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Abstract: Platelets are classically recognized for their important role in hemostasis and thrombosis
but they are also involved in many other physiological and pathophysiological processes, including
infection. Platelets are among the first cells recruited to sites of inflammation and infection and they
exert their antimicrobial response actively cooperating with the immune system. This review aims to
summarize the current knowledge on platelet receptor interaction with different types of pathogens
and the consequent modulations of innate and adaptive immune responses.
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1. Introduction

Infectious diseases are an unmet human health challenge and remain a major cause of
morbidity and mortality worldwide, especially in resource-limited countries.

The entry of a pathogen into the bloodstream could represent a lethal threat to the
organism, and therefore containment of the infection is attempted by all available means.
In vertebrates, two types of immunity protect the host from infection: innate and adaptive
immunity. The innate immune system is genetically programmed to recognize invariant
features of invading microbial pathogens, whereas the adaptive immune system employs
antigen-specific receptors.

Platelets are classically known as essential mediators of haemostasis and thrombosis,
but they are also involved in many other physiological and pathological processes, includ-
ing angiogenesis, atherosclerosis, tumour progression, and infection. It is now clear that
platelets are among the first cells recruited to sites of inflammation and infection, and they
play a fundamental role in both processes. The immune effects of platelets can be observed
both locally at the site of platelet activation and deposition and systemically at sites distant
from the platelet activation itself.

In this review, we will discuss the important role of platelets in infections, focusing on
the specific platelet receptors involved and on the shedding of platelet surface proteins. As
in many other fields, the COVID-19 pandemic strongly boosted the research on platelets in
the SARS-CoV-2 infection. However, in this review, we did not focus on this specific aspect
since it has been widely described in several recent papers [1,2].

2. Platelets in Infection

Platelets are among the first cells recruited to sites of inflammation and infection
and play an essential role in initiating intravascular immune responses through complex
cooperation with white blood cells and vascular endothelial cells. The interplay between
platelets and immune cells is also flanked by coagulation and complement systems, all of
which form an intertwined process linking inflammation and thrombosis (Figure 1).
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Figure 1. Schematic representation of platelet response to pathogen infection. Created with Bio-
Render.com (Licensing number HN254B4IYS).  
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bloodstream. This complex set of responses, involving platelets, immunity, and coagula-
tion, has been defined with the general term of immunothrombosis. Moreover, inflamma-
tion, which has been classically considered an entirely separated unit, is a common re-
sponse occurring upon wounds, tissue damage, and thrombotic events. It is now clear that 
thrombosis and inflammation should be investigated as a single entity and inflammatory 
markers can be exploited to better understand the physiopathology of thrombosis [3]. 

Although platelets actively participate in both innate and adaptive immunity, they 
are considered fundamental players in innate immunity, expressing several different 
pathogen recognition receptors (PRRs). Through these receptors, platelets act as vascular 
sentinels that interact with pathogens and exert antimicrobial activity by mediating both 
direct and indirect effects, as summarized in Table 1. 

Table 1. Platelet-mediated responses in infection. 
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Shuttling of blood-borne bacteria to CD8α+ dendritic cells [8] 
CD4⁺ T-cell differentiation [18,19] 
Induction of Ig isotype switching [20,21] 
Release of pro-inflammatory molecules See Table 2 
Leukocyte recruitment [8,10,14,22–24] 

Platelets exploit actomyosin-dependent forces to migrate and scan the surrounding 
microenvironment. After recognizing and binding the pathogens, platelets shuttle them 
to antigen-presenting cells and boost the activity of professional phagocytes [7,8,25,26]. 
However, migrating platelets also directly engulf bacteria and viruses, as demonstrated 

Figure 1. Schematic representation of platelet response to pathogen infection. Created with BioRen-
der.com (Licensing number HN254B4IYS).

Physiologically, the inflammation-dependent activation of the coagulation system
is part of the host response to pathogens aimed at limiting their systemic spread in the
bloodstream. This complex set of responses, involving platelets, immunity, and coagulation,
has been defined with the general term of immunothrombosis. Moreover, inflammation,
which has been classically considered an entirely separated unit, is a common response
occurring upon wounds, tissue damage, and thrombotic events. It is now clear that
thrombosis and inflammation should be investigated as a single entity and inflammatory
markers can be exploited to better understand the physiopathology of thrombosis [3].

Although platelets actively participate in both innate and adaptive immunity, they are
considered fundamental players in innate immunity, expressing several different pathogen
recognition receptors (PRRs). Through these receptors, platelets act as vascular sentinels
that interact with pathogens and exert antimicrobial activity by mediating both direct and
indirect effects, as summarized in Table 1.

Table 1. Platelet-mediated responses in infection.

