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Abstract
Chlorophyll fluorometry is one of the most commonly implemented approaches for estimating phytoplankton

biomass in situ, despite documented sources of natural variability and instrumental uncertainty in the relationship
between in vivofluorescence and chlorophyll concentration. A number of strategies are employed tominimize errors
and quantify natural variability in this relationship in the open ocean. However, the assumptions underlying these
approaches are unsupported in coastal waters due to the short temporal and small spatial scales of variability, as well
as the optical complexity. The largest source of variability in the in situ chlorophyll fluorometric signal is non-
photochemical quenching (NPQ). Typically, unquenched nighttime observations are interpolated over the
quenched daytime interval, but this assumes a spatial homogeneity not found in tidally impacted coastal waters.
Here, we present amodel that provides a tidally resolved correction forNPQ inmoored chlorophyllfluorescencemea-
surements. The output of the model is a time series of unquenched chlorophyll fluorescence in tidal endmembers
(high and low tide extremes), and thus a time series of phytoplankton biomass growth and loss in these endmember
populations. Comparison between modeled and measured unquenched time series yields quantification of non-
conservative variations in phytoplankton biomass. Tidally modeled interpolation between these endmember time
series yields a highly resolved time series of unquenched daytime chlorophyll fluorescence values at the location of
the moored sensor. Such data sets provide a critical opportunity for validating the satellite remotely sensed ocean
color chlorophyll concentration data product in coastal waters.

Phytoplankton biomass is governed by dynamic, thermody-
namic, and ecological processes that control light availability,
nutrient availability, and grazing pressure. Accurately resolving
patterns in phytoplankton biomass requires observations made
on timescales relevant to these processes, as well as on timescales
for which phytoplankton respond physiologically to them. In the
open ocean, the temporal and spatial scales of hydrographic vari-
ability are long compared to scales of phytoplankton cell growth
and division rate (Cloern and Jassby 2010). Thus, coarse resolu-
tion Eulerian sampling can be sufficient to resolve relevant
changes in phytoplankton biomass, as any observed variations in

phytoplankton biomass are likely due to changes in ecological
processes such as phytoplanktonphysiology or grazing. However,
in coastal waters, shelf bathymetry, tides, and currents combine
freshwater runoff and oceanic surface and deeper waters over
small spatial scales to create considerable spatial complexity in
hydrography, mixed layer depth (Simpson et al. 1990), and nutri-
ent content (Townsend et al. 2015), driving spatial complexity in
phytoplankton biomass (e.g., Fortunato et al. 2012). Furthermore,
short temporal variability, similar in timescale with that of phyto-
plankton physiological variability, is induced by tidal advection
andwind-drivenmixing (Cloern et al. 1985; Simpson et al. 1990).
This makes deconvolving advectively driven phytoplankton bio-
mass variability from physiologically driven phytoplankton bio-
mass variability difficult in coastal waters using only Eulerian
measurements (e.g., Cloern et al. 1989).

In situ validation of remotely sensed chlorophyll concentra-
tion in complex coastal waters is also challenged by the optical
complexity of coastal waters, where greenness is often driven not
just by phytoplankton, but also colored dissolved organic matter
and nonalgal particulate material. The time and space scales of
variability in coastal waters require in situ observations to be
within an hour or less of the midday satellite overpasses to be
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considered a successful matchup (Doerffer and Fischer 1994;
Werdell and Bailey 2005; D’Sa et al. 2006; Cui et al. 2010). There-
fore, as a result of hydrographic complexity, which complicates
measurements of phytoplankton biomass variability, and optical
complexity, which complicates remote sensing matchups, fine
resolution measurements of phytoplankton biomass, hourly if
possible (Li et al. 2010), are essential in coastal waters.

Most techniques to measure phytoplankton biomass, regard-
less of timescale, use the photosynthetic pigment chlorophyll a
(Chl a) as a proxy, as it is found in all phytoplankton and is
unique to photosynthetic primary producers. Caveats exist, how-
ever, as the ratio of carbon-to-chlorophyll concentration in phy-
toplankton cells varies with taxonomy (Chan 1980; Kruskopf and
Flynn 2006), photoacclimation (Anning et al. 2000; Moore et al.
2006), and growth phase (Kruskopf and Flynn 2006). The carbon-
to-chlorophyll ratio also varies on diel scales as photosynthesis
and carbon uptake occur during the day while chlorophyll syn-
thesis occurs at night (Eppley et al. 1971; Sournia 1975). Two sam-
pling approaches exist to measure phytoplankton biomass using
Chl a: discrete water sampling or in situ observations. Discrete
water samples allow for the most accurate quantification of Chl a
concentration ([Chl a]) by using high-pressure liquid chromatog-
raphy (HPLC; Claustre et al. 2004). However, resolving short
temporal variability in phytoplankton biomass using discrete
sampling requires either intensive work on behalf of the
researcher to collect samples or amethod of storing samples; stud-
ies using discrete measurements typically employ coarse resolu-
tion (as in Cloern et al. 1985) or a short time series (as in Cloern
et al. 1989). In situ observations, on the other hand, allow contin-
uous data collection and can be made from any platform, with
results obtained in real time. Two commonmethods of quantify-
ing continuous, in situ phytoplankton biomass, are chlorophyll
fluorescence and absorption line height. While absorption line
height has shown promising ability to accurately estimate phyto-
plankton biomass, it requires an in situ spectrophotometer (such
as a WETLabs AC meter), which is susceptible to biofouling (Boss
et al. 2013; Roesler and Barnard 2013). By contrast, chlorophyll
fluorometers are in place on ships, floats, and moorings through-
out the world due to their ease of measurement, resistance to bio-
fouling, unambiguous detection of phytoplankton, and relatively
robust quantitation.

