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Abstract

Background: Methylation-sensitive high resolution melting (MS-HRM) methodology is able to
recognise heterogeneously methylated sequences by their characteristic melting profiles. To
further analyse heterogeneously methylated sequences, we adopted a digital approach to MS-HRM
(dMS-HRM) that involves the amplification of single templates after limiting dilution to quantify and
to determine the degree of methylation. We used this approach to study methylation of the
CDKN2B (p15) cell cycle progression inhibitor gene which is inactivated by DNA methylation in
haematological malignancies of the myeloid lineage. Its promoter region usually shows
heterogeneous methylation and is only rarely fully methylated. The methylation status of CDKN2B
can be used as a biomarker of response to treatment. Therefore the accurate characterisation of
its methylation is desirable.

Results: MS-HRM was used to assess CDKN2B methylation in acute myeloid leukaemia (AML)
samples. All the AML samples that were methylated at the CDKN2B promoter (40/93) showed
varying degrees of heterogeneous methylation. Six representative samples were selected for
further study. dMS-HRM was used to simultaneously count the methylated alleles and assess the
degree of methylation. Direct sequencing of selected dMS-HRM products was used to determine
the exact DNA methylation pattern and confirmed the degree of methylation estimated by dMS-
HRM.

Conclusion: dMS-HRM is a powerful technique for the analysis of methylation in CDKN2B and
other heterogeneously methylated genes. It eliminates both PCR and cloning bias towards either
methylated or unmethylated DNA. Potentially complex information is simplified into a digital
output, allowing counting of methylated and unmethylated alleles and providing an overall picture
of methylation at the given locus. Downstream sequencing is minimised as dMS-HRM acts as a
screen to select only methylated clones for further analysis.

Page 1 of 10

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19014416
http://www.epigeneticsandchromatin.com/content/1/1/7
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

Epigenetics & Chromatin 2008, 1:7

Background

Epigenetic mechanisms, in particular DNA methylation,
play a major role in the modulation of gene activity in
cancer. Methylation has been shown to silence a large
number of genes in nearly every type of cancer [1,2].
Whilst it is generally accepted that methylation of a pro-
moter may be necessary for gene silencing, it is clear that
in many cancers promoters are often heterogeneously
methylated. This is an important issue both for the detec-
tion and quantitation of methylation.

The tumour suppressor gene CDKN2B (p15), which is
silenced in a variety of haematological malignancies [3], is
one such heterogeneously methylated locus. Silencing of
CDKN2B expression can occur with only partial methyla-
tion of the promoter and many differently methylated
CDKN?2B alleles frequently co-exist [4-6].

Methylation of CDKN2B has been used as a biomarker for
myelodysplastic syndrome and acute myeloid leukaemia
(AML) [7], and as a prognostic indicator either alone or in
combination with other loci [8,9]. Monitoring changes in
CDKN2B methylation over time would also prove useful
in assessing residual disease. However, due to its heteroge-
neity, quantification of CDKN2B methylation is challeng-
ing.

Methylation-sensitive high resolution melting (MS-HRM)
is a methodology that is particularly suitable for the rapid
analysis of clinical samples [10]. MS-HRM differentiates
methylated and unmethylated templates on the basis of
the marked difference in melting behaviour due to their
different base compositions following bisulphite conver-
sion. We have used MS-HRM to analyse methylated pro-
moter regions in cancer [10,11], and the HI19/IGF2
imprinting centre in imprinting disorders [12]. Here, we
show that MS-HRM is an appropriate methodology for
the detection of heterogeneously methylated cancer sam-
ples using the CDKN2B gene as an example.

