segment inhomogeneous intensity MRI destroyed
by noise and weak boundaries. First, in order to segment the intertwined regions of brain tissue
accurately, a weighted neighborhood information measure scheme based on local multi information
and kernel function is designed. Then, the membership function of fuzzy c-means clustering is used
as the spatial constraint of level set model to overcome the sensitivity of level set to initialization, and
the evolution of level set function can be adaptively changed according to different tissue information.
Finally, the distance regularization term in level set function is replaced by a double potential function
to ensure the stability of the energy function in the evolution process. Both real and synthetic MRI
images can show the effectiveness and performance of WLSM. In addition, compared with several
state-of-the-art models, segmentation accuracy and Jaccard similarity coefficient obtained by WLSM
are increased by 0.0586, 0.0362 and 0.1087, 0.0703, respectively.

Keywords: image segmentation; intensity inhomogeneity; level set; brain magnetic resonance imaging

1. Introduction

Magnetic resonance imaging (MRI) is a part and parcel of medical imaging for its
virtues such as rapid acquirement, non-intrusive and painless [1]. MRI images have been
widely used in treatment evaluation, brain development monitoring, diagnosis, and so
on [2–5]. However, the quality of MRI images is often influenced by various reasons such
as low-contrast, noise and intensity inhomogeneity (IIH) during the imaging process, so
it is not convenient to accurately segment and extract brain tissues. In addition, intensity
inhomogeneity is called as bias field due to the property of slowly varying pixels in the same
tissue [6]. Image segmentation has been extensively and deeply studied in computer vision
due to its widespread application [7–10]. In the aspect of biomedical image analysis, it is a
fundamental and complex task, which aims at assigning each pixel or voxel to the region
with the same anatomical or biological meaning [11–14]. For example, by segmenting brain
tissue, the doctors can detect and judge the changes of brain volume in the physiological or
pathological state. Therefore, the need for methods that can accurately segment images has
risen rapidly. Many segmentation methods have been presented by researchers to segment
MRI images corrupted by intensity inhomogeneity, noise, and so on. These methods can be
divided into several mainly categories: boundary-based methods [15–19], threshold-based
methods [20–22], clustering methods [23–27], region growing methods [28,29], graph cuts
methods [30–32] and deep learning method [33,34].

Deep learning is applied to medical image processing, segmentation and classification
accuracy has been greatly improved, it effectively promotes the development of brain
image automatic processing technology. However, this technology also has some problems.
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Deep learning mostly depends on expert-labeled samples for training. Small-scale sample
training has poor results. However, it is extremely difficult, expensive, and time-consuming
to obtain large-scale expert-labeled brain segmentation samples. Most of the current
studies have focused on the segmentation of glioma and meningioma, and there are
few studies on segmentation for other brain lesions. Most deep learning networks are
still in the experimental stage, and it will take a long time before clinical application.
Because boundary-based methods do not need large-scale expert labeled samples, and
the segmentation results have obvious and smooth contour. Therefore, boundary-based
methods have been widely applied to MRI image segmentation.

Boundary-based methods depend on the intensity information of MRI image to detect
the boundary of interested region [35]. Level set model is one of the most frequently used
and well-established boundary-based methods for image segmentation and has attracted
significant attention in the past few decades. It regards the contour called level set function
as zero level set of higher dimensional function, which can transform the movement
of contour into the evolution of level set function implicitly. Level set models can be
subdivided into edge-based models and region-based models again [36].

Gradient information is employed by edge-based model as a constraint condition to
detect the boundary of an interesting region. This method is particularly effective for the
image with clear boundaries. However, for the image with weak boundaries, the level set
function is usually difficult to converge to the correct boundaries due to the destruction
of noise and intensity inhomogeneity [37]. Li et al. designed a distance regularized level
set evolution (DRLSE) scheme [38], in which the image gradient information is used
as driving force and regularization term is introduced into energy function to adjust
the deviation between signed distance function and level set function to eliminate the
defect of continuous re-initialization. Nevertheless, DRLSE only uses the image gradient
information as a constraint condition to extract the boundary of each tissue. As a result,
DRLSE is helpless to image with more than one target or weak boundaries. Then, Zhang
et al. presented a level set evolution method driven by enhanced term to improve the
effectiveness of DRLSE [39], the optimized area energy term was defined in their study to
detect the boundaries of an image with several disjoint targets. Although the accuracy of
this model is improved effectively, it is still sensitive to noisy pixels and initial contour.