Direct Platelet-Mediated Responses References

Immunothrombosis [4,5]
Pathogen trapping [6–9]
Release of antimicrobial effectors [10–12]
Expression of antiviral molecule [13]

Indirect Platelet-Mediated Responses References

Neutrophil activation and NETosis [14–17]
Shuttling of blood-borne bacteria to CD8α+ dendritic cells [8]
CD4+ T-cell differentiation [18,19]
Induction of Ig isotype switching [20,21]
Release of pro-inflammatory molecules See Table 2
Leukocyte recruitment [8,10,14,22–24]

Platelets exploit actomyosin-dependent forces to migrate and scan the surrounding
microenvironment. After recognizing and binding the pathogens, platelets shuttle them
to antigen-presenting cells and boost the activity of professional phagocytes [7,8,25,26].
However, migrating platelets also directly engulf bacteria and viruses, as demonstrated
by Staphylococcus aureus and human immunodeficiency virus (HIV) [6,10]. They actively
translocate the pathogens to the open canalicular system (OCS) invaginations, thus ef-
fectively preventing their blood-borne dissemination. Microbe collection by migrating
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platelets can exert additional functional responses. For example, HIV virions, after being
trapped in the OCS, come into contact with Platelet Factor 4 (PF4, CXCL4), which inhibits
virus replication [27].

Table 2. Molecules released from platelets during infection.

Molecules Effect

PF4 First-line defence against invading pathogens [28]. Intraerythrocytic parasite killing [11,29]
and activation of neutrophils [14–17].

Soluble CD40 Ligand
APC maturation and activation, production of interferon-γ by T cells, and differentiation of
naïve T cells into effector cells [30,31]. Stimulation of dendritic cells [32]. Regulation of B-cell
isotype switching and CD8 T-cell responses.

TGF-β1 Conversion of conventional CD4+ T cells into induced regulatory T cells [33]

PDGF Attraction of monocytes to the site of the vascular injury and production of superoxide anions
from eosinophils [34].

VWF Increase of inflammation and neutrophils extravasation [35–37].

SDF-1 Potent chemoattractant of monocytes, T and pre-B lymphocytes [38], and dendritic cells [39].
Effect on T-cell rolling and tight adhesion to activated endothelial cells [40].

ADP Increase of antigen endocytosis and processing [41].

Serotonin Stimulation of monocytes [42] and lymphocytes [43].

P-selectin Recruitment and activation of both innate and adaptive immune responses.

PF4: Platelet Factor 4; TGF-β1: Transforming growth factor beta 1; PDGF: Platelet-derived growth factor; VWF:
von Willebrand factor; SDF-1: Stromal cell-derived factor-1.

During infection, receptor-mediated platelet activation is also accompanied by the
secretion of α-granules and dense granules that store molecules with antimicrobial activity
and/or immunomodulatory effect (Table 2).

The most abundant antimicrobial protein contained in α-granules is the abovemen-
tioned PF4, whose activity is well characterized for malaria parasites [29,44] but also
bacteria and viruses. Platelet α-granules also contain α- and β-defensins that display
antibacterial activity against Escherichia coli [45] and Staphylococcus aureus [10], respec-
tively. In addition to direct antimicrobial activity, other molecules stored in α-granules
(mainly CD40L and TGFβ) have the ability to shape the immune systems. Both solu-
ble and membrane-bound CD40L mediate immunomodulatory activities by binding to
the CD40 expressed in the immune cells. Soluble CD40L released by activated platelets
stimulates the dendritic cells, resulting in increased phagocytosis and the intracellular
killing of bacteria [32]. The CD40L expressed on the platelet surface also plays a key
role in supporting antibody isotype switching (e.g., from IgM to IgG) and enhancing
CD8+ T-cell function [20,21]. Moreover, the binding of platelet-derived CD40L to CD40
upregulates the expression of the adhesion molecules and secretion of pro-inflammatory
cytokines by the endothelial cells, thus promoting the recruitment of leukocytes at the sites
of infection [23,46,47]. Platelets also contribute significantly to increasing the circulating
levels of TGF-β, and various mechanisms have been proposed for its immunoregulatory
functions. Platelet-derived TGF-β regulates the differentiation of CD4+ T cells into regu-
latory T cells [18,48], which are immunosuppressive and help maintain tolerance toward
self-antigens. The importance of the platelet TGF-β in the differentiation of regulatory T
cells was clearly demonstrated by the observation that regulatory T-cell concentration and
function are impaired in thrombocytopenic disorders [49,50]. Stromal cell-derived factor-1
(SDF-1, CXCL12) is another potent, platelet-derived, chemoattractant and modulator of
immune responses mediated by monocytes and lymphocytes [38], dendritic cells [39], and
endothelial cells [40,51]. PF4, itself released from platelet α-granules, is involved in the
recruitment and activation of leukocytes. Similarly, the platelet-derived growth factor
(PDGF) attracts monocytes to the site of the vascular injury [52], stimulates eosinophils to
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generate superoxide anions [34], and could limit these pro-inflammatory events through
the autocrine feedback inhibition of platelet aggregation.

Finally, the release of α-granules results in the exposure of P-selectin, which is respon-
sible for the platelet–leukocyte interaction, a common feature in infectious diseases [53–56].
The formation of platelet–leukocyte aggregates leads to the stimulation of leukocyte sig-
nalling pathways culminating in the release of bactericidal/pro-inflammatory molecules,
thromboinflammation, and/or the phagocytosis of the pathogen [55,57,58].

