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Abstract

Bombyx mori (silkworm) silk proteins are being utilized as unique biomaterials for medical applications. Chemical
modification or post-conjugation of bioactive ligands expand the applicability of silk proteins; however, the processes are
elaborate and costly. In this study, we used transgenic silkworm technology to develop single-chain variable fragment
(scFv)-conjugated silk fibroin. The cocoons of the transgenic silkworm contain fibroin L-chain linked with scFv as a fusion
protein. After dissolving the cocoons in lithium bromide, the silk solution was dialyzed, concentrated, freeze-dried, and
crushed into powder. Immunoprecipitation analyses demonstrate that the scFv domain retains its specific binding activity
to the target molecule after multiple processing steps. These results strongly suggest the promise of scFv-conjugated silk
fibroin as an alternative affinity reagent, which can be manufactured using transgenic silkworm technology at lower cost
than traditional affinity carriers.
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Introduction

Bombyx mori (silkworm) silk has been recognized as a unique

natural biopolymer for various biomedical applications. After silk

fibroin fibers are dissolved in aqueous solution, this protein can be

fabricated into various material formats, such as powder, fibers,

gels, sponges, or thin films [1,2,3,4]. In addition to using the

natural fibroin protein, this protein can be chemically modified

[5,6,7] or post-conjugated with bioactive ligands [8,9,10] to alter

its physical or biological properties. For instance, the coupling of

an RGD sequence has been demonstrated to enhance cell

adhesion to the silk fibroin film [8,9], and bone morphogenetic

protein-2 (BMP-2)-decorated silk fibroin films induce osteogenic

differentiation of human bone marrow stromal cells [10].

However, the modification procedure is often accompanied by

technical difficulties, and high manufacturing costs are inevitable.

Recent advances in transgenic silkworm technology have

demonstrated that recombinant proteins can be produced in the

silk glands, either independently from the silk proteins [11,12], or

fused with fibroin proteins [13,14,15]. The latter strategy was

applied in the transgenic silkworm, which produces silk containing

enhanced green fluorescent protein (EGFP) [13,15] and basic

fibroblast growth factor (bFGF) [14]. These results suggest that the

recombinant protein is able to retain its original structure and

function even when fused to silk fibroin proteins. To expand the

applicability of transgenic silk fibroins as a novel affinity reagent,

we sought to generate a transgenic silkworm that spins antibody-

conjugated silk fibroins. However, the intact antibody is a large,

multiplex protein composed of immunoglobulin H- and L-chains

interlinked with disulfide bonds. Due to the size and complexity of

the antibody, the design of a single fusion protein composed of

whole antibody molecule and fibroin proteins is unlikely. In

addition, the isolation and purification of silk fibroins generally

require multiple steps, including degumming, solubilization, and

dialysis, and these treatments would irreversibly destroy the

antibody’s biological activity.

However, advances in genetic engineering technology have

demonstrated that the antibody can be dissected and reformatted

into smaller units, such as Fab, scFv, or single-domain antibody

[16,17,18,19]. Of these smaller antibody formats, the single-chain

variable fragment (scFv), which is composed of VH and VL

domains, has several biophysical advantages over the original

antibody format. For example, some but not all of scFv are able to

retain its specific binding activity when it is expressed in the

cytoplasm [20], suggesting that the proper conformation of the VH

and VL domains are well maintained in strongly reducing

conditions. Therefore, the scFv antibody format may be suitable

not only because of its compactness, but also because of its

tolerance to engineering (such as conjugation to other proteins,

followed by multi-step physical and chemical processing).

In this study, we generated a transgenic silkworm strain that

produces silk fibroin protein fused to scFv. The scFv construct was

derived from a monoclonal antibody (mAb) against Wiskott-

Aldrich syndrome protein (WASP), which is an important immune

adaptor molecule in mammals [20,21,22,23]. The present work

demonstrates the promising possibility of scFv-conjugated silk

fibroin proteins as a unique alternative to conventional affinity

reagents.
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Results

Transgenic silkworms produce genetically engineered
fibroin protein in silk powder

We established two transgenic silkworm strains, S01 and K27,

which spun silk containing fibroin L-chain conjugated with scFv

and EGFP, respectively (Table 1 and Figure 1A). Cocoons

produced by wild-type w1-pnd (W1), transgenic S01 and K27

silkworms were chopped, dissolved in LiBr solution, dialysed,

freeze-dried, and fabricated into silk powder, as described in

Materials and Methods. Powder derived from each silk strain

showed similar morphology: amorphous fragments measuring 1–

40 mm in diameter (Figure 1B). The composition of the silk

powder is considered to be similar to that of silk fibers in cocoons;

sericin (20% w/w), fibroin H-chain (72.2% w/w), fibroin L-chain

(6.8% w/w), and fibrohexamerin(fhx)/P25 (1% w/w).