Region-based models rely on the similarity of pixels belonging to the same anatom-
ical tissue and relevant statistical information as the constraint conditions to detect the
boundary of an interesting region. Region-based models have more advantages than
edge-based models since they use region information rather than gradient information
to drive the motion of level set function [40]. Therefore, they can be used to segment the
images with weak boundaries and low contrast, and it is often insensitive to the position of
the initial contour. The most representative model is Chan-Vese (CV) model [41]. It is not
only suitable for the case of piecewise smooth but also for the case of piecewise constant.
However, it presupposes that the intensity of each tissue is uniform, which means it cannot
deal with the inhomogeneous MRI images well. Later, Li et al. a local clustering criterion
in local intensity clustering (LIC) to process inhomogeneous intensity images and estimate
bias field simultaneously [42]. LIC uses local intensity information and kernel function
to homogenize the intensity of each tissue, which can effectively improve the accuracy of
segmentation results. However, due to lack of spatial constraints, LIC is sensitive to noise,
and the estimated bias field cannot satisfy the slowly varying property. Then, Feng et al.
presented a local inhomogeneous intensity clustering (LINC) to improve the segmentation
performance of LIC and ensure the properties of bias field [43]. More specifically, LINC
is a LIC model with multiplicative intrinsic component optimization (MICO) [44], which
utilizes clustering criterion defined in LIC and the basis function of bias field employed
in MICO to estimate bias field. MICO employed the fourth-order Legendre polynomials
as the basis function to model bias field. However, from the experimental results, LINC
is still sensitive to noise, especially for images with weak boundaries. Recently, local
information attracts more attention than global information since it can directly reflect the
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similar property of the central pixel according to its neighbor pixel. Zhou et al. proposed
a correntropy-based level set method (CLSM) for correcting bias field and segmenting
medical images [45]. CLSM employed both local intensity information and bias field
information to define a local bias-field-corrected image fitting energy, which is effective in
segmenting inhomogeneous intensity medical images. Further, an optimal segmentation
scheme was defined by Huang et al. using a fast level set model [46]. This model provided
an optimal partition for every pixel in the entire image domain to inhomogeneous intensity
images. In order to eliminate the influence of the bias field, MICO uses a fourth-order
Legendre polynomial as the basis function to model bias field. In the process of energy
minimization, it is a good modeling idea to find the best coefficient of the basis function to
ensure the property of bias field. However, the usage of a fourth-order polynomial in its
basis function will lead to higher computational complexity, and it is necessary to simplify
the computational efficiency. Finally, the advantages and disadvantages of the relevant
studied methods are summarized in Table 1.

Table 1. Advantages and disadvantages of the related segmentation methods.

Name of the
Method Advantages Disadvantages

CV [41]

Able to detect interior contours and
thus, could be used for medical
images with weak boundaries.

Piecewise smooth model could work
for medical images with IIH.

Limited by images with complicated
background and irregular intensity.
Piecewise constant case only works

with images having
homogeneous regions.

LIC [42] Able to estimate bias field and
segment brain tissues simultaneously.

Bias field model is an idealized model
without fully considering its

own properties.

MICO [44]

The slowly and the smoothly varying
property of the bias field is ensured

by a linear combination of a given set
of smooth basis functions.

The model is not a level set method
and is sensitive to noise without

considering local
neighborhood information.

LINC [43]

A local clustering criterion function is
defined to cluster intensities in the

neighborhood for utilizing local
neighborhood information.

All pixels including noise pixels are
clustered into local clustering

criterion, so LINC is sensitive to noise
and weak boundaries.

CLSM [45]
Incorporate the correntropy criterion

into the energy function of local
bias-field-corrected fitting image.

Difficult to discriminate pixels having
same or minor differences between

foreground and background,
program execution efficiency is low.

Although many improvement measures have been proposed for the level set-based
image segmentation scheme, there are still some shortcomings in the initialization of the
level set function, the stability and accuracy of model evolution. Further, not only the
intensity information but also more information such as variance, spatial position and gray-
level should be incorporated into energy function to deal with MRI images. In this study, a
weighted level set model (WLSM) based on local kernel metric and spatial constraint is
proposed to segment brain MRI images corrupted by noise and intensity inhomogeneity.
A neighborhood weighting method consisting of local variation, spatial distance and
gray-level information is constructed to improve the resolution of low-contrast brain MRI
images and reduce noise interference. Then, the coefficient of data term in energy function
is enhanced by fusing fuzzy spatial constraint, which is more suitable for inhomogeneous
MRI image segmentation. In addition, in order to ensure the stability of the level set
function in the evolution process of level set, the single potential function used in the
distance regularization term of the energy function is improved to a new double-well
potential function.
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The organization of the rest of this study is as follows. Section 2 describes the WLSM
proposed in this study in detail. Section 3 presents the experimental results consisting of
visual experiments and quantitative evaluation. Finally, the conclusion of this study is
given in Section 4.

2. Weighted Level Set Model

Brain MRI images are easily corrupted by noise and bias field, which makes it difficult
for many existing algorithms to obtain satisfactory segmentation results. To this end,
in response to practical problems, a weighted level set model combining local multiple-
information is proposed, which ensures accurate segmentation of brain MRI images by
introducing kernel metrics and fuzzy spatial membership constraints.

2.1. Weighted Neighborhood Information

The improvement of image quality in this study mainly relies on the neighborhood
information of the central pixel xi especially effective for the low-contrast brain MRI
images, where white matter (WM) and gray matter (GM) are intertwined with each other
and the boundary is blurred. Local variation, spatial distance and gray-level difference are
used simultaneously to construct the weighted neighborhood information, which will be
described separately in this subsection.

