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ABSTRACT
Alu elements are sequences of approximately 300 basepairs that together comprise
more than 10% of the human genome. Due to their recent origin in primate evo-
lution some Alu elements are polymorphic in humans, present in some individuals
while absent in others. We present PopAlu, a tool to detect polymorphic Alu elements
on a population scale from paired-end sequencing data. PopAlu uses read pair dis-
tance and orientation as well as split reads to identify the location and precise break-
points of polymorphic Alus. Genotype calling enables us to differentiate between
homozygous and heterozygous carriers, making the output of PopAlu suitable for
use in downstream analyses such as genome-wide association studies (GWAS). We
show on a simulated dataset that PopAlu calls Alu elements inserted and deleted with
respect to a reference genome with high accuracy and high precision. Our analysis
of real data of a human trio from the 1000 Genomes Project confirms that PopAlu is
able to produce highly accurate genotype calls. To our knowledge, PopAlu is the first
tool that identifies polymorphic Alu elements from multiple individuals simultane-
ously, pinpoints the precise breakpoints and calls genotypes with high accuracy.

Subjects Bioinformatics, Computational Biology, Genomics
Keywords Structural variation, Mobile element insertion, Alu elements, Paired-end sequencing,
Polymorphism genotyping

INTRODUCTION
Population-wide identification of variation has recently become possible through falling

costs of DNA sequencing. The list of whole-genome sequencing projects with large

numbers of individuals is constantly growing (Gudbjartsson et al., 2015; Genome of the

Netherlands Consortium, 2014; The 1000 Genomes Project Consortium, 2012) due to its

potential to characterize genetic variation and advance medical research.

Alu elements are a substantial source of structural variation in human genomes. This

class of active mobile elements (MEs) is abundant in all primate species and comprises

more than 10% of the human genome (Cordaux & Batzer, 2009). The Alu sequences are

approximately 300 bp long with a dimeric structure separated by a short A-rich region,

each monomer being derived from the 7SL RNA gene.

Although Alu elements do not encode genes, many studies suggest their functional

importance. Alu elements are recognized to affect protein synthesis at the transcriptional
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and post-transcriptional level (Sorek, Ast & Graur, 2002; Kelley et al., 2014) as well as DNA

methylation (De Andrade et al., 2011) and other cellular processes (Deininger & Batzer,

1999). Furthermore, they are thought to be major drivers of genome evolution (Hormoz-

diari et al., 2013; Salem et al., 2003) and assist in the creation of structural variation (Wang

et al., 2006). The importance of Alu elements is further highlighted by the potential

association with genetic instability, one of the principal causative factors in many disorders

including cancer (Deininger & Batzer, 1999; Zhang et al., 2011; Helman et al., 2014).

Alu elements have been inserted into the human genome at more than one million

locations over the last 65 million years (mya). The majority of amplifications happened

early in primate evolution. The estimated current rate of Alu retrotransposition is

approximately one per generation, which is at least 100-fold slower than at the peak of

amplification that occurred 30–50 mya ago (Batzer & Deininger, 2002; Kapitonov & Jurkal,

1996; Witherspoon et al., 2013).

The evolutionary history of Alu elements led to two broad categories, to fixed Alu

elements and polymorphic Alu elements. Fixed Alu elements are present in the entire

population and, thus, are presumably evolutionarily older. Their locations are largely

known from the reference genome. In contrast, polymorphic Alu elements appear only in a

subset of the population and, hence, are likely the result of more recent retrotransposition

events. The reference genome contains only some of these newly inserted Alus and the

locations of many other polymorphic Alu elements are still unknown.

Identification of polymorphic Alu elements from sequencing data can be divided into

two problems, the detection of Alu deletions and the detection of Alu insertions. The goal

of the Alu deletion problem is to find Alu elements present in the reference but not in

a sequenced genome. The goal of the Alu insertion problem is to find Alu elements

missing in the reference but present in a sequenced genome. We acknowledge that even

the Alu elements found by solving the deletion problem have most likely been inserted

during evolution. In addition to the discovery of polymorphic Alu loci, we consider

genotyping as an integral part of both problems as it is typically necessary for downstream

analyses. Unlike the discovery, which distinguishes only between the two states, ‘fixed’

or ‘polymorphic’, genotyping classifies individuals into three genotypes, ‘non-carrier’,

‘heterozygous carrier’ or ‘homozygous carrier’.