When chlorophyllmolecules absorb light, they emit a small but
variable fraction of that light as fluorescence (Huot and Babin
2010). To first order, the intensity of in vivo fluorescence is corre-
lated to [Chl a], making chlorophyll fluorescence a useful method
of quantifying Chl a (Lorenzen 1966; Falkowski and Kiefer 1985;
Marra and Langdon 1993). Despite the widespread use of chloro-
phyll fluorometers, the ratio of measured in vivo chlorophyll fluo-
rescence (Fchl) to extracted [Chl a], called fluorescence yield per
chlorophyll, can vary by as much as an order of magnitude over
small spatial and temporal scales (Cullen 1982). Phytoplankton
taxonomy (Proctor and Roesler 2010), cell size (Alpine and
Cloern 1985), pigment packaging (Bricaud et al. 1983, 1995; Sosik
et al. 1989; Sosik and Mitchell 1991), and nonphotochemical

quenching (NPQ) (Kiefer 1973; Falkowski and Kolber 1995;
Sackmann et al. 2008) all contribute to this variability, making cali-
bration and validation necessary for accurate estimations of [Chl a]
from Fchl. Chlorophyll fluorometers employ a linear calibration
constant to relate measured units of fluoresced photons to chloro-
phyll concentration [Chl a], assuming that the fluorescence yield
per chlorophyll is constant. Because this assumption is not entirely
accurate, further variations in fluorescence yield per chlorophyll
must be accounted for (Roesler et al. 2017).

The major challenge for in situ chlorophyll fluorometry is
NPQ. NPQ is the process by which phytoplankton cells dissipate
excess energy absorbed by photosynthetic pigments (Horton
et al. 1996;Huot and Babin 2010). It is aminor de-excitation path-
way for phytoplankton cells, halting the transfer of photon
energy between light harvesting complexes and Chl a molecules
in the PSII reaction center when exposed to excess light, thereby
diminishing the release of photon energy as fluorescence (Krause
and Weis 1991; Horton et al. 1996). Observationally, NPQ mani-
fests as a reduction in measured Fchl during the daytime hours
(Laney et al. 2005; Roesler and Barnard 2013), with maximal
quenching of Fchlmeasurements occurring at noon and at the sur-
face, exponentially decreasing with depth following irradiance
(Cullen 1982; Sackmann et al. 2008). Thus, NPQ has significant
impacts on in situ fluorometry as a validation product for satellite
remote sensingmatchups.

Many studies have observed diel reductions in Fchl that are
attributable to NPQ (Kiefer 1973; Cullen 1982; Falkowski and
Kiefer 1985; Marra and Langdon 1993; Falkowski and Kolber
1995; Sackmann et al. 2008; Xing et al. 2012). In regions of the
ocean where advectively driven variability in phytoplankton bio-
mass occurs on timescales longer than the diurnal cycle, like the
open ocean, conservation of Fchl between nighttime measure-
ments can be assumed, allowing the unquenched nighttime
observations to be interpolated over the quenched daytime inter-
val (e.g., Li et al. 2010). A different approach used the assumption
of Fchl uniformity between surface and deep in the mixed layer to
create a unique mechanistic model to correct for surface NPQ
(Xing et al. 2012). However, if temporal variability in phytoplank-
ton biomass is shorter than the diurnal cycle of NPQ, or if spatial
homogeneity cannot be assumed, a robust model that accounts
for variations due to advection or heterogeneity is required to
retrieve estimates of Fchl duringNPQ-impacted time intervals.

A common source of short temporal variability phytoplankton
biomass in coastal waters is tidal advection (Simpson and Sharples
2012). Chl a variability in coastal waters (e.g., the San Francisco
Bay) has been shown to be highly correlated with tidal advection
(Cloern et al. 1985, 1989; Cloern 1991). Eulerian Fchl measure-
ments in tidally impacted waters reveal the signature of two
endmembers. The low tide measurement is associated with the
upstream (often river) population of phytoplankton and the high
tidemeasurement is associatedwith the downstream (ocean) pop-
ulation of phytoplankton. The mid-tide Fchl measurement is
either a conservative mixture of the high and low tide phyto-
plankton populations, in dynamically dominated systems, or a
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nonconservative independent population, either growing, being
grazed, or sinking within the estuary. Because the semidiurnal
period of tidal advection and the diurnal solar cycle are out of
phase, correcting for NPQ by averaging successive nighttime Fchl
measurements does not accurately represent the daytime mea-
surements in between. Instead, anymethod of retrieving daytime
Fchl in tidally impacted regions must take tidal advection into
account.