The expression of the transgenes FibL-anti-WASP-scFv-Myc

(S01) and FibL-EGFP-His (K27) in each silk powder were

confirmed by sodium dodecyl sulfate polyacrylamide gel electro-

phoresis (SDS-PAGE), followed by Coomassie brilliant blue (CBB)

staining (Figure 1C) and Western blotting with anti-Myc

(Figure 1D), anti-His (Figure 1E), or anti-FibL (Figure 1F)

antibodies. Semi-quantitative analysis using an anti-FibL poly-

clonal antibody (pAb) revealed that 25% of endogenous fibroin L-

chain was substituted with the scFv- or EGFP-conjugated fibroin

L-chain in the transgenic silk powders (Figure 1F). These results

suggest that both scFv and EGFP constructs fused with fibroin L-

chain are efficiently expressed as fusion proteins and integrated

into silk fibers.

Affinity purification of the target molecule by the specific
transgenic silk powder

To test the specific affinity of scFv-conjugated silk powder to the

target protein, we performed a series of in vitro binding assays using

GST alone, or GST-WASP15 and GST-WASP69 fusion proteins

produced and affinity purified from E.coli cells. The properties of

these target proteins were confirmed by SDS-PAGE, followed by

CBB staining. GST and the majority of GST-WASP69 were

detected as full-size proteins (30 kDa and 48 kDa, respectively;

Figure 2A). GST-WASP15 (52 kDa in full-size), the specific

antigen against which the parental mAb of anti-WASP-scFv [20]

was raised, was predominantly detected in several truncated forms

(30–34 kDa), likely because of post-translational processing or

degradation in E. coli cells (Figure 2A).

Binding assays demonstrated that the specific interaction was

detected only in the incubation set of S01 silk powder and its target

protein, GST-WASP15, and not in other protein constructs

(Figure 2B, top panel). Using this binding assay, the equivalent

expression level of FibL-anti-WASP-scFv-Myc and FibL-EGFP-

His in each silk powder was confirmed by Western blotting with

anti-Myc and anti-His antibodies, respectively (Figure 2B, middle

and bottom panels). These results suggest that S01 silk powder

exhibits specific binding activity to the target molecule, likely

through the function of anti-WASP-scFv-conjugated fibroin L-

chains, which are integrated into the S01 silk powder.

Equivalent immunoprecipitation potency of scFv-
conjugated fibroin and its parental mAb-coupled protein
G-sepharose

To compare the binding ability of anti-WASP-scFv–conjugated

silk powder to that of a conventional immunoprecipitation

reagent, silk powders from W1 and S01 strains or protein G-

sepharose coupled with anti-WASP mAb or control mouse IgG

were incubated with purified probe proteins, GST, GST-

WASP15, and GST-WASP69. The immunocomplexes were

pulled down and analyzed by Western blotting with anti-GST

antibody. In this assay, S01 silk powder particle immunoprecip-

itated its target probe, GST-WASP15, as efficiently as anti-WASP-

mAb–coupled protein G-sepharose (Figure 2C); by contrast, W1

silk powder particle did not react to any of these probe proteins.

These results strongly suggest that anti-WASP-scFv–conjugated

fibroin L-chain in S01 silk powder has equivalent immunoprecip-

itation potency compared with its parental mAb-coupled protein

G-sepharose.

ScFv-conjugated silk powder particle efficiently
immunoprecipitates native WASP in RAW264.7 cell lysate

To examine whether S01 silk powder could specifically capture

native WASP from mammalian immune cell extracts, RAW 264.7

cell lysate was immunoprecipitated with silk powder particles from

W1, S01, and K27 strains or protein G-sepharose coupled with

anti-WASP mAb or control mouse IgG. The immunocomplexes

were pulled down and analyzed by Western blotting with anti-

WASP pAb. In this assay, S01 silk powder particle immunopre-

cipitated native WASP as efficiently as anti-WASP-mAb–coupled

protein G-sepharose (Figure 3, A and B). In addition, WASP-

interacting protein (WIP), which is well known as a binding

partner of WASP, was equivalently co-immunoprecipitated with

WASP in the pull-down assay with S01 silk powder particle, as

demonstrated in the assay using anti-WASP-mAb–coupled protein

G-sepharose (Figure 3, C and D). These results suggested that S01

silk powder particle can efficiently capture the native WASP-WIP

complex in mouse macrophage extract. A similar level of

endogenous fibroin L-chain was detected by immunoblotting with

anti-FibL pAb, indicating that an equal amount of silk powder was

used in this assay (Figure 3E).