While a large number of methods have been developed to determine other types of

variation from sequencing data, such as SNPs and small indels, comparatively fewer

methods have been developed for finding structural variation and in particular Alu

polymorphisms. Notable exceptions are Alu-Detect (David, Mustafa & Brudno, 2013),

VariationHunter (Hormozdiari et al., 2010; Hormozdiari et al., 2013) RetroSeq (Keane,

Wong & Adams, 2013), Tangram (Wu et al., 2014), and Mobster (Thung et al., 2014).

These methods focus mainly on the detection of Alu insertions, and generally follow a

three-step analysis. First, they identify fragments (reads or read pairs) that indicate the

occurrence of an Alu insertion. Next, they cluster these fragments along the genome, such

that each cluster includes a potential insertion. Last, for each sequenced genome and at

each cluster, they calculate a likelihood that an Alu element has actually been inserted given

Qian et al. (2015), PeerJ, DOI 10.7717/peerj.1269 2/15

https://peerj.com
http://dx.doi.org/10.7717/peerj.1269


the set of fragments. These steps are similar to approaches implemented in another class

of programs that discover novel sequence insertions (Kehr, Melsted & Halldórsson, 2015;

Rizk et al., 2014; Hajirasouliha et al., 2010). But unlike novel sequences, the sequence of Alu

polymorphisms is known and repetitive, i.e., has inserted at more than a single location

in the genome, which is why the novel sequence discovery programs do not detect mobile

element polymorphisms.

In this paper, we describe the tool PopAlu for population-wide detection of Alu polymor-

phisms. PopAlu is the successor of our previous tool PAIR (Sveinbjörnsson & Halldórsson,

2012) with a number of improvements and an extension to handle many individuals

simultaneously. It follows the three-step approach and starts by identifying read pairs

indicating an Alu polymorphism. As opposed to most other methods, PopAlu constructs

clusters in the second step using read pairs from many individuals simultaneously. Pooling

of data across many individuals increases detection power even for polymorphisms of

low frequency. Further, PopAlu pinpoints the precise insertion breakpoints instead of

reporting only approximate locations. In the last step, PopAlu applies a probabilistic

approach for calling genotypes. It can differentiate between homozygous and heterozygous

calls, while many other tools either do not report heterozygous calls or make calls simply

based on the counts of supporting fragments. Our implementation of PopAlu is easy to

use in that it is almost parameter-free—most of the parameters are automatically inferred

from the input data—and it is a stand-alone package implemented using the SeqAn C + +

library (Döring et al., 2008) without any further requirements of external tools.

METHODS
The input of PopAlu is a reference genome and a binary alignment (BAM) file of

paired-end sequencing reads of a donor individual (or a set of individuals).

Definitions
A read pair r has a left read rL and right read rR, which are mates to each other, denoted as

mate(rL) = rR and mate(rR) = rL. We use rN to denote either a left or a right read when

the relative position in the pair is not relevant. If rN is mapped to the reference genome, we

use begin(rN) and end(rN) to represent its start and end position in the mapped reference

genome. We say that a read is concordant if the two ends are mapped to opposite strands

on the same chromosome within a close distance of each other and otherwise discordant.

We define the insert length of a read pair r, measured with respect to the reference genome,

as Y(r) = end(rR) − begin(rL). We approximate the empirical distribution of Y from

all concordant read pairs, stratifying Y by sequencing library. We let E[Y] denote the

mean of Y and σ(Y) the standard deviation. We refer to the bounds of the Alu region as

breakpoints. Figure 1 shows an example Alu region bounded by a left breakpoint AL and a

right breakpoint AR.

Alu deletion
Given the reference aligned sequencing data of a single individual and a set of known

Alu elements in the reference genome, the objective of the Alu deletion problem is to
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Figure 1 Example read alignments at an Alu deletion site. Arrows show read directions. The blue part
of the reads can be mapped to the reference outside of the Alu and the red part can be mapped to the
Alu. (A) shows example reads from a haplotype that carries allele H1. (B) shows example reads from a
haplotype that carries allele H0. A heterozygote diploid can have reads shown in both (A) and (B).

examine each of the given Alu elements for the existence of an Alu deletion. The input set

of Alu elements can be determined using various tools, e.g., RepeatMasker (http://www.

repeatmasker.org). The main difficulty in this problem is to determine the genotypes of all

individuals.