Approaches that accounted for short-term variability driven by
tidal advection in the past have used models that assume conser-
vation between high and low tide. One study modeled dissolved
oxygen, which, similarly to Fchl, has a diel cycle with a different
period and phase than the semidiurnal advective cycle of tides
(Beck et al. 2015). The advantage of this type of approach is that
(1) it separates variability driven by tidal advection from variabil-
ity internal to the measured variable and (2) it enables identifica-
tion of periods of nonconservative variability, i.e., when the
model and the observations disagree. In the case of Fchl, this dec-
onvolves physical variability (i.e., mixing or advection) from bio-
logical variability (i.e., blooms and grazing) and reveals the source
of nonconservative signals, whether from the low tide up-estuary
water, from the mid-tide mid-estuary water, or from the high tide
ocean water. Uncovering the causes of conservative or non-
conservative behavior in phytoplankton communities is essential
to understanding drivers in phytoplankton biomass and commu-
nity structure in coastal systems.

This article introduces an analytic model for deconvolving
semidiurnal tidal cycles and diurnal NPQ cycles to reconstruct
robust, high-resolution estimates of chlorophyll concentration
from in situ Fchl observations in coastal waters. The approach is
applicable tomoored chlorophyllfluorometers. Ancillary observa-
tions of photosynthetically available radiation (PAR) and current
velocity reduce uncertainty in the results, but are not required.
The goals of this model are to (1) provide robustmidday estimates
of chlorophyll concentration for constructing ocean color valida-
tion data sets and (2) model time series of conservative estimates
of phytoplankton biomass in upstream and downstream
populations to better quantify nonconservative variations in tid-
ally dominated coastal ecosystems.

Materials and procedures
Study site

Data were collected in Harpswell Sound, Maine, U.S.A. (HS).
HS is one of many narrow inlets that comprise Casco Bay (Fig. 1).
The long axis ofHS is inclined 30� east of true north and a channel
runs centrally along the axis. HS lacks a river at its head and the
circulationmost resembles inverse-estuarine flow, driven by fresh
surface water entering the sound from the Kennebec River
upstream to its east and compensating high salinity outflow at
depth. The sound is generally strongly stratified at themouth and
well mixed at the head where the bathymetry shoals. During
intervals of high discharge, the Kennebec River plume is deflected
right by Coriolis force and the scale of the Rossby radius directs
freshwater flow into HS (Wolovick 2009). During low river

discharge, net circulation in HS is negligible but stratification of
warm, freshened surface waters overlying deeper, colder, and salt-
ierwaters can bemixed bywind events.

Moored data collection
In situ hydrographic observations were made by the Bowdoin

Land Ocean Biogeochemical Observatory (LOBO; Sea-Bird
Coastal), a floating monitoring platform located at 43�45.70N,
69�59.30W (bowdoin.loboviz.com), deployed annually from
March to December since 2014. Temperature and salinity are
measured at 1 m by a SBE37-SM C-T recorder (Sea-Bird Electron-
ics). Current velocity profile is measured with an acoustic Doppler
current profiler (ADCP; RDI Teledyne) deployed at 1.65 m with
1m resolution.Hourly Fchl ismeasuredwith aWETLabs ECOTrip-
let (BBFL2 model) fluorometer located at 1.5 m, providing excita-
tion at 470 nm and measuring fluorescence response at 695 nm.
Multispectral downwelling irradiance (Ed) is measured with a Sat-
lantic, seven channel OCR-507 sensor located at the top of the
buoy spar, approximately 2mabove the surface.

Weekly sampling
Weekly sampling trips were conducted via small boat to the

LOBO site to collect discrete water samples at 1.5 m, coincident
with the in situfluorometer depth. Triplicate sampleswere filtered
through 25-mm diameter 0.7-μm pore-sized Whatman GF/F fil-
ters immediately after collection, placed in 10 mL of 90% HPLC-
grade acetone, vortexed to promote extraction, and frozen for
24 h. Samples were centrifuged and extracted [Chl a] was deter-
mined fluorometrically using a benchtop Turner fluorometer

Fig. 1. Landsat image of turbidity in Casco Bay taken on 12 April 2014
(Snyder et al. 2017) showing the deflection of the Kennebec River plume
to the mouth of Harpswell Sound. Location of Harpswell Sound, the
LOBO mooring site, and the Kennebec River indicated. Red box in inset
shows location of Casco Bay relative to the eastern U.S.
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(Holm-Hansen et al. 1965) that was spectrophotometrically cali-
brated with chlorophyll b-free, purified Chl a derived from
Anacystis nidulans (SigmaAldrich).