Molecules known to play a central role in platelet activation in the frame of haemosta-
sis and thrombosis may also act as inflammatory/immune modulators. The von Willebrand
factor (VWF) promotes inflammation, increasing the extravasation of neutrophils [35–37].
Similarly, ADP, released from platelet-dense granules, increases antigen endocytosis and
processing [41] in dendritic cells through binding to its receptor, P2Y12. Recently, a number
of immunoregulatory functions have also been ascribed to serotonin, another important
molecule released from platelet-dense granules during cell activation. Almost all immune
cells express serotonin receptors, and, therefore, serotonin exerts functions in innate, as
well as adaptive, immunity; for example, by modulating cytokine release from mono-
cytes/macrophages, neutrophil recruitment, and T-cell activation [42,43].

The importance of platelets in infection is further supported by the observation that
thrombocytopenia (i.e., a low platelet count) represents a hallmark of poor prognoses in
many infectious diseases [59,60]. Patients with sepsis associated with thrombocytopenia
usually have a worse prognosis and increased mortality if compared with patients with
normal platelet counts [61]. This link between platelet number and clinical outcome has
been confirmed in several mouse models, and platelet-depleted mice typically displayed
increased pathogen dissemination and increased mortality compared to mice with normal
platelet counts [62–64].

3. Platelet Receptors in the Response to Infection

The ability of platelets to recognize viral, parasitic, and bacterial infections and to stim-
ulate specific responses is mediated both by PRRs, which are specialized for pathogen recog-
nition during infection, and by receptors primarily involved in the haemostatic/thrombotic
response (haemostatic receptors) (Figure 2) [65].
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P2Y12 CpG ODN [68] 
ClfA and ClfB (clumping factor A and B of Staphylococcus aureus); CpG ODN (unmethylated cyto-
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Figure 2. Platelets sense pathogens and host damage through recognition of PAMPs or DAMPs
using receptors. Toll-like receptors (TLRs) include surface receptors TLR2 and 4 and endosomal
TLR9. NOD-like receptors (NLRs) include NLRP3 and NOD-2. C-type lectin receptors (CLRs) include
DC-SIGN and CLEC-2. Haemostatic platelet receptors: GPIb, GPVI, integrin αIIbβ3, P2Y12, and
integrin α2β1. Created with BioRender.com (Licensing number MY2549P1ZK).
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These receptors initiate complex and only partially known signal transduction path-
ways that cooperate to support the functional role of platelets during infection. Table 3
summarizes the known ligands of platelet receptors involved in the response to infection.

Table 3. Platelet receptors involved in pathogen recognition.

Receptor Pathogens/PAMPs

PRRs

CLRs
- CLEC-2 HIV [66], DV [67], CpG ODN [68]
- DC-SIGN HIV [66], DV [69]

TLRs
- TLR2 Periodontopathogens [70], HCMV [58], Pam3CSK4 [71]
- TLR4 LPS [72–74]
- TLR9 CpG ODN [75]

NLRs
- NLRP3 DV-induced ROS products [76]
- NOD2 MDP [77]

Haemostatic Receptors

GPVI HCV [78], SSL5 [79,80], CpG ODN [81]
GPIb SSL5 [82], SrpA [83], GspB, Hsa [84]. Protein A (SpA) [85], H. Pylori [86]

Integrin αIIbβ3 Hantavirus [87], Adenovirus [88], SSL5 [82], SdrG [89], PadA [90], IsdB [91],
FnBPA, FnBPB [92], ClfA, ClfB [93]

Integrin α2β1 Rotavirus [94]
FcγRIIA IgG-opsonized cells [95], IAV (H5N1) [96], FnBPA, FnBPB [92]
P2Y12 CpG ODN [68]

ClfA and ClfB (clumping factor A and B of Staphylococcus aureus); CpG ODN (unmethylated cytosine-phosphate-
guanine oligodeoxynucleotides); DV (dengue virus); FnBPA and FnBPB (fibronectin-binding proteins A and B of
Staphylococcus aureus); GspB and Hsa (surface proteins of Streptococcus gordonii); HCMV (human cytomegalovirus);
HCV (hepatitis C virus); HIV (human immunodeficiency virus); IAV H5N1 (avian influenza A virus of the
H5N1); IsdB (iron-regulated surface determinant, IsdB, of Staphylococcus aureus); LPS (lipopolysaccharide); MDP
(muramyl dipeptide); SSL5 (staphylococcal superantigen-like protein 5); PadA (platelet adherence protein A of
Streptococcus gordonii); Pam3CSK4 (Pam3CysSerLys4); Protein A (Spa) (surface protein of Staphylococcus aureus);
SdrG (Staphylococcus epidermidis serine–aspartate repeat protein G); SrpA (Streptococcus sanguis platelet adhesin
called serine-rich protein A).