Given these observations, silk powder made from cocoons

expressing scFv fused to fibroin protein may be potentially useful

Table 1. Outcome of transgenesis.

Number Percent

Strain
Injected
eggs

Hatched
larvaea G1 broodsb

Broods with DsRed2- positive
larvaec Success rate of transgenesis

S01 794 655 162 7 4.3

K27 1443 440 47 11 23.4

aHatched larvae (G0) were allowed to develop into moths.
bThe moths were intercrossed, and the resulting G1 broods were counted.
cEmbryos from G1 broods were screened for DsRed2 fluorescence.
doi:10.1371/journal.pone.0034632.t001

scFv-Conjugated Affinity Silk Powder
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for developing an alternative reagent that retains affinity to target

proteins comparable to that of conventional immunoprecipitation

reagents, but costs less to manufacture using the described

transgenic silkworm technology.

Discussion

In the present study, we generated transgenic silkworm strain

S01, which spun silk fibers containing anti-WASP-scFv–conjugat-

ed fibroin L-chain. The S01 silk powder not only specifically

bound to the purified recombinant GST-WASP15 protein, but

also efficiently immunoprecipitated native WASP-WIP complex in

mouse RAW264.7 macrophage extract. These observations

strongly suggest that scFv-conjugated silk fibroin proteins may

be useful as a unique alternative affinity reagent.

To prepare silk powder, whole silk cocoons were dissolved in

LiBr solution, dialyzed, freeze-dried, and mechanically crushed.

Therefore, the resultant silk powder from each strain has similar

composition and purity of both fibroin and sericin proteins.

Although we do not know precisely how the fibroin and sericin

proteins are combined and reconstituted during the processing of

silk powder, at least some of the anti-WASP-scFv domains

conjugated to the C-terminus of fibroin L-chains are exposed on

the fracture surface of each silk powder particle. In addition, the

Figure 1. Construction of plasmid for transgenic silkworms and production of genetically engineered fibroin proteins in silk
powder. (A) Schematic representation of the DNA plasmids for S01 and K27 transgenic silkworm strains. Each plasmid contains expression units for
selection marker and recombinant proteins between the piggyBac repeated terminal sequences (arrowheads). Shown are the 3xP3 promoter
(3xP3pro), DsRed2 gene, SV40 polyA signal sequence (SV40 polyA), fibrion L-chain promoter (FibLpro), cDNA of fibroin L-chain (FibL cDNA), cDNA of
anti-WASP-scFv fused with a Myc-tag sequence (scFv-Myc), EGFP cDNA fused with 66His (EGFP-His), and fibroin L-chain 39-untranslated region (FibL-
39UTR). The restriction enzyme sites are indicated for EcoRI, BamHI, HindIII, and BglII. (B) A schematic procedure for preparation of silk powder.
Cocoons produced by silkworms were processed into silk powder. Silk powder from each silkworm strain was observed and photographed at 5006
using low-vacuum scanning electron microscopy. (C, D, E, and F) SDS-PAGE and Western blot analysis showing expression of the transgenes FibL-anti-
WASP-scFv-Myc (S01) and FibL-EGFP-His (K27) in silk powder. Silk powder derived from wild-type (W1), S01, and K27 strains was lysed and separated
by SDS-PAGE, and followed by CBB staining (C). The arrowheads indicate the expression of FibL-anti-WASP-scFv-Myc (S01) and FibL-EGFP-His (K27).
Immunoblots were probed with anti-Myc-tag pAb (D), anti-His pAb (E), and anti-FibL pAb (F).
doi:10.1371/journal.pone.0034632.g001

scFv-Conjugated Affinity Silk Powder
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anti-WASP-scFv domain spontaneously gains its proper confor-

mation even in the conjugated form with fibroin L-chain, when

silk proteins are expressed and secreted into the lumen of silk

gland. Although some of them may be denatured, when silk

proteins are dissolved in LiBr solution, most of scFv domains

retain proper folding, which enables specific binding to the WASP

molecule. As we demonstrated in the mammalian cells [20], the

anti-WASP-scFv construct that we used to generate the affinity silk

powder can regain its folding conformation, and binds to its target

molecule in the cytoplasm, which is characterized by a very strong

reducing condition. Therefore, an important factor for successful

production of affinity silk powder is the capability of the employed

scFv to fold autonomously to the correct conformation; this factor

should be carefully considered when scFv conjugation is applied to

other target molecules.