2.1.1. Local Variation Coefficient

The local variation depends on the intensity mean and variance of pixels fall into the
local window of central pixel xi. Variance, which is defined as the degree of deviation
between pixels and mean, can reflect the difference between pixels intuitively. Therefore,
the local variation coefficient Cij of each neighbor pixel xj for the center pixel xi is defined as:

Cij =
var
(

xj′
)

(
xj′
)2 , j′ ∈ Nj, (1)

where xj′ denotes the gray scale of neighborhood pixel of xj, that is, xj is the neighbor pixel
of xi, while xj′ is the neighbor pixel of xj. var(x) and x stand for the variance and mean of
the corresponding image block, respectively. Nj′ denotes the neighborhood centered on xj′ .
The greater the difference between pixels xj′ , the larger the value of Cij, which means that it
reflects the degree of homogeneity of pixels xj′ . If xj′ is similar to xj, such as the region with
homogeneous intensity, the value of Cij will be small, and vice versa. Thus, it can utilize
more contextual information to explore the local variation because it is computed in the
neighborhood of xj. Then, Cij is projected into the kernel metric space, and its larger value
will result in a smaller gray level weight because of the fast damping property of kernel
function. Both Gaussian kernel function and Laplace kernel function have the ability to
restrain noise, but the performance of Gaussian kernel function depends largely on the
choice of coefficient. Laplace kernel function is the variant of Gaussian kernel function,
and it is insensitive to the choice of coefficient. Therefore, the weighting coefficient γij of
each pixel xj in the neighborhood of xi using Laplace kernel can be expressed as:

γij= exp
(
−

Cij

l

)
, j ∈ Ni, (2)

where l is a bandwidth constant. Ni is the neighborhood centered on xi.

2.1.2. Adaptive Spatial Measure

The local spatial measure used in some typical studies is still the Euclidean distance
due to its computationally simple. However, Euclidean distance will easily result in
incorrect measure results for the images destroyed by noise, intensity inhomogeneity, and
so on. Therefore, a nonlinear version of the linear distance is constructed using kernel
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metric to improve Euclidean distance, which has been used in fuzzy spatial C-means [47]
and support vector clustering [48]. Gaussian kernel function is an efficient distance measure,
which is given by:

D2
ij= exp

(
−
‖xj − xi‖2

σ

)
, j ∈ Ni, (3)

where σ is the bandwidth coefficient that is often set to a constant in most studies. Accord-
ing to the above description about Gaussian kernel function, it is sensitive to the choice of
coefficient and σ has a significant effect on its performance, so σ should not be fixed as a
constant. Thus, WLSM enhances the Gaussian kernel function by calculating σ based on
the average variance of the distance between xj and xi to adaptively update the value of σ.
Let Euclidean distance between xj and xi is:

dij = ‖xj − xi‖2, j ∈ Ni. (4)

The degree of deviation between xj and xi can be seen from dij. Then, the mean
distance d of dij is given by:

d =
∑n

j=1 ‖xj − xi‖2

n
, j ∈ Ni, (5)

where n is the number of xj. Accordingly, σi can be calculated based on mean square
variance of these distances

σi =

∑n
j=1 ‖dij−d‖2

n

 1
2

, j ∈ Ni. (6)

Finally, the enhanced Gaussian kernel distance is rewritten as:

D2
ij= exp

(
−
‖xj − xi‖2

σi

)
, j ∈ Ni. (7)

Comparing Equations (3) and (7), the constant σ is replaced by the variable σi. In
order to visually display the role of Dij, take an eight-neighborhood image patch in the
white matter region of brain MRI image, and the value of Dij after normalization is shown
in Figure 1. There are two pixels in the image patch are destroyed in Figure 1a, and the
weights of noisy pixel and the pixel with the same intensity obtained from enhanced
Gaussian kernel distance in Figure 1b are greatly different. This is partly because the
damping degree of kernel distance will decrease the weight of noisy pixels, but mainly
because the bandwidth coefficient σi of the enhanced Gaussian kernel distance can be
calculated adaptively on the basis of the mean square variance of the distance between
neighbor pixels and the central pixel.
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2.1.3. Synthetic Weight of Neighborhood Term

The local gray level information xj with gray level weight γij and Gaussian kernel
function D2

ij can be used to update the current central pixel xi.

xi =
N

∑
j=1

γij · D2
ij · xj, j ∈ Ni. (8)

An original image with 5% noise obtained from BrainWeb [49] and its corresponding
enhanced image using weighted neighborhood information are compared in Figure 2, and
four partial enlarged areas are also displayed. Due to the noise in the original image, the
edges of WM and GM are intertwined, it is difficult to distinguish the edge of different
brain tissue. However, the enhanced image is much more noise free than the original image.
Further, the partially enlarged region can show more details of the boundaries of WM
and GM. Therefore, WLSM can improve the quality of images effectively and reduce the
influence of noisy pixels.
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2.2. The Improved External Energy Function

An image I(x) is divided into N disjoint regions Ω1, . . . , ΩN , and the local intensity
clustering defined in our previous study [35] described that pixels x around y with radius
ρ is given by Oy = {x: |x − y| ≤ ρ}. Thus, all pixels in the neighborhood Oy can be divided
into k classes, which is given by:

Ik
y= {I(x) : x ∈ Ωk ∩Oy}. (9)

In other words, this classification criterion means that intensities fall into Oy can be
classified into N clusters. Subsequently, the clustering function defined based on such
criterion is also suitable for this study to classify intensities. According to Ref. [38], the date
term ε constituting the external energy function of the level set can be expressed as:

ε =
∫ ( N

∑
k=1

∫
K(y− x)

∣∣∣I(x)−wTG(y)ck

∣∣∣2dx

)
dy, (10)

where K(y − x) is a function used to control the range of Oy, which has been defined in
LIC and should satisfy

∫
K(s)ds = 1. ck is the k-th clustering center. wTG(y) denotes the

bias field b(x), where G(y) is the combination of Legendre polynomial functions that can
ensure b(x) is slowly changing and vector w = (ω1, . . . , ωN)T is the optimal coefficient. I(x)
denotes the original image, but the weighted neighborhood information can improve the
quality of image before the energy function is minimized, so the clustering function can be
re-represented as:

ε =
∫ ( N

∑
k=1

∫
K(y− x)| Ĩ(x)−wTG(y)ck|

2
dx

)
dy, (11)
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where Ĩ(x) denotes the enhanced image of I(x) using Equation (8).
In Ref. [39], a level set function φ(x) can represent two disjoint regions Ω1 and Ω2 by

corresponding membership functions M1(φ) = H(φ) and M2(φ) = 1 − H(φ), where H(φ) is
Heaviside function defined by:

H(φ) =
1
2
[1 + 2arctan(φ)]. (12)

A multi-phase level set function Φ = (φ1, . . . , φi) can denote N disjoint regions
Ω1, . . . , ΩN by corresponding membership functions Mk(Φ). For example, φ1(x) and
φ2(x) can define three membership functions M1(φ1, φ2) = 1 − H(φ1), M2(φ1, φ2) = H(φ1)
∗ H(φ2), and M3(φ1, φ2) = H(φ1) ∗ (1 − H(φ2)). Therefore, clustering Function (11) can be
converted to the data term of the level set model as follows:

ε =
∫ ( N

∑
k=1

∫
K(y− x)| Ĩ(x)−wTG(y)ck|

2
Mk(Φ)dx

)
dy. (13)

Clustering center ck is replaced by the vector c = (c1, . . . , cN) for convenience. Therefore,
the data term ε can be re-represented as a new expression ε(Φ, w, c) about level set function
Φ, optimal coefficient w and clustering center vector c. Swapping the order of integrations
will not change the data term, so it is written as:

ε(Φ, w, c) =
∫ N

∑
k=1

λkek(x)Mk(Φ)dx, (14)

where λk is the weighted coefficient and ek is expressed as:

ek(x) =
∫

K(y− x)| Ĩ(x)−wTG(y)ck|
2
dy. (15)

Its numerical expression is given by:

ek(x)= Ĩ(x)1K−2ck Ĩ(x)
(

wTG ∗ K
)
+ c2

k

((
wTG

)2
∗K
)

, (16)

where 1K denotes
∫

K(y− x)dy. The weighted coefficient λk of data term is often set as
λ1 = . . . = λk = 1 in some typical level set models, such as LIC and LINC. Nevertheless,
without any constraints, Φ cannot reach or directly pass through the weak boundaries cor-
rupted by low-contrast and thus leads to the interesting region which cannot be completely
extracted. Therefore, λk should not be set as a global constant at least in the vicinity of
zero level set. According to AFLSM [30], λk has two significant roles, one is the direction
of Φ depends on the value of λk, the other is to control the speed of Φ. In other words, Φ
should be accelerated when it is far away from the boundaries of the interested region and
vice versa. Therefore, λk should be improved via contextual information. Fuzzy spatial
constraint obtained by fuzzy clustering is suitable for improving λk because it assumes
pixels in the vicinity of boundaries belong to different clusters according to their member-
ship matrix uki, where k denotes the k-th clustering center and i is the i-th pixel. Then, the
modified weighted coefficient λk constrained by uki is defined as:

λk = 1− uki

2∑N
k=1 uki

, λk ∈ (0, 1]. (17)

The difference between the λk defined in this study and the one defined in our previous
study AFLSM is mainly reflected in two aspects. For one thing, the coefficient α of λk
defined in AFLSM needs to be fine-tuned based on images with different characteristics,
but the λk defined in WLSM completely depends on the membership matrix uki, which
means the modified λk in this study is fully adaptive and does not need to be adjusted
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manually. For another, all λk defined in WLSM are normalized to ensure the stability of
numerical calculation and control the variation of level set function exactly. Thus, the
modified λk is superior to the one defined in AFLSM and the segmentation accuracy of
WLSM can be further improved for the images with weak boundaries.