Digital methylation-sensitive high resolution melting
(dMS-HRM) was introduced as a methodology for count-
ing methylated and unmethylated alleles of the BRCA1
gene [11]. In that case, AMS-HRM was used to confirm the
MS-HRM analysis. In this communication, we show that
dMS-HRM enables detailed analysis of DNA methylation
in complex heterogeneously methylated templates, elimi-
nating the need for sequencing analysis in most cases. This
can be done in a time- and cost-effective fashion as we
have shown using the clinically important CDKN2B gene
as an example.

http://www.epigeneticsandchromatin.com/content/1/1/7

Methods

DNA samples

AML samples were obtained from patients referred to the
Department of Haematology, Aarhus University Hospital,
Denmark. DNA was re-dissolved in TE buffer (1x) at a
final concentration of 5 ng/ul. Genomic DNA was
extracted from peripheral blood of healthy controls using
the QIAamp DNA Blood Mini Kit (Qiagen, Hilden, Ger-
many) according to the manufacturer's instructions. The
investigation was approved by the Peter MacCallum Can-
cer Centre Ethics of Human Research Committee
(Approval number 02/26). Whole genome amplification
(WGA) was performed as described previously [13]. The
purpose of using DNA subjected to two rounds of WGA is
to ensure that the DNA is completely unmethylated, as
normal, healthy individuals may have low-level methyla-
tion at the CDKN2B promoter in peripheral blood cells

[6].

Bisulphite modification

200 ng of genomic DNA from the AML samples was sub-
jected to bisulphite modification by using the EpiTect
Bisulfite Kit (Qiagen) according to the manufacturer's
instructions. DNA was eluted once in 20 pul of buffer EB.
Universal Methylated DNA (Chemicon, Millipore, Biller-
ica, MA) and WGA product were used as the controls. 500
ng of each was modified. The modified control DNA
underwent a second elution in 30 pl of buffer EB.

MS-HRM

PCR cycling and MS-HRM was performed on the Rotor-
Gene 6000 (Corbett Research, Sydney, Australia), an
HRM-enabled real time PCR instrument. Each sample was
analysed in duplicate for MS-HRM.

Primers were designed according to the principles out-
lined in Wojdacz et al [14]. Briefly, the primers should
contain a limited number of CpG dinucleotides (usually
one or two) which should be kept as far as possible from
the 3' end of the primers. This allows the control of PCR
bias by appropriate choice of annealing temperature.

The primers used to amplify bisulphite-treated DNA were
CDKN2B-F, 5'-GTTAGGCGTTTTTTTTTAGAAGTAATT-
TAGG-3'and CDKN2B-R, 5'-TACGACTTAAAACCCCGTA-
CAATAACC-3' and do not amplify unmodified genomic
DNA (data not shown). The amplified region corresponds
to [GenBank: AL449423] nucleotides 99845 to 99958,
and encompasses nine CpG dinucleotides. PCR was per-
formed in 100 pl PCR tubes (Corbett Research) with a
final volume of 20 pl, containing 200 nmol/l of each
primer, 200 umol/l of each dNTP, 0.5 U of HotStarTaq
DNA polymerase (Qiagen) in the supplied PCR buffer
containing 2.5 mmol/l MgCl,, 5 umol/l SYTO9 (Invitro-
gen, Carlsbad, CA), and 10 ng of bisulphite-treated DNA.
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The initial denaturation (95°C, 15 minutes) was followed
by 50 cycles for MS-HRM of 10 seconds at 95°C, 30 sec-
onds at 59°C, 30 seconds at 72°C; one cycle of 1 minute
at95°C, 72°C for 1.5 minutes and a HRM step from 65°C
to 90°Crising at 0.2°C per second, and holding for 1 sec-
ond after each stepwise increment. The annealing temper-
ature of 59°C was chosen as it gave a near-proportional
amplification of methylated and unmethylated templates.

Digital MS-HRM

The basis of dMS-HRM is the PCR amplification of single
molecules following limiting dilution [15,16]. To per-
form limiting dilution, the DNA concentration is deter-
mined. Depending on the starting concentration, a
dilution series (in the order of 1:1000 to 1:2000 for 10 ng/
pl) should be used. The dilution that performs best (that
is, a substantial proportion of negative reactions) is cho-
sen and used for the final experimental set-up.

The Poisson distribution is used as a guideline to deter-
mine the expected distribution of templates. For example,
if the sample is diluted such that one amplifiable template
is found on average per reaction, 36.8% of reactions will
have no templates, 36.8% will have one template, and
26.4% will have more than one template. Amplification
will occur when one or more template molecules are
present in the PCR reaction.