For each Alu element in the reference genome, we distinguish the two alleles H0 and

H1; H0 denotes the presence and H1 denotes the absence of the Alu element with respect

to the reference genome. Given these alleles, three autosomal genotypes are possible for an

individual: homozygote Alu (G0), heterozygote (G1) and homozygote non-Alu (G2). Our

goal is to compute for each individual the relative likelihoods of the genotypes given the

sequencing data.

Our algorithm considers each Alu element in the reference genome separately. Given

an Alu sequence in the reference starting at position AL and ending at AR, we restrict our

attention to the region containing the Alu [AL,AR] and flanking regions [FL,AL] and

[AR,FR] on both sides of the Alu. We choose |FR − AR| = |AL − FL| = E[Y] + 3σ(Y).

From the aligned sequencing data, we then select the set of concordant read pairs R such

that for all r ∈ R at least one read overlaps [FL,FR]. Given the set R for an Alu element,

our Alu deletion algorithm has two steps. In the first steps it classifies reads in R and in the

second step it computes relative likelihoods of the three genotypes.

Read classification
There are primarily two signals indicating reads coming from a haplotype carrying the

deletion allele H1. The first is a read split into two parts, one part from each side of the

Alu. The second is that the two reads in a read pair are aligned to different sides of the Alu

with an increased insert length with respect to the reference genome. That is, the read pair’s

insert length follows the distribution Y + lAlu instead of the distribution Y , where lAlu is the

length of the Alu sequence.

In order to distinguish these signals of the deletion allele H1 from the ones that support

allele H0, we classify read pairs r ∈ R into three types and remove those r from R that fulfill

none of the types’ criteria. In the end, we obtain a classification, C(R), that assigns each
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read pair a type: type(r) ∈ {I,S,A} for all r ∈ R. We use the notation r ∈ X if a read pair r is

of type X.

• I (Internal). A read pair r is of type I if either rL is mapped to [FL,AL] and rR to [AL,AR]

or rL is mapped to [AL,AR] and rR to [AR,FR]. Figure 1 displays three examples: r5, r7

and r8.

• S (Split). A read pair is of type S if one of the reads in the pair is a split read. A read is a

split read if a part of it is mapped to the left of AL and the unmapped part aligns to the

right of AR or a part of it is mapped to the right of AR and the unmapped part aligns to

the left of AL. r1 and r4 in Fig. 1 are examples for S reads.
When identifying split reads we realign the unmapped part of a read using the Smith

Waterman algorithm (Smith & Waterman, 1981). We allow mismatches and small gaps,

but require a minimal alignment score and at least 20 bp aligned on each side of the Alu.

• A (Across). A read pair r is of type A if rL is mapped to [FL,AL] and rR is mapped to

[AR,FR]. The insert length indicates its origin from H0 or H1. The read pairs r2, r3 and r6

in Fig. 1 are examples for type A.

Determining genotype
Based on the classification of read pairs, C(R), we compute a relative likelihood, L, of

observing the reads given each genotype, G0, G1, and G2. The following two paragraphs

describe how we choose the likelihoods for observing each read pair given the alleles.

Finally, we describe how we compute a joint likelihood for all read pairs given the three

genotypes.

Breakpoint overlapping reads. Reads overlapping breakpoints, i.e., read pairs of types I

and S, give strong evidence for Alu polymorphisms. S read pairs are most likely from a

haplotype carrying the H1 allele and I read pairs are most likely from a haplotype carrying

the H0 allele. As we are only interested in the relative likelihoods of the data given the

genotypes, we fix the likelihood, L, of such read pairs given the corresponding allele as 1:

L(r|H0,r ∈ I) = L(r|H1,r ∈ S) = 1

To account for misalignment or sequencing error, we set the likelihood of observing

a read pair of type I or S given the other allele to a parameter PE, chosen as 0.001 in our

experiments:

L(r|H0,r ∈ S) = L(r|H1,r ∈ I) = PE

Spanning read pairs. Read pairs spanning across an Alu, i.e., read pairs of type A, have

either an insert length distribution Y(r) if they come from a haplotype carrying the H0

allele or they align lAlu further apart if they originate from a haplotype carrying the H1

allele and, thus, have an insert length distribution Y(r) + lAlu. Therefore, we can derive the

likelihood of observing a read pair of type A as:

L(r|H0,r ∈ A) ∼ Y(r)

L(r|H1,r ∈ A) ∼ Y(r) + lAlu.
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Joint likelihood. At a given Alu location, we assume that each read pair in the set R is

independent. The likelihood of the observed read pairs given the true genotype Gg ,

g ∈ {0,1,2} and the read classification C(R) is, thus, as follows:

L(R|Gg,C (R)) =


r∈R

L(r|Gg,r ∈ X)

=


r∈R

{L(r|H0,r ∈ X)P(H0|Gg) + L(r|H1,r ∈ X)P(H1|Gg)}

=


r∈R

{L(r|H0,r ∈ X)P(H0|Gg) + L(r|H1,r ∈ X)(1 − P(H0|Gg))} (1)

where L(r|Hx) is given above and P(Hx|Gg) is the probability of allele Hx given genotype

Gg . We have P(H0|G0) = P(H1|G2) = 1 for the homozygous genotype and use the estimate

P(H0|G1) =
2·∥r∥+lAlu
4·∥r∥+lAlu

for the heterozygous genotype assuming uniform sequencing

coverage, and a read length of ∥r∥, e.g., 100 bp. The intuition behind this estimate is that

the probability for H0 is relative to the length ratio of H0 versus the sum of H0 and H1

where the length of H1 is estimated as 2 · ∥r∥ base pairs and H0 as 2 · ∥r∥ + lAlu base pairs.

Alu insertion
Detecting Alu insertions is a more difficult problem than detecting Alu deletions, as

potential insertion positions (breakpoints) are not known a priori. When considering

multiple individuals simultaneously, it is preferable to know the precise breakpoints shared

by all carriers of the Alu insertion in order to make accurate genotype calls. Therefore,

we first select reads that indicate the occurrence of an Alu insertion, cluster these reads by

location per individual, and then combine the clusters of multiple individuals. Finally, we

infer breakpoints for all candidate sites and insert a consensus Alu element in silico in order

to apply the Alu deletion algorithm for genotype calling.

Informative reads
There are mainly two signals indicating the presence of an Alu insertion. The first is a

discordant read pair where one read is mapped to a known Alu region, cf. r5 and r7 in

Fig. 2. We will refer to these discordant read pairs as D read pairs. The second signal is a

split read where only the part at one side of the breakpoint aligns to the reference genome,

cf. r6 and r8 in Fig. 2. We denote these split reads as C (clipped) reads, as they are often

soft-clipped in the BAM files.

Our Alu insertion algorithm uses D read pairs to identify candidate insertion sites,

and C reads to pinpoint the precise breakpoints. D read pairs are widely used to infer

approximate regions of Alu insertions (David, Mustafa & Brudno, 2013; Keane, Wong

& Adams, 2013; Hormozdiari et al., 2010), whereas comparatively fewer tools utilize C

reads (David, Mustafa & Brudno, 2013).

Insertion sites for a single individual
We start by scanning the BAM file of a single individual for D read pairs, and classify the

non-Alu reads of these pairs as la and ra reads. A la read maps in the forward orientation

to the reference genome implying that its mapping location is to the left of an inserted Alu,
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Figure 2 Example read alignment at an Alu insertion site. Arrows show read directions. The blue part
of the reads can be mapped to the reference and the red parts are clipped or mapped somewhere else in
the reference. (A) shows example reads from a non-Alu haplotype. (B) shows example reads from an Alu
insertion haplotype. A heterozygote diploid can have reads shown in both (A) and (B).

cf. the blue end of r5 in Fig. 2. A ra read maps in the reverse complemented orientation to

the right of the Alu, cf. the blue end of r7 in Fig. 2. Thus, both la and ra reads give partial

information about the location of an Alu insertion.