Semi-quantitative Western blot analysis demonstrated that S01

silk powders contain approximately 25% scFv-conjugated fibroin

L-chains; the remaining 75% are non-transgenic endogenous

fibroin L-chains. Although scFv-conjugated fibroin L-chains

comprise a minority of the L-chains, sufficient and specific binding

of each transgenic silk powder was demonstrated in the assay of

both bacterial recombinant and mammalian native WASPs. In the

latter target, the affinity silk powder particle also co-precipitated

WIP, suggesting that these affinity silk powder particles may be

useful in cellular and molecular immunology. Similarly, the scFv

construct can also be conjugated to the fibroin H-chain (Sato et al.

manuscript in preparation). The intercrossing of these transgenic

silkworm strains would further increase the avidity of the affinity

silk powders.

The traditional strategy used to generate affinity carriers using

the antibody starts with the production of whole antibodies or

antibody fragments in mammalian cells or bacteria, which is then

followed by the isolation, purification, and surface immobilization

of carriers by chemical coupling reactions. In sharp contrast to

these complicated processes, affinity silk powders are ready-made

reagents produced by transgenic silkworm technology, and require

only a few purification steps. Therefore, affinity silk powders can

be manufactured at a lower cost than those associated with

traditional affinity carriers. After dissolving into solution, silk

proteins can be fabricated into various material formats, including

fibers, clothings, gels, sponges, and thin films [1]. For example,

fibers, clothings or sponges produced from the scFv-conjugated

affinity silk proteins can be used to capture and trap the antigens of

pathogenic organisms, such as enterohemorrhagic bacteria (E. coli)

or influenza virus. Fabrication into thin films can be applied to the

construction of alternative detection systems for specific antigens

Figure 2. Affinity purification of the target molecule using
transgenic silk powder. (A) The properties of the probe proteins GST,
GST-WASP15 (WASP15), and GST-WASP69 (WASP69) were confirmed by
SDS-PAGE followed by CBB staining. (B) The probe proteins were
incubated and precipitated using silk powder derived from W1, S01,
and K27 strains. Their specific binding was analyzed by immunoblotting
with anti-GST antibody. The expression of FibL-anti-WASP-scFv-Myc in
S01 and FibL-EGFP-His in K27 silk powder was confirmed by
immunoblotting with anti-Myc pAb or anti-His pAb, respectively. (C)
Silk powder (from W1 and S01 strains) or protein G-sepharose (PGS)
coupled with anti-WASP mAb or control mouse IgG were incubated
with the probe proteins GST, GST-WASP15, and GST-WASP69. Immune
complexes were analyzed by Western blotting with anti-GST antibody.
Immunoblots are representative of three independent experiments.
doi:10.1371/journal.pone.0034632.g002

Figure 3. Transgenic silk powder particle immunoprecipitates
native WASP from mouse macrophage extracts. A mouse
macrophage RAW 264.7 cell line was lysed and incubated separately
with silk powder particle from W1, S01, or K27 strains, or with protein G-
sepharose (PGS) coupled with anti-WASP mAb or control mouse IgG.
Immunocomplexes were analyzed by Western blotting with anti-WASP
(A and B), and anti-WIP antibodies (C and D). The expression levels of
endogenous fibroin L-chain, FibL-anti-WASP-scFv-Myc, and FibL-EGFP-
His in each silk powder were confirmed by Western blotting with anti-
FibL pAb (E). Immunoblots are representative of three independent
experiments.
doi:10.1371/journal.pone.0034632.g003

scFv-Conjugated Affinity Silk Powder
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associated with infectious disease, replacing classical enzyme-

linked immunosorbent assay systems. Furthermore, recent ad-

vances in silk fibroin-derived nanoparticle technology [24,25] may

open a novel avenue to biomedical applications for scFv-

conjugated affinity silk. Silk fibroin-derived nanoparticles have

been used successfully as a drug-delivery platform [24,25], and

scFv-conjugated silk fibroin proteins would enhance the thera-

peutic effect by targeting specific cancer cells or neurodegenerative

diseases, such as Alzheimer’s and prion diseases. Further

improvement of affinity silk technologies would provide novel

materials that are highly biocompatible (as well as biodegradable)

for the development of an affinity purification system, the

diagnosis of diseases, the detection of pathogenic microorganisms,

and the development of therapeutic strategies.