Data processing
Hourly observations obtained from the LOBO consist of

the mean of a 60-s burst of 1 Hz sample observations. Factory
calibration coefficients are applied to raw observations to
obtain geophysical units. Laboratory-derived calibration coeffi-
cients for the chlorophyll fluorometers were applied in keep-
ing with the community-established calibration bias of 2 for
the WET Labs ECO-series fluorometer (Roesler et al. 2017).
Observations compromised by biofouling were removed from
the analysis (Roesler 2016). Hourly seven-channel Ed spectra
measured on LOBO were normalized by their spectrally inte-
grated value and regressed against a hyperspectral Ed library to
estimate hourly hyperspectral Ed. PAR time series was calcu-
lated as the definite integral of the hourly hyperspectral Ed
from 400 to 700 nm. Northward and eastward components of

current velocity were rotated to the angle of the estuary to
produce alongshore velocity.

Sample time series of Fchl
Over a 5-week time series in 2016, Fchl varied on weekly scales

between 1 and 8 μg L−1 (Fig. 2A). Fchl exhibited daily variations of
100% of the mean over this period. Daily maximal PAR varied
from approximately 400 to 2200 μmol q m−2 s−1 (Fig. 2B). The
range inmeasured current velocity was dominated by alongshore,
semidiurnal tidal flow (Fig. 2C). Current velocity range evidenced
spring-neap tidal cycles, varying between � 0.15 m s−1 during
neap tide (05/14 first quarter, 05/28 third quarter, and 06/12 first
quarter) and � 0.3 m s−1 during spring tide periods (05/06 new
moon, 05/21 fullmoon, and 06/05newmoon).

Fchl exhibited diurnal minima that were concurrent with diur-
nal increases in PAR intensity (Fig. 2D,E), consistent with NPQ,
yet also exhibited variability during nighttime unquenched
periods, associated with tidal advection (Fig. 2D,F). For example,
over 06/07 to 06/10, nighttime peaks in Fchl are concurrent with

Fig. 2. Six-week (left panels) and 3-d (right panels) time series of hourly observations from the LOBO mooring in 2016: Fchl (A, D), PAR (B, E), and
alongshore current velocity measured at 1.5 m (C, F). The timing of the 3-d time series is indicated with vertical red lines on the 6-week time series. On
the 3-d time series, nighttime intervals indicated by shaded bars, and high and low tide times indicated by blue and red lines, respectively.
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low tide (when current velocity transitions from negative to posi-
tive; red lines in Fig. 2F), while the nighttime minima are concur-
rent with high tide (when current velocity transitions from
positive to negative; blue lines in Fig. 2F). In this case, it appears
that Fchl was higher in the upstream water (during low tide at the
mooring) than the downstream water (high tide). This example
shows that nighttime averaged values represent mixtures of dis-
crete populations and thus averaging adjacent nighttime averages
is not an accurate representation of hourly variations in either
daytime or nighttime Fchl values.

Model development
To quantify the influence of NPQ on Fchl observations, incident

PARmagnitude is used to identify unquenched Fchlmeasurements.
Fchl values scaled to their respective nightly maximum value
evidenced an onset of quenching at incident PAR values exceeding
350 μmol q m−2 s−1, (Fig. 3). The variability in the ratio of raw
Fchl to nightly maximum Fchl at low PAR intensity (i.e.,
100–400 μmol q m−2 s−1) is due to variability in the raw Fchl obser-
vations as a result of tidal advection. Ratios that exceed 1 can occur
if higher biomass waters are observed in the early morning hours.
The increase in the ratio from 0 to 350 μmol q m−2 s−1 is also
potentially a result of decreased photochemical quenching, which
occurs as PAR increases and photosynthetic reaction centers close
(Morrison 2003; Browning et al. 2014). As PAR approaches
1000 μmol q m−2 s−1, NPQ exceeds 50% reduction and manifests
as a factor of 2 apparent reduction in daytime phytoplankton bio-
mass in real time observations. In the absence of PAR observations,
time of day can also be used as a proxy for PAR. Scaling Fchl tomaxi-
mal Fchl occurring between 18:00 and 06:00 h (1 h before sunset to

1 h after sunrise) is more conservative than using PAR, as it does
not include specific observations between dawn and dusk that had
low PAR due to clouds, but yields statistically identical results over
the time series (Fig. 3, dashed red line). Given that scaled Fchl values
increase slightly from 0 and 400 μmol q m−2 s−1, particularly
between 300 and 400 μmol q m−2 s−1, we use 300 μmol q m−2 s−1

as the threshold for NPQ onset. All Fchl measurements observed at
lower PAR values are considered unquenched (Matlab functions to
apply themodel can be found in Supporting Information).