Next, we iterate once over the reference genome to find all positions where D read pairs

cluster. We say that a position p covers a la read rN if p ∈ [end(rN),begin(rN) + E[Y] +

3σ(Y)] holds, and p covers a ra read rN if p ∈ [end(rN) − E[Y] − 3σ(Y),begin(rN)]. We

define support(p) as the sum of la and ra reads covered by position p and store all positions

that fulfill support(p) > n, e.g., n = 4. This step can be done in O(m logm + g) time, where

m is the total number of la and ra reads and g is the size of the genome; First, we sort all la

and ra reads by position, which takes time O(m logm). Then, we move along the genome

in linear time O(g) searching for positions passing support(p) > n while updating two

queues, of la and ra reads. In order to limit computation time, we only consider positions

p = end(ra) or p = end(la) where ra,la ∈ D.

Finally, we create a set of non-overlapping regions (bi,ei), i = 0,1,2,... from the set

of positions P that have a support greater than n. To ensure that at maximum one Alu

insertion occurs in each (bi,ei) we constrain the length of each region to ℓ (e.g., ℓ = 200 bp)

as follows. We traverse the positions P in sorted order and initialize a first region (b0,e0)

with the first position p0 ∈ P as b0 = e0 = p0. We iteratively extend a (bi,ei) by updating ei

for the next position pj ∈ P if pj − bi < ℓ. Otherwise, we initialize a new region (bi+1,ei+1)

with bi+1 = ei+1 = pj and continue with extending the new region.

At this point the breakpoint position is only approximate, we will use C reads to refine

the precise breakpoints in (bi,ei) in later steps.

Insertion sites for multiple individuals
To study multiple individuals simultaneously, we first find candidate insertion regions in

each individual separately. Next, we pool the sets of candidate regions from all individuals,

traverse the pooled set of regions by increasing begin position, and incrementally merge

two adjacent regions (bk,ek) and (bl,el) if bl < ek and el − bk < ℓ.
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Identifying precise breakpoints
We identify precise breakpoints shared by all polymorphism carriers in order to exclude

false positive insertion sites. Due to the biological mechanisms that lead to Alu insertions,

the breakpoint is often not a single position. In the data, we observe target site duplications

(TSDs) and deletions, as well as Alu insertions that we can only characterize at one

end, cf. Fig. S1. A TSD is a sequence of 4–25 bp repeated just before and after the Alu

element (Deininger, 2011). Also common are short deletions that accompany an Alu

insertion. The most difficult cases are those where not only the Alu sequence is inserted,

but also some novel sequence. For such compound insertions, we are typically able to

identify a breakpoint for one end only.

Given an Alu insertion site, we define AL as the left breakpoint if there is a C read whose

left part is mapped to the reference and whose right part is soft-clipped at AL and can

be aligned to an Alu sequence. Similarly, we define AR as the right breakpoint of the Alu

insertion if there is a C read whose right part is mapped to the reference and whose left

part is soft-clipped at AR and can be aligned to an Alu sequence. AL is not always equal

to AR and often only one of them can be characterized, as illustrated in Fig. S1. In our

implementation we allow AL and AR to differ by up to 50 bp.

Given a region (bi,ei), we declare that the region contains an Alu insertion if at least one

of AL and AR can be unambiguously determined as described in the following. Otherwise,

this region is excluded from further analysis. We use the term breakpoint to describe a pair

(AL,AR), or a single position AL or AR, when only one of the positions can be identified.

Ideally, all polymorphism carriers having C reads in this region will point to one single

breakpoint. However, this is often not the case as some split reads are merely sequencing

and/or mapping errors, indicating false breakpoints. This problem is partially solved by

using only good C reads. For example, a C read most likely indicates a true breakpoint if

it has good base calling quality and can be aligned to the reference with good alignment

score. Nevertheless, the remaining C reads often suggest multiple positions.

To determine the true breakpoint, we introduce a two-level voting system, cf. Fig. 3.