2.3. Internal Energy Function

Li et al. regularized the level set function in LBF [50] to a smooth zero level set by
computing the length of its contour, which is defined as the following length term:

L(Φ) =
∫
|∇H(Φ)|dx, (18)

where ∇ is the gradient operator. A conventional level set function has to be reinitialized
during each iteration, which is a time-consuming process, especially for a model with thou-
sands of iterations. Accordingly, LBF presented a distance regularization term P(Φ) that
utilizes the unique property |∇Φ| = 1 of signed distance functions to avoid the expensive
re-initialization during the process of evolution. That is, the distance regularization term
can drive Φ to approach the signed distance function to eliminate the deviation, which is
defined by:

P(Φ) =
∫

p(|∇Φ|)dx, (19)

where p(s) is a potential function. p(s) is often set as p(s) = (s − 1)2/2, where s = 1 is its mini-
mum point used to maintain the property of signed distance functions. However, the single
potential function is not always effective in practical applications because of its forward-
and-backward diffusion and thus cannot steadily maintain the property |∇Φ| = 1 [33].
Therefore, WLSM improved the single potential function by introducing two minimum
points s = 0 and s = 1, which is aimed to solve the drawbacks of LBF and maintain the
property |∇Φ| = 1 only in a vicinity of zero level set contour. Such a potential function is
called the double-well potential function p2(s) because of its two minimum points, which
should satisfy the following four conditions:

(1) Two minimum points of double potential function p2(s) should be at s = 0 and s = 1,
respectively;

(2) p2(s) is second-order derivable in [0,∞);
(3) Function dp(s) defined by p′(s)/s should satisfy |dp(s)| < 1, s∈(0,∞);
(4) lim

s→0
dp(s) = lim

s→∞
dp(s) = 1.

Based on the above four constraints, p2(s) is defined in WLSM can be expressed as:

p2(s) =

{
− cos2πs

4π2 + 1
4π2 , s ∈ [0, 1]

(s+1)e1−s + s2

2 −
5
2 , s ∈ [1, ∞)

. (20)

The curve of p2(s) and dp(s) are shown in Figure 3. When p2(s) = 0, it can be seen from
Figure 3a that p2(s) have two minimum points (no other minimum points) at s = 0 and
s = 1, respectively. The first derivative p2

′(s) of p2(s) is given by:

p′2(s) =

{
sin2πs

2π , s ∈ [0, 1]

−se1−s + s, s ∈ [1, ∞)
. (21)

The second derivative p2”(s) of p2(s) is given by:

p′′2 (s) =

{
cos2πs, s ∈ [0, 1]

(s−1)e1−s + 1, s ∈ [1, ∞)
, (22)
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which means the novel p2(s) is second-order derivable in [0,∞). Next, the function dp(s)
based on p2

′(s) is defined as:

dp(s) =
p′2(s)

s
=

{
sin2πs

2πs , s ∈ [0, 1]

−e1−s + 1, s ∈ [1, ∞)
. (23)
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As shown in Figure 3b, it is not difficult to prove that dp(s) derived from p2(s) also
satisfies the above conditions Equations (3) and (4), which are to ensure the diffusion rate
of p2(s) is bounded. Further, the novel double-well potential function p2(s) not only can
eliminate the drawbacks of single potential function but also can penalize its deviation
from the signed distance functions. Therefore, WLSM with double potential function p2(s)
is more suitable for segmenting images with noise and intensity inhomogeneity.

2.4. Energy Formulation and Its Minimization

According to the external function and the internal function, the entire energy formu-
lation can be expressed as:

F(Φ, w, c)= ε(Φ, w, c)+νL(Φ)+µP(Φ), (24)

where ε(Φ, w, c) is the data term defined in Equation (14), ν and µ are the weighted
coefficients of length term L(Φ) defined in Equation (18) and distance regularization term
P(Φ) defined in Equation (19), respectively.

The method to minimize Φ is to solve the following gradient descent flow equation

∂Φ
∂t

= − ∂F
∂Φ

, Φ =(φ1, · · · , φi), (25)

where ∂F/∂Φ is Gâteaux derivative and t is a time variable. The right-hand side of the
equation shows the steepest descent direction of the energy function F. Accordingly, the
minimization of Φ is given by:

∂φi
∂t

= −
N

∑
k=1

∂Mk(φi)

∂φi
λkek − ν

∂L
∂φi
−µ

∂P
∂φi

, φi ∈ Φ (26)

where ek has been given in Equation (16). The Gâteaux derivative of length term L(Φ) is
given by:

∂L
∂φi

= −δ(φi)div
(
∇φi
|∇φi|

)
, φi ∈ Φ (27)

where δ(φ) is the derivative of H(φ) and div(·) is divergence operator. Then, the Gâteaux
derivative of distance regularization term P(Φ) is given by:

∂P
∂ fi

= −div
(
dp(|∇φi|)∇φi

)
, φi ∈ Φ (28)
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where the function dp(s) has been defined in Equation (23).
The method to minimize optimal coefficient w is to solve the following equation:

∂F
∂w

= −2v+2Aw, (29)

where v is a column vector defined by:

v =
∫ (

K∗
(

Ĩ(x)
N

∑
k=1

λkck Mk(Φ)

))
G(y)dy, (30)

and A is a matrix defined by:

A =
∫ (

K∗
(

N

∑
k=1

λkc2
k Mk(Φ)

))
G(y)GT(y)dy. (31)

Thus, according to the expression of v and A, the minimization of w is given by:

w = vA−1. (32)

The minimization of ck is given by:

ck =

∫
Ĩ(x)Mk(Φ)

(
K∗
(
wTG

))
dx∫

Mk(Φ)
(

K∗(wTG)
2
)

dx
. (33)

The implementation process of WLSM can be expressed as Algorithm 1.

Algorithm 1: WLSM.