The threshold for NPQ is used to create a subset time series
of unquenched hourly Fchl observations (Fig. 4A). The gap
between quenched and unquenched observations confirms
that the onset of quenching is rapid, rather than gradual, as
there are few middle values between the two subsets of raw
observations. Two separate subsets of the observations are cre-
ated alongside this one based upon the timing of high and
low tide. These are identified from current velocity observa-
tions using the following criteria (Fig. 4B):

High tide :Va = 0; and dVa=dt <0 ð1aÞ

Low tide :Va = 0; and dVa=dt >0 ð1bÞ

whereVa is the observed alongshore velocity time series at 1.5m in
the estuary. In the absence of concurrent current velocitymeasure-
ments, high and low tide times can be identified from a local tide
chart or generated from a tidal model based on a sample current
velocity data set (e.g., U-tide, Codiga 2011). The intersection of
each of the two tidal maxima subsets with the unquenched subset
forms a set with elements of unquenched high tide Fchl and a set
with elements of unquenched low tide Fchl (Fig. 4C). These two sets
are the unquenched high tide and low tide conservative
endmembers of Fchl in the estuary representing upstream and
downstream populations, and together they create a range
envelope.

The phasing between semidiurnal (or diurnal) tides and diurnal
quenching (e.g., approximately 24 h, 48 min vs. 24 h) yields an
unevenly spaced time series with days for which there are either no
unquenched high tide or no unquenched low tide Fchl measure-
ments. To account for this discrepancy, missing high or low tide
Fchl measurements are estimated by linear interpolation between
measured, unquenched successive high tide or low tide Fchl mea-
surements, making a time series of unquenched Fchl observations
at every high and low tide (Fig. 5A). The underlying assumption is
that within a single endmember water mass, the time evolution of
phytoplankton biomass is slower than changes observed at the sta-
tionary buoy (Lagrangian vs. Eulerian, respectively).

A cosinusoidal model representing tidal advection is used
to calculate hourly unquenched Fchl piecewise between each
high and low tide endmember (Fig. 5B):

Fchl tð Þ= −A× cos π ×
t − t1
t2− t1

� �� �
+O ð2Þ

Fig. 3. Hourly Fchl observations, scaled to the nightly maximal Fchl occurring
below PAR values of 100 μmol q m−2 s−1, as a function of incident PAR. Sym-
bols colored by hour of day. Median and standard deviation Fchl values shown
by solid black line and error bars, respectively, at PAR intervals of
100 μmol q m−2 s−1. Fchl scaled tomax Fchl observed between 1800 and 0600
is indistinguishable from Fchl scaled by max Fchl below 100 μmol q m−2 s−1,
with median values shown by dashed red line and error bars similar in size to
Fchl scaled bymax Fchl below 100 μmol q m−2 s−1 (not shown).
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where t is time between t1, time of the present tidal maxima,
and t2, time of the next tidal maxima; A is the amplitude in

Fchl between t1 and t2; cos π × t − t1
t2 − t1

� �
sets the phase of cosine

interpolation using the ratio of time elapsed (t− t1) to the total
time in the interval (t2− t1); and O is the offset of the cosine
interpolation from the x axis, calculated as the midpoint
between Fchl (t1) and Fchl (t2). The model output is the hourly
time series of unquenched, tidally resolved Fchl (Fig. 5B;
referred to as “corrected” below).

Assessment
As part of our model assessment, we identify and quantify

the effects of both tidal advection and NPQ on measurements

of Fchl. The model incorporates both the NPQ and tidal factors
into its correction and thus it is difficult to separate them dur-
ing the day. However, at night, when NPQ is not occurring,
the effect of tidal advection can be isolated. The observed

Fig. 5. Six-week time series of (A) measured Fchl at high tide and low tide
(filled symbols, blue and red, respectively) with modeled daytime values
(open symbols), and quenched raw daytime observations at high and low
tides (dark blue and red dots connected to unquenched observations with
dashed lines; (B) modeled hourly, unquenched, tidally corrected Fchl time
series (blue line), calculated using a cosine function (Eqn. 2) fit to
observed and interpolated occurrences of unquenched Fchl at high and
low tide times in (A); (C) hourly modeled Fchl time series from (B) (blue
line, RMSE error envelope in gray) with hourly unquenched Fchl observa-
tions from Fig. 4A; and (D) residual nighttime Fchl (raw minus model;
black symbols) and RMSE envelope (blue band, � 0.34 mg L−1) with
alongshore current velocity (m s−1). Red vertical lines indicate timing of
neap tide.