In this voting system, AL and AR are voted for independently of each other. Each region

(bi,ei) is processed as follows: (1) C reads from all individuals in this region are extracted

and remapped to the reference using a split-mapping algorithm (Emde et al., 2012),

which maps prefixes of the reads to the reference and the corresponding suffixes to an

Alu sequence or vice versa. A set of 51 Alu sequences is provided with our code and we

align to all provided sequences. The split position of each read in the alignment indicates

a breakpoint on the reference genome. (2) The C reads of each individual are considered

separately by the first level of the voting system. If the split alignment is successful, a C read

adds its vote either for the respective left or right breakpoint position. For each individual

the most common breakpoint position is determined and used in the next step. (3) The

determined breakpoints from all individuals are collected as input to the second level of the

voting system and the location with the highest number of votes is chosen.
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AL: Position d:
Position e:
Position f:

0 reads
2 reads
1 read

AR: Position a:
Position b:
Position c:

Individual 2

1 read
0 reads
0 read

reference
a bc

d f
AL: Position d:

Position e:
Position f:

0 reads
3 reads
1 read

AR: Position a:
Position b:
Position c:

Individual 1

1 read
2 reads
1 read

e
AL: Position d:

Position e:
Position f:

1 reads
4 reads
1 read

AR: Position a:
Position b:
Position c:

Individual 3

0 read
4 reads
0 read

Figure 3 Example instance of our two-level voting system that determines the exact breakpoints of
an Alu insertion. At the first level, split-reads vote for a left and right breakpoint position within each
individual. At the second level, individuals vote for the positions that received the largest numbers of
votes at the first level to choose the final breakpoint positions AL and AR. In this example, position b is
elected as AR and position e is elected as AL.

Determining genotype
If a breakpoint can be identified in a region (bi,ei), we insert Alu sequences at the

breakpoint in silico in order to adopt the Alu deletion algorithm for calling genotypes

as follows. We consider the D and C read previously aligned to the set of Alu sequences as I

and S reads, respectively. Further, we add δ (default δ = 300) basepairs to the insert length

distribution of reads spanning the insertion breakpoint, i.e., A reads. Using the three classes

of reads, we can then apply the Alu deletion genotyping algorithm.

Simulation of test data
In order to assess the accuracy of our approach, we simulated two sets of sequencing

data, SimDel and SimIns, based on human chromosome 21 (build 37). In SimDel, we

modeled recurring Alu deletions by selecting 100 known Alu elements on the reference

chromosome 21, assigning a frequency to each of them, and deleting the Alu elements at

these frequencies from 200 copies of chromosome 21, which resulted in 200 haplotypes.

In SimIns, we modeled recurring Alu insertions by first deleting 100 known Alu elements

from the reference chromosome 21, assigning a frequency to each of them, and inserting

the Alu elements at these frequencies back into 200 copies of the modified reference, which

again resulted in 200 haplotypes. In SimIns, we used the modified reference that has all

100 Alu elements deleted in all further steps of the analysis. In both sets, we chose the

frequencies of the Alu element deletions or insertions to be uniformly distributed between

0 and 1. The selected Alu elements were chosen randomly from all known Alu elements on

the reference chromosome 21, with the constraint that no other Alu is found within 600 bp

of the inserted Alu.

Of every simulated Alu polymorphism, each individual can have 0, 1 and 2 copies,

corresponding to the genotypes G0, G1 and G2, respectively. G1 represents a heterozygote

and G2 a homozygote Alu carrier. In our deletion data set SimDel, there are an average of

36.53 heterozygotes and 34.24 homozygotes per individual, and in the insertion data set

SimIns, there are 37.53 heterozygotes and 33.66 homozygotes. See Table 1 for more details

on the simulated Alu counts.

From the Mason read simulation package, version 2.0 (Holtgrewe, 2010), we used the

MasonVariator to add SNPs and small indels to each haplotype and the MasonSimulator to
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Table 1 Simulated Alu counts of 100 individuals. The sum column is the total counts of simulated Alu,
the min and max column are the minimum and maximum number of Alu elements seen in one simulated
individual.

Dataset G1 G2

sum min max sum min max

SimDel 3,653 25 44 3,424 25 43

SimIns 3,753 26 47 3,366 26 44

generate paired-end Illumina reads for each haplotype (see Fig. S2 for details). We merged

haplotypes in pairs to obtain 100 diploid data sets for SimDel and 100 diploid data sets for

SimIns. For each SimDel and SimIns we simulated two read sets, one at an average coverage

of ∼10×and another at ∼25×.