3.1. Pattern Recognition Receptors (PRRs)

PRRs were originally discovered in innate immune cells and are involved in the pri-
mary defence against infectious diseases. PRRs recognize two distinct groups of molecular
patterns: damage-associated molecular patterns (DAMPs) and pathogen-associated molec-
ular patterns (PAMPs). DAMPs are classically defined as endogenous danger signals, and
they are released by host cells under stress conditions, such as tissue damage. Conversely,
PAMPs are derived directly from pathogens and thus represent exogenous signals for the
host. Bacterial membrane/wall or viral capsid components and nucleic acids, particularly
the unmethylated CpG motifs, are some examples of PAMPs. Three classes of PRRs are
known to be expressed by platelets: toll-like receptors (TLRs), C-type lectin receptors
(CLRs), and NOD-like receptors (NLRs), whereas RIG-I-like receptors (RLRs) have not yet
been found in platelets [97].

3.1.1. TLRs

The most abundantly expressed receptors on platelets are TLR2-4-9, whereas TLR1-3-
5-6-8 receptors are lower expressed. Due to the low number of studies examining TLRs 7
and 10, it is difficult to determine the extent of their expression on/within platelets. TLRs
can recognize both PAMPs and DAMPs and mediate several responses in platelets, such as
aggregation, their interaction with leukocytes, and the release of inflammatory mediators.
The role of platelet TLRs in infection is not discussed in detail here since topic-specific
reviews have recently been published [98–100].
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3.1.2. CLRs

CLRs are specialized in the recognition of glycans through their conserved carbohydrate-
binding domains. Two members of the CLR family, namely C-type lectin-like receptor 2
(CLEC-2) and dendritic cell-specific ICAM-3-grabbing non-integrin 1 (DC-SIGN), are abun-
dantly expressed in platelets.

CLEC-2 (also known as CLEC1B) is a type II transmembrane receptor, and it has been
identified on platelets as the major receptor for the platelet-activating snake venom, aggretin.
It is involved in the stabilization of clots, and it plays an important role in inflammation by
binding podoplanin on the macrophages and by supporting direct pathogen recognition
and interaction [101].

CLEC-2 has been shown to mediate Dengue Virus (DV)-induced platelet activation by
stimulating the secretion of platelet α- and dense-granules and the release of extracellular
vesicles (EVs). EVs released upon DV infection can interact with CLEC5A and TLR2 recep-
tors on the surface of neutrophils and macrophages [67], promoting their recruitment to the
site of infection, the NETs’ formation, and the release of pro-inflammatory cytokines [102].

In HIV infection, CLEC-2 directly mediates viral capture and internalization in closed
endosomal structures, a process that occurs preferentially in activated platelets [6,66]. After
this internalization, the chemokine, PF4, interacts with the major HIV envelope glycoprotein
(GP120) and inhibits viral replication.

CLEC-2 has also been described as the main receptor involved in platelet responsive-
ness to bacterial unmethylated CpG-rich DNA. Synthetic CpG-containing oligodeoxynu-
cleotides (CpG-ODNs) are able to mimic the effect of viral/microbial DNA and to elicit
a strong immune response, including the secretion of cytokines and chemokines and the
activation of B and T cells, monocytes, NK cells, and antigen-presenting cells (APCs).
Platelets are able to interact with and internalize CpG ODN in a process that likely depends
on multiple receptors, including CLEC-2, GPVI, TLR-9, and P2Y12. Through CLEC-2,
CpG-ODNs induce platelet activation by stimulating Src- and Syk-dependent pathways,
ultimately promoting PLCγ2 activation [68]. This process also leads to P-selectin expres-
sion, platelet aggregation, and the formation of platelet–neutrophil and platelet-monocyte
aggregates [81].

DC-SIGN (also known as CD209) is a type II transmembrane glycoprotein that recog-
nizes mannose-containing pathogen-associated carbohydrates. It is expressed mainly on
the surface of macrophages and dendritic cells, but it has also been detected in platelets.
Similarly to CLEC-2, DC-SIGN is involved in the interaction/engulfment of HIV and DV
and thus their inhibition through PF4 activity. It has been observed that the combination
of pharmacological inhibitors targeting these two lectins greatly reduces the binding of
virions to platelets and decreases their internalization. Nevertheless, the actual role of
platelets in HIV and DV infection remains controversial. As mentioned above, platelets
produce and release molecules that negatively affect the virus’s lifespan, including PF4. On
the other hand, they serve as shelters for virions during immune cell attacks and aid in the
transport of the virus in the bloodstream. In fact, the interaction between platelets and HIV
facilitates viral spread through the bloodstream and participates in the development of
thrombocytopenia, which is frequently observed in HIV/AIDS patients. Moreover, it was
recently discovered that the DV is able to enter the platelet cytosol in a DC-SIGN-dependent
manner and undergo decapsidation, releasing the ssRNA content. The viral genome is then
replicated, new nucleocapsids are assembled in the platelet Golgi apparatus, and finally,
viral particles are released into the bloodstream [69].

3.1.3. NLRs

Platelets express two cytoplasmic PRRs belonging to the NLR family: the NACHT,
LRR, and PYD domains-containing protein 3 (NLRP3) and the nucleotide-binding oligomer-
ization domain-containing protein 2 (NOD2) [103].