Fig. 4. Six-week time series of hourly raw in situ Fchl observations (gray sym-
bols) and Fchl observations (A) coincident with PAR < 300 μmol q m−2 s−1

(black symbols), (B) coincident with high tide and low tide (blue and red sym-
bols, respectively) and (C) co-occurring unquenched (from A) and high and
low tide (from B). Blue and red lines in (C) provide approximate time series of
high and low tide endmember values, respectively.
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variability in Fchl due to tidal advection, while not negligible,
is small compared to that due to NPQ (Fig. 2D). Therefore,
the corrected Fchl should not differ significantly from the
observed Fchl for nighttime values and indeed it does not
(m = 0.87 � 0.025, b = 0.53, root mean square error
(RMSE) = 0.48; Fig. 6A). Because the model assumes conserva-
tive variability between tidal maxima, the spread about this
relationship reveals the nonconservative variability in Fchl in
the estuary (a combined model using the raw, unquenched
data during the nighttime and modeled Fchl during the day
would show the blue and red points in Fig. 6A all falling on
the 1:1 line). Nonconservative variability can be clearly seen
in the mean ratio of raw Fchl to corrected Fchl, as a function of
hour of day (Fig. 6B), where the error bars provide an estimate
of the range of nonconservative variations in Fchl at the level
of approximately � 10%. During the daytime hours of NPQ,
this ratio drops from 1 to 0.6 with a range of � 30%, encapsu-
lating both natural variations in NPQ, due to variations in
PAR intensity, and nonconservative variations in Fchl. If the
nonconservative variations observed during the daytime are
comparable to those at night, these results would suggest that
variations in NPQ are approximately � 20% throughout the
daytime (i.e., maximally quenched at noon by up to 40% on
average but with 20% variability in the degree of NPQ). Thus,
tidal advection drives about 10% of variability and NPQ drives
20% of the variability in the correction.

Next, we examine the model’s effectiveness in (1) correcting
nonphotochemically quenched observations and (2) correcting
for tidal advection.

(1) The ratio of raw quenched Fchl measurements to corrected
values ranges from 30% to as high as 90%. Thus, themodelmakes
considerable corrections to raw daytime Fchl observations. Raw
daytime Fchl observations are increased by between 1 and 5 μg L−1

once corrected by the model (midday observations; Fig. 6A),
which accounts for the wide spread of daytime points about the
1:1 line (m = 0.47 � 0.036, b = 2.62, RMSE = 1.61). Just as we used
hourly Fchl observations scaled to maximal nighttime Fchl as a
function of PAR to assess irradiance threshold for NPQ, a similar
analysis performed with corrected Fchl should not have a depen-
dence upon incident irradiance (Fig. 6C). The ratio is clearly
invariant over the entire range of PAR (m = 0.00 � 0.00, p = 0.81)
and the variability is on the order of� 10%, associated with non-
conservative variability. What this means is that rather than
removing nearly 12 h’s worth of the hourly observations (i.e., all
of the daytime observations), we have recovered them. This result
is a critical achievement not only increasing the temporal resolu-
tion of coastal Fchl measurements, but also providing a mecha-
nism for using in situ Fchl for satellite validation of the ocean color
chlorophyll data product.

(2) We assess the utility of the model in correcting for tidal
advection by first comparing it to two conventional approaches
for dealing with NPQ (interpolating linearly from dusk to dawn
and interpolating between nighttime averaged observations) and
second by evaluating the time series of tidal maxima endmember
Fchl, before and after correction, for ecological realism. Conven-
tional approaches for daytime interpolation do not account for
the daytime variability in Fchl caused by variation in the phyto-
plankton biomass of tidal endmembers nor the advective varia-
tion between endmembers, and thus do not provide a robust
estimate of Fchl during the daytime (Fig. 7A). The histogram of the
ratio of raw nighttime Fchl to nightly mean Fchl demonstrates the
degree of variability that exists due to variation between tidal
endmembers (essentially a histogram of the data in Figs. 6C, 7B).
Variability averages � 10% but can be as high as 50% in some
instances, none of which is accounted for by conventional
approaches. In the uncorrected Fchl endmembers, Fchl grows and

Fig. 6. (A) Corrected Fchl vs. raw Fchl for the period 29 April 2016–12 July 2016, color-coded by hour of the day. Line of best fit plotted for nighttime
observations (19:00–05:00 h local time) in black (m = 0.87 � 0.025, b = 0.53, RMSE = 0.48) and for daytime observations (06:00–18:00 h local time) in
gray (m = 0.47 � 0.036, b = 2.62, RMSE = 1.61). Dashed line shows 1:1 relationship. (B) Ratio of raw Fchl to corrected Fchl binned by local hour of day
over the period 29 April 2016–12 July 2016, with standard deviation error bars. (C) Corrected Fchl normalized to nightly maximal value of Fchl vs. PAR,
color-coded by hour of day (as in Fig. 3). Black line represents mean values over 100 μmol q m−2 s−1 bins, with standard deviation error bars, while
dashed red line represents mean values between 18:00 and 06:00 h.
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declines at unrealistic rates (e.g., on 05/20 in the high tide
endmember, it exhibits multiple apparent changes of order factor
of 2–3 within 24 h; Fig. 5A). In the corrected endmembers, by
contrast, Fchl exhibits growth rates of 0.2–0.3 d−1 during periods
of growth, comparable to temperate phytoplankton globally
(Calbet and Landry 2004), and blooms that endure on timescales
of weeks (Fig. 5A). Thus, the model reveals ecologically relevant
variability in Fchl. Individual growth rates of the Fchl endmembers
can thus be quantified, something that would not be possible
from the raw Fchl observations. For example, following a period of
uniformity, low tide and high tide populations diverge on 5/27,
with low tide Fchl increasing at a rate of 0.89 μg L−1 d−1 for 3 d,
while high tide Fchl lags for 3 d before increasing by
0.50 μg L−1 d−1 over the next 3 d (Fig. 5B).