Evaluation metrics
The advantage of a simulated data set is that we can measure accuracy by comparing

the predicted genotype calls to the truth, including the accuracy of distinguishing

heterozygous and homozygous calls. We count predictions per group Ctp, where t ∈ {0,1,2}

indicates the true genotype and p ∈ {0,1,2} indicates the predicted genotype. Thus, Ctp

specifies the number of Gp predictions where the true underlying genotype is Gt . For

example, C01 and C02 count the number of false positives. We define the number of true

positive calls (TPN) to tolerate genotyping errors, i.e., TPN = C11 + C22 + C12 + C21, and

calculate the sensitivity and false discovery rate (FDR) as

Sensitivity =
TPN

TPN + C10 + C20
and FDR =

C01 + C02

TPN + C01 + C02
.

RESULTS
In this section, we present our results of running PopAlu on both simulated data and

on a human trio from the 1000 Genomes Project. We compare the results of PopAlu to

RetroSeq (Keane, Wong & Adams, 2013) and Mobster (Thung et al., 2014), tools that are

specialized for the discovery of transposable element insertions. As Mobster reports only

the location of Alu insertions but no genotypes and cannot process the output of BWA

mem to date, we focussed on the comparison to RetroSeq in most analyses.

Simulated data
We ran PopAlu on SimDel independently for each individual, and on SimIns jointly for

multiple individuals. Since RetroSeq does not report deletions, we ran it only on SimIns.

Table 2 summarizes the predicted Alu calls for both data sets at both 10× and 25× read

coverage.

As expected, the sensitivity of PopAlu increases on SimDel from 85.8% to 98.1% for the

higher coverage data as more reads provide more information on the Alu polymorphisms.

We observe a similar effect for on SimIns, although it is less pronounced than for SimDel.
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Table 2 Summary of predicted Alu counts. Ctp represents the number of polymorphic Alu predicted as of genotype p while the true underlying
genotype is t. The counts of Ctp are further grouped into 4 types, named as TP (True Positive), FN (False Negative), FP (False Positive) and GE
(Genotype-calling Error). The definitions of Sensitivity and False Discovery Rate (FDR) are given in the main text.

Coverage Dataset Tool TP FN FP GE Sensitivity FDR

C11 C22 C10 C20 C01 C02 C12 C21

SimDel PopAlu 2,668 3,350 985 19 0 0 0 55 85.8% 0%

SimIns PopAlu 3,152 3,017 601 341 0 0 0 8 86.8% 0%∼10×

SimIns RetroSeq 530 2,505 1,347 490 999 1,119 1,876 371 74.2% 28.6%

SimDel PopAlu 3,521 3,342 132 0 12 0 0 82 98.1% 0.2%

SimIns PopAlu 3,269 3,041 484 322 0 0 0 3 88.7% 0%∼25×

SimIns RetroSeq 2302 261 1,191 520 1,913 79 260 2,585 76.0% 26.9%

Table 3 Predicted and validated Alu Insertion calls for the CEU trio. The PCR (total) column provides
the total number of PCR validated Alu insertion calls by Stewart et al. (2011) for each sample and the PCR
columns the number of validated calls that are also predicted by the program. The Distance columns show
the average distance in basepairs between the predicted breakpoint and the breakpoint reported by PCR.
For PopAlu, we calculated the distance from the mid-point of the reported interval. For Mobster, we
calculated the distance based on the reported “Insert Point”.

Sample PCR
(total)

PopAlu RetroSeq Mobster

Total PCR Distance Total PCR Distance Total PCR Distance

NA12878 165 1,441 162 4.7 bp 1,038 162 16.2 bp 1,058 164 5.0 bp

NA12891 142 1,432 138 4.6 bp 1,046 139 17.6 bp 1,030 140 6.4 bp

NA12892 152 1,405 150 4.9 bp 1,078 148 16.5 bp 1,023 149 6.7 bp

PopAlu performs consistently better than RetroSeq, as measured by sensitivity and FDR,

with a much higher genotype calling accuracy.