Materials and Methods

Plasmid construction
The primer sequences and procedure for construction of

plasmids pBac[3xP3-DsRed2afm]-LLL-anti-WASP-scFv-Myc

and pBac[3xP3-DsRed2afm]-LLL-EGFP-His is described in

Supporting information Table S1.

Generation of transgenic silkworms
Transgenic silkworms were generated as described elsewhere

[26], with minor modifications. The transgene plasmid DNA and

a helper plasmid vector pHA3PIG coding for piggyBac transposase

[26], each dissolved in 5 mM KCl and 0.5 mM phosphate buffer

(pH 7.0) at a concentration of 0.2 mg/ml, were mixed and injected

into the fertilized eggs of the w1-pnd silkworm at 4 to 10 h post-

oviposition. Hatched larvae (G0) were reared on an artificial diet

(Nihon Nosan, Kanagawa, Japan) at 25uC until they developed

into moths, and permitted to mate with each other. Using

fluorescent microscopy (MZ16FA, Leica Microsystems, Wetzlar,

Germany), G1 embryos were screened for transgenic individuals

with DsRed2 expression 6 to 7 days after oviposition. Transgenic

silkworms were reared and sib-mated for at least three generations.

The experimental strain S01 carries the transgene coding for the

fibroin L-chain fused with anti-WASP scFv-Myc (FibL-anti-

WASP-scFv-Myc). The control strain K27 carries the transgene

coding for the fibroin L-chain fused with EGFP-His (FibL-EGFP-

His).

Silk powder preparation
Three grams of silk cocoons obtained from wild-type w1-pnd

(W1) and transgenic S01 and K27 silkworms were chopped into 2–

3 mm squares and suspended in 50 ml of 9 M LiBr at 37uC on a

rotator (10 rpm, 4 h) until dissolved. Resultant silk solutions were

placed in a bag of cellulose dialysis membrane (Spectra/Por 1,

MWCO = 6–8000; Spectrum Laboratories Inc., Rancho Dom-

inguez, CA, USA), and dialyzed against 8 L of deionized water for

3 days at room temperature (RT) (the water was changed every

12 h). The dialyzed silk solution was air-dried at RT until it

became gelatinous. Gelatinized silk was frozen at 280uC, dried

using Freeze Dryer FDU-1100 (Tokyo Rikakikai, Tokyo, Japan),

and crushed into powder using Wonder-Blender mixer WB-1

(Osaka Chemical, Osaka, Japan). The silk powders were directly

observed using low-vacuum scanning electron microscopy (Min-

iscope TM-1000, Hitachi High-Technologies, Tokyo, Japan).

Western blot analysis
Silk powder from W1, S01, and K27 strains was treated with 26

SDS sample buffer, separated by SDS-PAGE (12% gel), and

transferred to a polyvinylidene difluoride (PVDF) membrane

(Bio-Rad, Hercules, CA, USA). The blots were blocked with

Blocking One (Nacalai Tesque, Kyoto, Japan) for 1 h at RT and

then incubated with anti-fibroin L-chain (FibL) pAb (raised against

a synthetic peptide representing fibroin L-chain residue 67–80),

anti-Myc pAb, or anti-His pAb (MBL, Nagoya, Japan), followed

by HRP-conjugated anti-rabbit Igs (Dako, Glostrup, Denmark).

Immunoreactive proteins were detected using ECL reagent (GE

Healthcare, Buckinghamshire, England).

Construction of GST fusion proteins
cDNA fragments for mouse WASP exons 1–5 (aa 1–171,

designated WASP15) and exons 6–9 (aa 172–313, designated

WASP69) were generated by PCR from mRNA of C57BL/6

mouse spleen and cloned into the pGEX-4T-2 expression vector

(GE Healthcare) (Table S1). The GST-WASP15 and GST-

WASP69 fusion proteins were produced in BL21 E. coli cells and

purified by glutathione-sepharose 4B affinity chromatography

according to the manufacturer’s instructions (GE Healthcare).