Identifying nonconservative mixing
The model provides an estimate of hourly Fchl that would

be observed assuming conservative mixing between the high
and low tide endmember populations. Against the conserva-
tive mixing assumption, intervals of nonconservative mixing
can be identified and quantified from the perspective of phy-
toplankton growth and loss. At times, nonconservative growth
occurs within the tidal range of the mooring, for example,
from 05/13 to 05/16, where residual Fchl is higher than both
adjacent high tide and low tide Fchl values (Fig. 5C,D). At
other times, nonconservative loss appears to occur within the
tidal range of the mooring, with raw, nighttime Fchl below
adjacent Fchl at high or low tide, for example, from 06/01 to
06/07. Such mid-tide growth and loss would not be visible
without the correction scheme provided by the model, and it
appears that the residuals are not randomly distributed. More
extensive analysis of Fchl nonconservative residuals would
likely reveal a relationship between tidal dynamics and phyto-
plankton dynamics that has been demonstrated in other

estuaries (Balch 1981; Cloern 1991; Cadier et al. 2017) and in
modeling (Sharples 2007).

Extracted chlorophyll matchup
Finally, we compare Fchl to extracted [Chl a], which allows an

estimation of the model’s absolute accuracy. A weak linear rela-
tionship was observed between raw Fchl and extracted [Chl]
(RMSE = 2.03, Fig. 8A). In contrast, a much stronger linear rela-
tionship emerged between the corrected Fchl and extracted [Chl a]
(RMSE = 1.03, Fig. 8B). Point by point matchups with extracted
[Chl a] are challenging for all of the reasons that calibrating a fluo-
rometer is challenging: taxonomy, light history, and growth
phase (e.g., Roesler et al. 2017). However, taken together, the
model reduces the error in thematchup by roughly a factor of 2.

Discussion and outlook
Themodel presented here provides ameans for obtaining day-

time estimates of chlorophyll fluorescence, a proxy for phyto-
plankton biomass, in tidally impacted regions from in situ
chlorophyll fluorescence by using the periodicity of tidal advec-
tion to estimate unquenched daytime values. By accounting for
the presence of two phytoplankton populations associated with
the maximum extents of high and low tide, hourly time-series
observations at a single location, amid tidal fluctuation, yield
independent assessment of both populations. In other words, the
method enables a study of coastal phytoplankton biomass
dynamics in a Lagrangian sense from Eulerian measurements.
The assumption of conservative mixing inherent in the model
additionally provides the advective context against which
unquenched Fchl observations can be examined to reveal non-
conservative behavior in Fchl that would not be resolved with
other interpolation schemes. Similarly, deconvolving the diurnal
cycle ofNPQ from the semidiurnal cycle of tidal advection enables
the study of photoacclimation, trophic status, and community

Fig. 7. (A) Three-day time series of raw calibrated Fchl (black) with three Fchl daytime corrections. Blue line indicates tidal model, orange line indicates
dawn to dusk interpolation, and green line indicates the nighttime average interpolation. (B) Histogram of raw nighttime Fchl measurements normalized
to the nightly mean value.
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structure influences on NPQ. No traditional method of correcting
Fchl for NPQ is as robust in coastal, tidally impactedwaters.

The model is suitable for any coastally moored chlorophyll
fluorometer and has applications in ecosystem monitoring and
ocean color sensor validation. It is necessary for Fchl measure-
ments made in tidally impacted waters, where distinguishing
phytoplankton biomass variability driven by tidal advection from
phytoplankton biomass variability driven by phytoplankton
physiology is otherwise difficult. When applied to estuaries, the
method allows for the monitoring of true growth and decay of
both ocean and river populations of phytoplankton, making it
ideal for coastal ecosystem management. Otherwise, the effect of
tidal advection on Fchl would appear as short temporal variability
in coastal ecosystems (as in Cloern et al. 1989). The model is also
useful for remote sensing matchup contexts, where achieving in
situ validation of satellite ocean color sensors is challenging
(Werdell and Bailey 2005), and requires daily midday measure-
ments of phytoplankton biomass. This is especially difficult in
coastal waters, where input source variability creates significant
spatial and temporal variability in optical components of the
water column (Sauer and Roesler 2013) and where tidal advection
complicates traditional methods of NPQ correction. Thus, this
model is ideal for remote sensing and ecosystem monitoring
applications as it can accurately monitor both river and ocean
phytoplankton populations with just one sensor and provide a
robust estimate of Fchl without the artifact of NPQ, coincident
with satellite overpass.