NLRP3 operates as a cytoplasmic sensor to activate the inflammasome, and it rec-
ognizes tissue damage signals such as reactive oxygen species (ROS) generated upon
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the cell–PAMP interaction. NLRP3 is abundant in macrophages but is also constitutively
expressed in platelets, where it supports the synthesis of pro-inflammatory cytokines.
Specifically, the infection of platelets by DV induces ROS production by the mitochon-
dria in a RIP1/RIP3-dependent manner that activates NLRP3. Active NLRP3 recruits the
apoptosis-associated speck-like protein (ASC), which in turn activates caspase-1 and leads
to the formation of the inflammasome that controls the secretion of the pro-inflammatory
cytokine IL-1β. In platelets from DV-infected patients, active NLRP3-inflammasomes cleave
the full-length pro-IL-1β into the mature IL-1β, which accumulates in the platelets and
is then sorted into EVs. These platelet-derived EVs eventually interact with endothelial
cells and increase vascular permeability, contributing to the vasculopathy of Dengue [104].
In addition, IL-1β can bind to the IL-1 receptor (IL-1R) exposed on the platelet surface,
leading to the phosphorylation of c-Src and Syk and regulation of platelet spreading and
clot retraction via integrin αIIbβ3 outside-in signalling [105]. Intriguingly, selective NLRP3
inhibitors have been shown to ameliorate platelet defects associated with DV, suggesting
that the NLRP3 inflammasome may be a novel target for the treatment of Dengue-associated
thrombocytopenia [76].

A recent study demonstrated the co-localization of NLRP3 and ASC in platelets upon
LPS-induced stimulation and in platelets isolated from cecal ligation puncture (CLP)-
induced septic rats. In the same experimental model, increased caspase-1 activity and
IL-1β secretion were also observed, which were associated with impaired endothelial
permeability and multiple organ damage [106]. The same research group later showed
that treatment of CLP mice with a specific NLRP3 inflammasome inhibitor (MCC950)
significantly attenuated platelet activation and multi-organ damage induced by sepsis [107].
Another inhibitor of NLRP3 inflammasome activation identified in platelets is Ibrutinib, an
inhibitor of Bruton’s tyrosine kinase (BTK), but its potential efficacy in sepsis has not yet
been established [108].

The increased expression of NLRP3 and cleavage of IL-1βwere observed in platelets
from patients infected with chikungunya virus, suggesting that the platelet–inflammasome
engagement may be a relatively common response to viral infection [109].

NOD2 is a cytoplasmic protein abundantly expressed in monocytes and dendritic
cells, and it has recently been detected in platelets. During infection, Gram-positive
and Gram-negative bacteria can release several immunomodulatory components in the
bloodstream, including the cell wall fragment, muramyl dipeptide (MDP). Circulating
MDPs can be transported by endosome recycling into the cellular cytosol, where it can
interact with its receptor, NOD2 [110]. The selective stimulation of NODs by MDPs
potentiates platelet activation and aggregation, suggesting that this receptor may contribute
to platelet responsiveness to infection. Moreover, the MDP-mediated activation of NOD2
promoted IL-1β accumulation in human and mouse platelets in a caspase-1-dependent
manner [77]. Moreover, platelets from septic patients or mice with CLP-induced sepsis
show a stronger expression of P2Y12 receptors promoted by a NOD2-dependent pathway.
Indeed, P2Y12 overexpression was attenuated in septic NOD2-deficient mice [111].

3.2. Haemostatic Receptors

Platelet membrane receptors are essential components of the molecular machinery that
supports platelet activation in haemostasis and thrombosis. However, some key haemo-
static receptors also play important roles in pathogen recognition and platelet activation,
supporting immunothrombosis and other defenceresponses.

Glycoprotein VI (GPVI) is selectively expressed by platelets and their progenitor cells
and, together with integrin α2β1, is the major platelet collagen receptor. On the plasma
membrane, GPVI is physically associated with the γ-chain of the FcR immunoglobulin
receptor (FcR-γ chain), which carries the immunoreceptor tyrosine-based activation motif
(ITAM) essential for collagen-induced signal transduction. In addition to its well-known
role in haemostasis/thrombosis, GPVI is also involved in the response to viral and bacte-
rial infections.
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Human GPVI has been identified as an interactor of hepatitis C virus (HCV) through
the extracellular immunoglobulin (Ig)-like domains and plays a relevant role in viral
transport and persistence [78]. GPVI has also been implicated in infection with Gram-
negative bacteria, including Klebsiella pneumoniae, and Gram-positive bacteria, such as
Staphylococcus aureus. In sepsis caused by Klebsiella pneumonia, platelet GPVI is involved
in host defence by supporting platelet recruitment and activation to the site of infection,
thereby affecting the formation of platelet–leukocyte aggregates, leukocyte activation,
and bacteria phagocytosis [79]. Staphylococcal superantigen-like protein 5 (SSL5) is an
exotoxin secreted by Staphylococcus aureus that induces platelet activation, adhesion, and
aggregation through interaction with GPVI, as well as GPIbα and integrin αIIbβ3 [80,82].
Platelet activation mediated by SSL5 has a detrimental effect on prognosis, as it can lead to
disseminated intravascular coagulation (DIC) associated with multiple organ failure and
thrombocytopenia. The importance of GPVI in infection has recently been confirmed in
septic patients. Platelets from patients diagnosed with sepsis were found to be hyporeactive,
and the GPVI signalling cascade was severely impaired. The mechanisms underlying this
phenomenon remain to be explored, but the shedding of the ectodomain of the GPVI has
been proposed as one of the possible causes [112].