Begin
Input:

original image;
weighted coefficients ν and µ;

Initialization:
bias field b and clustering center c randomly

Process:
update the current central pixel xi for all pixels according to Equation (8);
while |c(n) − c(n−1)| > 0.001

update level set function φ according to Equation (25);
update bias field b according to Equation (32);
update clustering center c according to Equation (33)

Output:
enhanced image; corrected image; segmentation result; estimated bias field

End

3. Experiments and Results

In this section, WLSM is used to segment synthetic and real MRI images and compared
with state-of-the-art models. Firstly, it is used to segment MRI images with varying degrees
of noise to demonstrate that the weighted neighborhood information embedded in WLSM
can enhance the quality of MRI images and improve segmentation accuracy (SA). Then, it
is used to correct inhomogeneous intensity MRI images and estimate bias field. Finally,
the sagittal, coronal and axial slices of synthetic and real MRI images are segmented by
WLSM to show its performance from different aspects. BrainWeb is a simulated brain
database (SBD) and includes a set of data generated by an MRI simulator that is close to real
brain MR images [49], and it was developed by the brain imaging center of the Montreal
Neurology Institute at McGill University. The brain MR image data in SBD is composed
of a three-dimensional matrix of 181 × 217 × 181 voxels, which can simulate T1, T2 and
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PD (proton-density) weighted brain MRI images, and the slice thickness, noise level and
intensity inhomogeneity can be set by oneself. According to the requirement of the research
task, 3D images can be sliced and extracted from three planes (sagittal, coronal and axial)
to obtain 2D image data. The real images used in this study are from the internet brain
segmentation repository (IBSR) database provided by Formal Measurement Center (CMA)
of Massachusetts General Hospital [51]. IBSR database is a set of clinical data generated
by real MRI scans, which contains different levels of noise, and there are also varying
degrees of intensity inhomogeneity, covering various problems that may arise in real MR
data segmentation. Unless otherwise specified, parameters used in WLSM are fixed as
ν = 0.001 × 255 × 255, µ = 1, and ∆t = 0.1. All experimental results were implemented by
Matlab R2019a on a computer with Intel Core i5-8300H 2.3 GHz CPU, 8 GB RAM, Windows
10 operating system, and the segmentation results with final zero-level contours of φ1 in
red and φ2 in blue are shown.

3.1. Results on Noisy Images

First of all, WLSM model is applied to 20 T1-weighted normal brain MRI images
with 181 × 217 pixels, 1 mm slice thickness, 5% noise, without intensity inhomogeneity,
their cranium and blood vessels have been dislodged before segmentation processing. In
Figure 4, serial numbers of the sliced images from the axial plane are 75 and 85, respectively.
Original images in the first column are destroyed by noise especially in the regions that
WM and GM are interweaved with each other, which can be easily seen from the partial
enlarged regions marked by the green rectangles. For comparison, the enhanced images
using weighted neighborhood information in the second column are more noise free than
original images and the boundary of each tissue can be clearly distinguished because of
the constraints of weighted neighborhood information. To be specific, WLSM utilizes
the neighbor information consisting of local variation, spatial distance and gray-level
information to update the current central pixel. The neighbor pixels in the same tissue will
occupy bigger weights and vice versa. Therefore, pixels located in the weak boundaries
can be categorized into the corresponding tissue according to their weighted neighborhood
information. Subsequently, benefitting from such the weighted neighborhood information,
level set functions are able to accurately extract the boundary of brain tissue, which can be
observed from the third column, the last column is the ground truth.
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images; (b) enhanced images; (c) segmentation results and (d) ground truth (GT).

The higher the noise level, the more difficult it is to accurately segment the noisy MRI
images. Thus, brain MRI images with the difference of noise level are segmented by WLSM
to testify its robustness to noise. The sliced images with 3%, 5%, 7% and 9% noise are
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displayed in the first to the fourth columns of Figure 5, respectively. The quality of original
images in the first row gradually decreases with the increase of noise, which will easily
result in non-robust segmentation results. However, the segmentation results obtained by
WLSM in the second row have no obvious discrepancy even in the case of severe noise,
which can show its sturdy robustness to the different noise levels.
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and (d) 9% noise.

Because fuzzy C-means (FCM) clustering and its variants are often used to segment
brain MRI images, and in the WLSM model, the spatial neighborhood constraint is also re-
alized by the idea of the FCM. Therefore, to further compare the segmentation performance,
the two clustering algorithms are also compared. One is the standard FCM algorithm,
and the other is the adaptively regularized kernel-based fuzzy C-means clustering (ARK-
FCM) algorithm in Ref. [52]. Figure 6 shows the comparison results of FCM, LINC [38],
MICO [39], ARKFCM [52] LIC [37] and WLSM on brain MRI images with 5% noise. FCM
is very sensitive to noise, and the segmentation effect is poor. LINC employs the local
clustering function to define the energy function, which can cluster inhomogeneous in-
tensity in the neighborhood. However, all pixels including noisy pixels are clustered in
the local clustering function, so the performance of LINC is easily influenced by noise.
Accordingly, it can be seen from Figure 6c that LINC obtained incorrect results in the face
of images corrupted by noise. MICO is based on the hard clustering to segment images,
where hard clustering assumes that each pixel in the entire image domain only belongs
to one cluster, so it is also sensitive to noise. Thus, the segmentation results obtained by
MICO in Figure 6d are easily influenced by noise pixels. In addition, the results have
numerous wrong contours representing noisy pixels. ARKFCM employs the heterogeneity
of grayscales in the neighborhood and exploit this measure for local contextual information
and replace the standard Euclidean distance with Gaussian radial basis kernel functions,
which can effectively suppress the noise in the image, but ARKFCM cannot estimate the
bias field in brain MRI images, and it is susceptible to the interference of intensity inho-
mogeneity, as shown in Figure 6e. LIC uses the intensity clustering property to define a
global criterion function, which can estimate bias field and segment images simultaneously.
However, it is also sensitive to noise because of the lack of spatial constraints. As shown
in Figure 6f, LIC cannot accurately extract the boundary between GM and WM and thus
leads to over-segmentation. By contrast, the segmentation results by WLSM displayed in
Figure 6g shows superior performance than the other five models.
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(a) original image; (b) result of FCM; (c) result of LINC; (d) result of MICO; (e) result of LIC; (f) result
of ARKFCM and (g) result of WLSM.