Real data from a 1000 genome project trio
We ran PopAlu with default parameters on public data of a CEU trio from the 1000

genome project (father NA12891, mother NA12892 and daughter NA12878). Within

a follow-up study of the 1000 genomes pilot project (Stewart et al., 2011), the trio was

sequenced at 9–16× coverage and 186 Alu insertion loci were randomly selected for PCR

validation. We used high depth (>75×) Illumina HiSeq data generated at the Broad

Institute,1 the same data set used for assessing RetroSeq and Mobster. We compare

1 Available at ftp://ftp.1000genomes.
ebi.ac.uk/vol1/ftp/technical/working/
20120117 ceu trio b37 decoy/.

our results to the set of PCR validated Alu polymorphisms (Stewart et al., 2011) and

to results previously reported for RetroSeq (Keane, Wong & Adams, 2013) and Mobster

(Thung et al., 2014).

As shown in Table 3, PopAlu reports about 35% and 38% more Alu insertions than

RetroSeq and Mobster, respectively. On average PopAlu identifies 1,426 Alu insertions per

sample, while RetroSeq and Mobster report on average 1,054 and 1,037. This is consistent

with our results on simulated data, where PopAlu is more powerful than RetroSeq.
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Table 4 Genotype calls of PCR validated Alu insertion calls for the CEU trio. Ctp represents the number
of polymorphic Alus predicted as of genotype p while the true underlying genotype is t. The true
genotype was determined by PCR validation (Stewart et al., 2011).

Sample PopAlu RetroSeq

C11 C22 C21 C11 C22 C21

NA12878 124 38 0 124 1 37

NA12891 95 41 2 95 0 44

NA12892 107 41 2 106 0 42

Further, all three programs identify almost the same number of validated Alu insertions.

Based on these numbers, the RetroSeq authors report an average sensitivity of 98% for each

sample. However, the true number of novel Alu insertions is unknown, so the sensitivity

may be inflated as it is presumably based on only a subset of all insertions. We further

examined the accuracies in pinpointing the exact breakpoints. The mean distance from the

true breakpoint is about 4.7 bp for PopAlu, about 6 bp for Mobster and about 17 bp for

RetroSeq (see Table 3).

Next, we compared our genotype calls with the PCR validated calls (see Table 4). PopAlu

has an average genotype calling accuracy of 99.1%, compared to an average of 72.6% for

RetroSeq. The numbers show that RetroSeq has difficulties in distinguishing between

homozygous and heterozygous carriers.

Finally, we counted non-Mendelian calls within the trio to estimate a lower bound on

the FDR. Non-Mendelian calls are Alu insertions calls in the child that do not follow the

expected inheritance patterns according to the calls in the parents. We include calls private

to the child as false positives, since the rate of de novo Alu insertions is estimated to be

about 1 per generation only (Batzer & Deininger, 2002). In the call set of PopAlu, we find in

total 13 non-Mendelian calls, providing a lower bound to the FDR of 0.7%.

Timing
We ran all computations on a desktop machine of a single 2.67 GHz Intel i5 processor. On

average, the detection of Alu insertions with PopAlu took about 3 hs per sample from the

CEU trio family.

DISCUSSION
We have presented PopAlu, a method to detect and genotype polymorphic Alu insertions.

The method can detect polymorphisms where the Alu element is present in the reference as

well as where it is not. Our results indicate that the method has comparable or higher

sensitivity to other tools and it can accurately distinguish between homozygous and

heterozygous carriers. Further the evaluation suggests that the false discovery rate of

PopAlu is low and that the precision in determining breakpoints is high.

Despite the positive results achieved, PopAlu can be improved and extended. First,

the Alu sequence used in the Alu insertion genotyping algorithm is a representative Alu

sequence; a better sequence may be determined by local assembly. Second, our algorithm
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could additionally incorporate the length distribution of I and S reads. Third, PopAlu

currently uses a greedy algorithm for finding insertion locations, it may benefit from the

development of an optimal algorithm. In terms of extensions, PopAlu can be extended

to find other types of retrotransposons, e.g., LINE elements. Further, we note that Alu

elements are often inserted along with more sequence, which may possibly be detected

by combining PopAlu with a local assembly approach, such as PopIns (Kehr, Melsted

& Halldórsson, 2015). Finally, another future extension is the inclusion of somatic Alu

insertion events.
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