Glycoprotein Ib (GPIb) (also known as CD42) is a component of the GPIb-V-IX complex
and binds vWF, allowing platelet rolling and adhesion to the injury site under high shear
stress. GPIb has been shown to interact with several types of bacterial PAMPs, including
the Streptococcus sanguis platelet adhesin called serine-rich protein A (SrpA) [83], the surface
proteins of Streptococcus gordonii GspB and Hsa [84], and also the Protein A (Spa) expressed
on the surface of Staphylococcus aureus. In the latter case, recognition of Spa by GPIb does not
occur directly but is mediated by soluble vWF. This mechanism is a typical example of how
soluble molecules can act as mediators of binding between host cells and pathogens [85].
In this context, vWF, with the support of IgG, also mediates the interaction of GPIb with
Helicobacter pylori [86].

Integrin αIIbβ3 (also known as GPIIbIIIa or CD41/CD61) is the most abundant platelet
membrane receptor and supports several key responses by binding RGD containing pro-
teins such as fibrinogen and fibronectin. Integrin αIIbβ3 also mediates interaction with
pathogens, including Hantavirus [87,113] and Adenovirus [88], and different bacterial
strains. The fibrinogen-binding protein serine–aspartate repeat protein G (SdrG), also
known as Fbe, from Staphylococcus epidermis is a critical interactor of integrin αIIbβ3. It is
present in most clinical strains and causes platelet aggregation via both direct and indirect
interaction. A direct interaction occurs between the B domain of SdrG and integrin αIIbβ3,
while an indirect interaction involves the binding of fibrinogen and the IgG receptor,
FcγRIIa [89].

Another indirect interaction between bacteria and platelets is mediated by fibrinogen
and clumping factors in Staphylococcus aureus. Like the Sdr proteins, clumping factors A
(ClfA) and B (ClfB) contain serine and aspartic acid dipeptide repeats (SD repeats) that link
the transmembrane region to the ligand binding domain. The latter binds fibrinogen and
induces platelet aggregation in an αIIbβ3-dependent manner but also in an IgG-dependent
manner [93]. In addition, the fibrinogen/fibronectin-binding proteins FnBPA and FnBPB
were involved in Staphylococcus aureus-induced platelet activation. It has been shown
that the binding of FnBP to αIIbβ3 via fibrinogen and fibronectin bridges in the presence
of FnBP-specific antibodies is required for full platelet activation [92]. Other important
binding partners for integrin αIIbβ3 that support adhesion to pathogens and platelet
aggregation are the platelet adherence protein A (PadA) of S. gordonii [90] and surface
determinant (Isd) proteins of Staphylococcus aureus [91].

The human platelet FcγRIIa receptor (also called CD32a) is a low-affinity receptor
for the constant region of IgG, thus mediating the binding of immune complexes and
IgG-opsonized cells. As described above, platelet interaction with different pathogens,
including Staphylococcus aureus and Staphylococcus epidermis, and subsequent activation can
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be supported by IgG. The signalling through FcγRIIa is based on a tyrosine kinase cascade
and results in Ca2+ mobilization that enhances platelet activation [95].

Interestingly, virus-mediated platelet responses are also dependent on FcγRIIa. Im-
munocomplexes of the influenza A (H1N1) virus with cross-reactive IgG activate platelets
through FcγRIIA, increasing platelet degranulation and microparticle shedding [96].

Platelets express additional Fc receptors, including FcεR and FcαRI, which enable the
scavenging of circulating IgE- and IgA-containing immune complexes, respectively. Platelet
FcεR (CD23) is known to play a role in allergic reactions [114], but it was also proposed
as a possible mediator of platelet response to Schistosoma mansoni parasite infection in
rats [115]. FcαRI (CD89) mediates platelet activation through Src family kinases and
induces the release of tissue factor (TF) and IL-1β, suggesting a possible involvement for
human platelet FcαRI and serum IgA in thrombosis and inflammation [116].

4. Shedding of Platelet Surface Proteins in Infection

As described, membrane receptors are essential for the recognition of infectious
agents. Another mechanism involving platelet membrane proteins in the context of infec-
tion/inflammation is proteolytic shedding. Platelet transmembrane protein shedding oc-
curs when the extracellular portion of the protein is cleaved by specific enzymes commonly
referred to as sheddases, releasing the soluble fragment into the surrounding environment.
This process may act as a control mechanism to reduce the receptor density on the platelet
surface, limiting their responsiveness and thrombus formation. Moreover, the soluble
ectodomain can mediate functional responses in several target cells.

Only a limited proportion (approximately 10%) of platelet membrane proteins are
thought to be subject to protein shedding. Using a proteomic approach, 69 platelet mem-
brane proteins have been identified as candidates for shedding [117], but activation-induced
shedding has been experimentally demonstrated for a few of them [118]. Since platelet acti-
vation also occurs during inflammation triggered by pathogens, the soluble fragments shed
from the platelet surface may represent novel potential biomarkers for infection [119,120].
The major platelet proteins whose shedding has gained interest in the context of infection
are described below.