Understanding the drivers of coastal phytoplankton growth,
particularly in the Gulf of Maine, is a continually evolving ques-
tion, and one that has not yet been convincingly answered. This
is likely due to the complexity of the coastline, the significant
tidal range, the distributed river system that produces buoyantly
driven coastal currents (Pettigrew et al. 2005), and the variability
in deep-water input (Townsend et al. 2015). In addition to its

utility for coastal monitoring and remote sensing, the model has
the potential to help answer this question, particularly con-
cerning source of phytoplankton blooms throughout the year
and the relationship between tidal dynamics and phytoplankton
productivity. The formation of phytoplankton blooms is compli-
cated by coastal water mass mixing and tidal advection, and
the ability to track growing and decaying phytoplankton
populations as they are advected into and out of estuaries is an
important step in understanding them. Specifically, harmful
algal blooms, dominated by Alexandrium fundyense in the Gulf of
Maine, involve a mechanism of ocean-ward and shoal-ward
transport (McGillicuddy et al. 2003), and tracking known
Alexandrium populations in both archived Fchl data and future
data collection will assist in understanding their behavior.
Thanks to an initial investment by the National Oceanographic
Partnership Program (NOPP), chlorophyll fluorometers, ADCPs,
and (in some cases) PAR sensors are already in place throughout
the Gulf of Maine on the Northeastern Regional Association of
Coastal Ocean Observing Systems (NERACOOS) buoy array,
making the Gulf of Maine an ideal first location for application
of this model.

In addition to aiding in understanding how and where phy-
toplankton populations bloom, this model can reveal how
those populations respond to changes in the dynamic and
thermodynamic forcings that affect phytoplankton growth,
one of which is spring-neap tidal forcing. The spring-neap tidal
cycle affects nutrient content and mixed layer depth in estuar-
ies through tidal stirring (Cloern 1991; Simpson and Sharples
2012). Fortnightly spring-neap tidal variations in tidal energy
and range lead to increased spring tide stirring and decreased
neap tide stirring. Phytoplankton blooms are found to be
coherent with both the spring tide (Balch 1981) and the neap
tide (Cloern 1991; Sharples et al. 2006; Cadier et al. 2017)
depending upon whether they are nutrient or light-limited. By

Fig. 8. Raw (A) and corrected (B) Fchl vs. extracted [Chl] from spring and summer 2015–2017 in HS. Dashed line shows 1:1 relationship. RMSE is 2.03
for raw Fchl and 1.03 for corrected Fchl.
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highlighting periods of nonconservative behavior in phyto-
plankton biomass, the model is suited to reveal the effect of
the spring-neap tidal cycle on coastal phytoplankton growth
and cell division demonstrated theoretically (Sharples 2007).

In light of the complexity in physical drivers of phyto-
plankton biomass dynamics, the model presented here pro-
vides a pathway forward to identifying distinct phytoplankton
populations within embayments from a single moored chloro-
phyll fluorometer. Furthermore, it enables quantification of
growth rates of these populations and identification of non-
conservative behavior, all three of which are critical to under-
standing the drivers of phytoplankton biomass dynamics and
will lead to important discoveries in the future.

Comments and recommendations
This model requires concurrent measurements of current

velocity, PAR, and Fchl. However, it can be parameterized without
explicit current and/or PAR measurements. At its simplest, the
model requires only a chlorophyll fluorometer and a tide chart.
In the absence of a PAR sensor, nonphotochemically quenched
Fchl observations can be identified by time of day, rather than by
PAR, which increases the absolute error compared to extracted
[Chl a] slightly (see Fig. 3; RMSE = 1.13 vs. RMSE = 1.03 for the
full model). The most robust approach to selecting unquenched
values using hour of day is to calculate the interval 1 h pre-dusk
through 1 h post-dawn using a simple seasonal insolation-by-
latitude model. In the absence of an ADCP or current meter, tide
chart predictions of high and low tide can be used to create Fchl
high and low tide endmembers. Alternatively, a theoretical
model of dynamic tides, U-tide, can be used, if a sample current
velocity data set from the desired location is available (Codiga
2011). If current velocity is not used, residuals identified by the
model will include nontidal advection in addition to non-
conservative variability in phytoplankton biomass, complicating
the identification of nonconservative behavior. As expected,
error is higher if no ADCP is available (RMSE = 1.44; U-tide used
to identify tidal maxima). Finally, if time of day is used instead of
PAR, and U-tide is used instead of current velocity observations,
error similarly increases compared to the full model
(RMSE = 1.25). PAR and current velocity serve only to select
unquenched measurements and identify high and low tide
times, respectively. Once this is done, the steps defined in
“Model development” section are the same. The model is thus
suitable for a range of instrumental capabilities while still
regaining its primary function of correcting Fchl for NPQ and
tidal advection if only a chlorophyll fluorometer and a tide chart
are available.
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