In order to quantitatively analyze the experimental results, segmentation accuracy (SA)
is often used to evaluate the segmentation performance of algorithms, which is defined as:

SA(S, G) =
k

∑
i=1

Si ∩ Gi
k
∑

j=1
Gj

, (34)

where k is the number of clusters, Si is the pixel number belonging to the ith cluster found
by the algorithm and Gi is the pixel number belonging to the ith cluster in GT. The higher
the value of SA means that model can obtain more accurate results on the segmented
images. In this experiment, we selected 10 groups of brain MRI images as experimental
samples to compare the segmentation results. SA of FCM, LINC, MICO, ARKFCM, LIC
and WLSM are shown in Table 2. Both the SA of WM and GM and the average SA can
show the superiority of WLSM, which objectively proves that WLSM obtains more accurate
segmentation results on noisy MRI images.

Table 2. SA comparison of the six models.

FCM LINC MICO ARKFCM LIC WLSM

WM 0.8135 0.8551 0.9175 0.9518 0.9633 0.9787
GM 0.7632 0.8810 0.8453 0.9027 0.9174 0.9470

Average 0.7883 0.8680 0.8814 0.9272 0.9404 0.9628

3.2. Results on Inhomogeneous Intensity Images

In general, MRI images are often corrupted by noise and intensity inhomogeneity
simultaneously during the process of imaging, so the ability to correct inhomogeneous
intensity and estimating bias field is the part and parcel of the performance of the model.
Therefore, in the experiment of this subsection, WLSM is used to segment brain MRI images
with 3% noise and varying degrees of intensity inhomogeneity to testify its performance.
Images with 3% noise and 60%, 80% and 100% intensity inhomogeneity are displayed on
the first row to the third row of Figure 7, respectively. The corrected images in the second
column are much more homogeneous than one of the original images in the first column,
and the segmentation results in the third column have no obvious discrepancy whether
in the case of lower inhomogeneous intensity or higher inhomogeneous intensity, which
illustrates that WLSM can correct inhomogeneous intensity and segment images simultane-
ously without being influenced by noise and intensity inhomogeneity. Benefitting from the
third-order orthogonal Legendre functions, the bias field in the fourth column estimated
by WLSM satisfies the property of smooth changing. Then, the histograms of original
and corrected images are plotted in Figure 8 to objectively compare the images quality.
The histograms of original images have no obvious peaks that represent corresponding
tissues because of the influence of noise and intensity inhomogeneity. In contrast, there
are well-defined peaks in histograms of the corrected images, which objectively reflect the
improvement of the image quality.
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In this experiment, because FCM and ARKFCM algorithms do not have the ability
to estimate the bias field, we only compare the segmentation results of LINC, MICO, LIC
and WLSM. In Figure 9, the tested brain MRI images are corrupted by 5% noise and 100%
intensity inhomogeneity. Original images, corrected images, segmentation results and bias
field obtained by each model are shown in the first to the fourth rows, respectively. As
shown in the first and second columns of the second row, the corrected images obtained
by LINC and MICO are still inhomogeneous especially in the regions that WM and GM
are interweaved with each other. It can be seen from the third column of the last row that
LIC cannot ensure the property of the bias field due to a lack of smooth basis functions.
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The corrected image obtained by WLSM is more homogeneous than the original image
and the one obtained by LINC, MICO and LIC, respectively. In addition, the third-order
orthogonal Legendre functions used by WLSM can ensure the especial property of bias
field. Therefore, WLSM can estimate bias field excellently and the corrected image will
much more homogeneous after removing the estimated bias field. Then, the iterations and
calculative time of LINC, MICO, LIC and WLSM are contrasted and the results are shown
in Table 3. The size of the original image in the first column of Figure 9 is 181 × 217. It
can be observed from the last row of Table 3 that WLSM consumes less calculative time
than the other three models in segmenting brain MRI images corrupted by both noise and
intensity inhomogeneity.
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Table 3. The iterations and calculative time of the four models.