4.1. sCD40L

The most studied platelet soluble fragment in infection and inflammation is the
sCD40L (also known as CD154; MW 16 kDa). sCD40L is the soluble form of the trimeric
transmembrane protein CD40L, which is critical for cell signalling in innate and adaptive
immunity. In resting platelets, CD40L is stored in α-granules and, upon activation, it
is rapidly exposed on the platelet surface [121], where it can act by binding to CD40 or
the integrins on platelets and immune cells. Membrane CD40L can also be cleaved by
the metalloproteinases MMP-2 and MMP-9, resulting in the release of sCD40L, which
has cytokine-like activity. Interestingly, although CD40L is mainly expressed in immune
cells, more than 95% of circulating sCD40L in blood originates from platelets [122]. The
normal range of sCD40L in the serum of healthy individuals is estimated to be 0.79 to
4.7 ng/mL [123,124]. Elevated levels of sCD40L have been found in several infectious
diseases, including Pseudomonas aeruginosa infection in cystic fibrosis patients [125], visceral
leishmaniasis caused by Leishmania infantum [126], meningococcal sepsis [127], DENV-2 [45],
HIV [128], and periodontopathogens infections [129].

In particular, platelet-derived sCD40L plays a fundamental role in the pathophysiology
of abdominal sepsis. In a mouse model of sepsis induced by CLP, Rahman and co-workers
showed that abdominal sepsis was associated with increased plasma levels of sCD40L and
a concomitant reduced expression of CD40L on the platelet surface. In the same study,
platelet depletion was shown to strongly decrease the plasma levels of sCD40L, confirming
its possible platelet origin [130]. CD40L shedding and the consequent regulation of sCD40L
plasma levels under septic conditions are strongly dependent on Rac1 signalling. In
activated platelets, Rac1 controls the surface mobilization of CD40L, whereas, in neutrophils,
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Rac1 regulates MMP-9 secretion, which in turn promotes the proteolytic cleavage of platelet
CD40L [131]. Once released into the extracellular environment, platelet-derived sCD40L
can act as a ligand of Mac-1 (integrin αMβ2) expressed on the surface of neutrophils and
promoting their activation and subsequent adhesion and migration but also the formation
of platelet–neutrophil aggregates [132].

sCD40L levels are affected by the auto-amplification loop of platelet activation, in
which sCD40L interacts with platelet CD40 and integrin αIIbβ3, resulting in further platelet
activation and an increased release of sCD40L [124]. In this context, targeting platelet
CD40L’s metabolism has been considered an alternative therapeutic strategy for a wide
range of inflammatory disorders. For instance, the use of antiplatelet agents that can limit
the release of sCD40L from platelets while leaving surface-expressed co-stimulatory CD40L
on the T cells unchanged, such as integrin αIIbβ3 antagonists [133] or clopidogrel [134],
has been proposed for the treatment of HIV-associated neuroinflammation without side
effects on the humoral immune response [135].

4.2. sTLT-1

TREM-like transcript 1 (TLT-1) is an immunoreceptor tyrosine-based inhibition mo-
tif (ITIM)-containing receptor packaged into α-granules of resting platelets. Activation-
induced platelet degranulation supports the exposure of TLT-1 on the plasma membrane,
where it operates as a fibrinogen receptor. TLT-1 actively contributes to intracellular platelet
signalling by interacting with cytoplasmic ERM proteins and modulating actin cytoskeleton
polymerization [136].

Upon platelet activation, TLT-1 can be proteolytically cleaved and released as a soluble
fragment (sTLT-1, 17 kDa) into the extracellular environment [137], and it is the fourth most
abundantly released molecule in the supernatant of activated platelets [117]. sTLT-1 has
not been found in the plasma of healthy individuals and mice, whereas it has been detected
under conditions associated with platelet activation, including inflammation. High levels of
sTLT-1 were found in the plasma of septic patients and mice injected with LPS, suggesting
that sTLT-1 may be a meaningful marker of septicemia. It has also been shown that the
addition of a recombinant sTLT-1 to ADP- or U46619-activated platelets enhanced platelet
aggregation in a dose-dependent manner. The same study demonstrated an association
between the plasma levels of sTLT-1 and the development of DIC, a condition frequently
related to sepsis, suggesting sTLT-1 as a prognostic indicator of adverse outcomes [136,138].
sTLT-1 also displayed anti-inflammatory activity by binding TREM-1 expressed on neu-
trophils and monocytes and inhibiting its receptor activity. In several mouse models of
septic shock, blocking TREM-1 signalling reduced organ damage and animal mortality.
Therefore, the development of a synthetic mimetic of platelet-derived sTLT-1 may be a
potential new approach to control the inflammation associated with sepsis [117].