GST fusion protein binding assay
After rinsing with 20% ethanol, 10 mg of each silk powder from

W1, S01, and K27 strains was blocked with 1 ml of Blocking One

in a 1.5 ml tube at RT on a rotator (10 rpm, 60 min). After

centrifugation at 1,000 g for 3 min to remove blocking solution,

each silk powder was incubated with 20 mg of GST, GST-

WASP15, or GST-WASP69 fusion protein in 1 ml of blocking

solution at RT on a rotator (10 rpm, 60 min). After five washes

with TBST buffer (10 mM Tris-Hcl, pH8.0; 0.15 M NaCl; 0.05%

Tween-20), silk powder was lysed with SDS sample buffer and

immunoblotted with anti-GST, anti-Myc, or anti-His antibodies

(MBL).

GST, GST-WASP15, and GST-WASP69 fusion proteins were

incubated with 5 mg of anti-WASP mAb (a parental antibody for

anti-WASP-scFv [20]) or control mouse IgG (Sigma-Aldrich, St

Louis, MO, USA) at RT on a rotator (10 rpm, 60 min), and

immunoprecipitated with 40 ml of protein G-sepharose (GE

Healthcare). After five PBS washes, immunocomplexes were

resuspended in SDS sample buffer and immunoblotted with ant-

GST Ab.

Immunoprecipitation
A murine macrophage RAW264.7 cell line [27,28], which was

obtained from American Type Culture Collection (ATCC

No. TIB-71), was lysed with RIPA buffer [50 mM Tris-HCl,

pH7.6; 150 mM NaCl; 1% Nonidet P-40; 0.5% sodium

deoxycholate; and protease inhibitor cocktail (Nacalai Tesque)]

on ice for 60 min. Cell lysates were centrifuged at 10,000 g for

10 min at 4uC, and the supernatants were incubated with W1,

S01, or K27 silk powder pre-treated with blocking solution at RT

on a rotator (10 rpm, 60 min). After five washes with TBST

buffer, each silk powder was lysed with SDS sample buffer and

immunoblotted with anti-WASP pAb (Upstate, Lake Placid, NY,

USA), anti-WASP-interacting protein (WIP) pAb (Santa Cruz

Biotechnology), or anti-fibroin-L-chain (FibL) pAb, and detected

as described earlier.

Supporting Information

Table S1 In all primers, lower-case letters indicate
restriction sites for EcoRI (gaattc), BamHI (ggatcc),
HindIII (aagctt), BglII (agatct), and NotI (gcggccgc).
cDNA fragments for the fibroin L-chain promoter region through

the fibroin L-chain coding region (FibLpro–FibL) and the fibroin

L-chain 39-untranslated region (FibL-39-UTR) were generated by

scFv-Conjugated Affinity Silk Powder
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PCR from pBac (3xP3-DsRed2+L-chain-GFP) [13] with the

following primer sets (FibLpro–FibL: sense primer #1 and reverse

primer #2, FibL-39-UTR: sense primer #3 and reverse primer

#4). A cDNA fragment for anti-WASP-scFv-Myc was generated

by PCR from pCAG/anti-WASP-21HL [20] using sense primer

#5 and reverse primer #6. These PCR products were digested

with EcoRI-BamHI, HindIII-BglII, and BamHI-HindIII, respective-

ly, and cloned together into the EcoRI-BglII site of the pBac[3xP3-

DsRed2afm] vector. This construct was designated pBac[3xP3-

DsRed2afm]-LLL-anti-WASP-scFv-Myc. The control plasmid

vector, pBac[3xP3-DsRed2afm]-LLL-EGFP-His, was modified

by the insertion of a 66His tag sequence at the C-terminal coding

region of fibroin L-chain and EGFP fusion protein in the original

plasmid construct [13]. cDNA fragments for mouse WASP exons

1–5 (aa 1–171, designated WASP15) and exons 6–9 (aa 172–313,

designated WASP69) were generated by PCR from mRNA of

C57BL/6 mouse spleen with the following primers: WASP15,

sense primer #7 and reverse primer #8; WASP69, sense primer

#9 and reverse primer #10. These PCR products were digested

with NotI, and cloned into the pGEX-4T-2 expression vector.

(DOC)
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