LINC MICO LIC WLSM

Iterations 983 54 405 651
Time (s) 42.14 31.65 29.82 27.23

Jaccard similarity coefficient (JSC), the measure of similarity between two sets, is
applied to quantitatively compare the performance of segmentation model. The definition
of JSC is given by:

JSC(S, SG) =
|S ∩ SG|
|S ∪ SG|

, (35)

where S is the segmentation result obtained by each model and SG is GT. The higher
value of JSC indicates that the corresponding model is better than other methods. To
quantitatively compare the accuracy of LINC, MICO, LIC and WLSM, the JSC obtained by
the above four models is plotted in the box plots of Figure 10. As can be seen, the JSC of
WM and GM obtained by WLSM exhibit the higher values among the four models, which
can quantitatively demonstrate that WLSM can reach higher segmentation accuracy in
comparison with LINC, MICO and LIC.
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3.3. Results on Sagital, Coronal and Axial Slices of Images

In this subsection, the sagittal, coronal and axial slices of synthetic and real brain MRI
images are segmented to show the effectiveness of models. Firstly, the segmentation results
of synthetic brain MRI images obtained by FCM, LINC, MICO, ARKFCM, LIC and WLSM
are shown in Figure 11. The sliced images from the sagittal, coronal and axial planes are
displayed in the first to the third rows of Figure 11, respectively. Original images in the
first column are corrupted by noise and intensity inhomogeneity simultaneously. FCM is
not robust to noise and bias field, LINC still cannot accurately extract the interested tissues
and thus leads to segmentation errors. MICO cannot distinguish the boundary of WM
and GM, because their gray values are too similar in the case of severe inhomogeneous
intensity, which can be seen from the sagittal and axial slice images in the second and
third rows of the fourth column. ARKFCM cannot eliminate the influence of the bias
field in the brain MRI images, and it has encountered a problem in the segmentation of
white matter, as shown in the fifth column. LIC is sensitive to noise pixels because of the
deficiency of spatial constraints. Hence, the segmentation results shown in the sixth column
are still corrupted by noise especially in the boundary of WM and GM. As shown in the
seventh column, WLSM can accurately extract the boundary of WM and GM whether on
the sagittal, coronal or corrupted slice images, which means WLSM is effective on synthetic
images with different planes.
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Figure 11. Segmentation comparison of WLSM with FCM, LINC, MICO, ARKFCM and LIC on the
sagittal, coronal and axial slices of synthetic brain MRI images: (a) original images; (b) results of
FCM; (c) results of LINC; (d) results of MICO; (e) results of ARKFCM; (f) results of LIC and (g) results
of WLSM.

Finally, WLSM is applied to segment the sagittal, coronal and axial slices of real brain
MRI images and is also compared with FCM, LINC, MICO, ARKFCM and LIC to further
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demonstrate the effectiveness of WLSM. The segmentation results of real images obtained
from the four models are shown in Figure 12. The real sagittal, coronal and axial slices
are shown in the first to the third rows of Figure 12, respectively. Compared with all the
experimental results, WLSM is more accurate than FCM, LINC, MICO, ARKFCM and LIC,
which illustrates that it can be employed to segment real brain MRI images with different
planes without being influenced by the skull.
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4. Discussion

The edge-based level set model is to segment and extract the corresponding brain
tissue according to the boundary of the target. Therefore, for images with weak tissue
boundaries or low contrast, the conventional level set function cannot accurately identify
the boundaries of each tissue. Firstly, the WLSM algorithm targets the weak boundary
of low contrast images and proposes a method to improve the edge contrast of brain
tissue. This method uses local variance, spatial distance and gray information to update
the current central pixel. The updated image has high contrast at the weak boundary
of the brain tissues, so it lays a sound foundation for the subsequent level set function
to extract the target edge. Secondly, the third-order Legendre polynomial function with
orthogonality is used as the basis function to estimate the bias field, and its optimal
coefficient is found in the iterative process. Compared with the traditional linear bias field
estimation model, WLSM can ensure that bias field variation is smooth and slow. Thirdly,
taking the membership function of FCM as the adaptive coefficient of the data item in
the energy function changes the defect that the original coefficient is constant. It can not
only overcome the problem that level set function is sensitive to initialization but also
adaptively control the evolution of level set function. Finally, the single potential function
in distance regularization term is replaced by a novel double-well potential function,
which can effectively avoid reinitialization and maintain the accuracy and stability of the
evolution of the level set model.

Of course, the proposed algorithm still needs to be improved. In the application of
image segmentation, WLSM model only segments normal brain MRI images, and does
not process brain MRI images with diseases such as multiple sclerosis, brain tumors and
further research can be carried out on such images. Furthermore, this paper only studies
the segmentation algorithm of 2D MRI slice images and does not directly segment 3D MRI
images. In the future, we will further improve WLSN model combining deep learning
to segment images in 3D and try to apply the multiphase formulation to segment brain
tissues on public image repositories.
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5. Conclusions

In this study, according to the deficiencies in the initialization of level set function, the
stability and accuracy of model evolution in the current segmentation model, a weighted
level set model (WLSM) based on local kernel metric and spatial constraints is proposed to
segment brain MRI images corrupted by noise and intensity inhomogeneity. WLSM can not
only accurately control the evolution of level set function, but also overcome the problem
of model reinitialization. Compared with state-of-the-art models, the visual experiments
including both synthetic and real MRI images demonstrate the superiority of WLSM.
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