4.3. sP-Selectin

Soluble P-selectin (sP-selectin, sCD62P, 93 kDa) has been detected in the plasma of
healthy humans and mice at a concentration of 15 to 100 ng/mL, and its levels are in-
creased in cardiovascular diseases such as atherosclerosis, hypertension, and myocardial
infarction [139]. Like TLT-1, P-selectin (also known as CD62P) is stored in the α-granules of
platelets and exposed on the cell membrane surface following platelet activation. However,
P-selectin is also expressed by endothelial cells. Platelet P-selectin plays a key role in
the formation of platelet–leukocyte aggregates by interacting with P-selectin glycoprotein
ligand-1 (PSGL-1) expressed by leukocytes. This interaction is crucial for leukocyte re-
cruitment and their rolling on activated platelets, supporting the inflammation process. It
has been proposed that the interaction between platelets and leukocytes is involved in the
shedding of P-selectin since levels of circulating sP-selectin are significantly reduced in
PSGL-1-deficient mice [140]. Based on the increased shedding of the sP-selectin observed
under inflammatory conditions, it has been proposed as a biomarker for infection. Particu-
larly elevated levels of sP-selectin have been detected in patients with abdominal sepsis
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or skin infections [141]. Periodontopathogens [142] and alphaviruses [109] are the two
pathogens identified to date that are known to induce a significant increase in the circu-
lating plasma levels of sP-selectin. In particular, patients infected by the mosquito-borne
alphavirus responsible for Chikungunya fever have strong platelet activation and increased
levels of sP-selectin compared to healthy controls. Nonetheless, the in vitro infection of
platelets from healthy donors with Chikungunya virus only partially reproduces the phe-
notype observed in patients, probably because in vivo infection with CHIKV can trigger
systemic generation of additional stimuli that promote platelet activation and the shedding
of P-selectin [109].

4.4. sGPIbα, sGPVI, and sCLEC2

GPIbα and GPVI are known to be shed by metalloproteases of the ADAM family [143].
The shedding of GPIbα is mediated by ADAM17 upon a GPIbα–VWF interaction

and supports the release of the receptor ectodomain (sGPIbα’s molecular weight is un-
known) [144,145]. Increased levels of circulating sGPIbα and VWF have been detected in
malaria patients [146]. The functional consequences of GPIbα shedding in malaria infection
are still unknown, but it has been suggested that it may represent a negative regulatory
mechanism of the VWF-mediated cytoadherence of infected red blood cells to the activated
endothelium [147].

Soluble GPVI (sGPVI, 55 kDa) is a useful biomarker of platelet activation and throm-
botic risk and is released from the platelet surface by ADAM10-dependent proteolysis [148].
Elevated levels of sGPVI have been found in several disease conditions, but its involvement
in infections remains poorly investigated. Circulating sGPVI concentrations have been
found to be increased in the plasma of septic patients, probably by a mechanism dependent
on platelet exposure to the fibrin. Interestingly, the plasma levels of sGPVI correlated with
sepsis onset and patient mortality [149].

CLEC2, as described in the previous section, is a platelet receptor actively involved
in the body’s response to viruses. The full-length form can be proteolytically cleaved
(sCLEC-2, 25 kDa) upon platelet activation, and possible involvement of MMP-2 in this
cleavage has been suggested. Despite the importance of CLEC-2 as PRRs, the role of its
shedding in infection is still unknown. However, increased levels of sCLEC-2 have been
observed in patients with thrombotic microangiopathy and acute coronary syndrome [150],
suggesting that sCLEC-2 may serve as a marker of platelet hyperactivation in different
contexts. Moreover, a recent study developed a specific index, the ratio of sCLEC-2 levels
and platelet count, useful for following the progression of sepsis-induced coagulopathy
(SID) in septic patients [151].

5. Conclusions

The evolution of our understanding of platelet function beyond haemostasis and
thrombosis is continually expanding and has led to the discovery of several platelet roles
in infectious diseases.

Many of the platelet responses to pathogen invasion require the interplay of haemosta-
sis, inflammation, and immunity. The platelet–pathogen interaction leads to platelet
activation, which in turn results in platelet aggregation, thrombosis, increased interactions
with leukocytes, and cytokine release. Platelets are thus important coordinators of both
inflammation and immunity, and most platelet responses are common to both frameworks.
However, some platelet responses are specifically relevant for host defence (e.g., the trap-
ping of pathogens), whereas others have pronounced inflammation-regulatory functions
(e.g., the release of inflammatory molecules and chemotaxis). Unravelling the different
specific pathways regulating platelet function in haemostasis, immunity, and inflammation
is going to be a complex and stimulating challenge for the future.

Despite the role of platelets in viral and bacterial infections having been thoroughly
explored in the last few years, little is known about their role in parasitic infections. There-
fore, a massive amount of work still needs to be conducted to completely reveal the actual
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potential of platelets in pathogen detection and eradication. It is expected that platelet
membrane receptors and signalling pathways, with little recognized function in haemosta-
sis and thrombosis, may provide critical features in the context of infection. Similarly, novel
membrane proteins may be uncovered as platelet sensors of PAMPs and DAMPs, leading
to the discovery of novel molecular mechanisms in immunity. A full understanding of the
platelet involvement in the innate immune response may lead to the development of novel
therapeutic approaches to fighting pathogens and limit potentially fatal consequences, such
as infection-induced thrombosis.
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