Amplifications from single templates can be readily iden-
tified when the melting curves are analysed. They show a
smooth and sharp single signal. Melting curves from two
(or more) templates generally result in signals showing
two peaks if heteroduplexes are not formed, or more com-
plex patterns when heteroduplexes are formed. Digital
MS-HRM was performed using 60 cycles of amplification.
Sixty replicates of diluted template were analysed per sam-
ple.

Direct sequencing

dMS-HRM products were cleaned up with the PCR-M
clean-up kit (Viogene, Taipei, Taiwan), according to the
manufacturer's instructions, further processed with ExoS-
apIT (GE Healthcare, Little Chalfont, England), followed
by the sequencing reaction using Big Dye Terminator v3.1
chemistry (Applied Biosystems, Foster City, CA) accord-
ing to the manufacturer's instructions. Sequencing was
performed in both directions using the PCR primers given
above as sequencing primers. The initial denaturation
(95°C, 1 minute) was followed by 30 cycles of 10 seconds
at 95°C, 30 seconds at 59°C and 3 minutes at 72°C. The
sequencing products were purified by ethanol precipita-
tion and separated on a 3100 Genetic Analyser (Applied
Biosystems). The sequencing data for the dMS-HRM prod-
ucts were analysed using BiQ Analyzer software (Max-

http://www.epigeneticsandchromatin.com/content/1/1/7

Planck-Institut fiir Informatik, Saarbriicken, Germany)
[17].

Results

MS-HRM of AML samples

HRM differentiates between DNA molecules based on
their sequence-dependent thermostability (Figure 1,
panel a). MS-HRM takes advantage of extensive sequence
changes introduced during bisulphite conversion of DNA
to distinguish between methylated and unmethylated
DNA (Figure 1, panel b). Amplicons derived from fully
methylated sequences will not form heteroduplexes with
amplicons derived from fully unmethylated sequences. In
heterogeneously methylated populations in which mole-
cules that differ by one, two or three bases are present, het-
eroduplexes will form with characteristic earlier melting
due to the mismatches. Heterogeneously methylated sam-
ples result in extensive heteroduplex formation giving a
complex profile (Figure 1, panel c).

Forty of the 93 acute myeloid leukaemia (AML) samples
were methylated. All showed a heterogeneous melting
profile. Figure 2 shows typical MS-HRM melting profiles
of the CDKN2B promoter region in AML samples. Figure
2a shows the normalised melting pattern and Figure 2b
shows the melting profile (negative first derivative of the
raw melting pattern). The amplicons derived from meth-
ylated control DNA and the unmethylated WGA product
define the range of methylation. The commercial methyl-
ated control shows a broad peak as it was substantially but
not fully methylated (results not shown).

dMS-HRM of AML samples

Six AML samples that represented the range of variation
observed were analysed digitally. Figure 3 shows the dig-
ital melting profiles of the selected AML samples. 4278
does not show any methylated alleles. 4383 and 4156
show products that correspond either to unmethylated
products or have only few CpG sites methylated. 3224,
9164 and 730-06 cover a broad range of heterogeneously
methylated alleles. Selected amplicons from one sample,
9164, were chosen for sequencing as it displayed the most
variation in dMS-HRM products (Figure 4a). There is a
close relationship between the Tm of the melting peaks
and the number of CpG sites methylated, which vary only
in the CpG sites being methylated.

In dMS-HRM, an increase in the melting temperature of
the products relative to the controls can be seen (Figure
4a). However, sequencing of digital 'clones' obtained
from the controls showed that their sequences were
directly comparable to those from sample 9164 (Figure
4b). dMS-HRM analysis of control DNA was replicated
with the template DNA being diluted into an equivalent
amount of background DNA used for MS-HRM (fish
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High resolution melting: application to DNA methylation analysis. High resolution melting (HRM) tracks melting
of PCR amplicons using an intercalating fluorescent dye. Amplicons with different sequences display different melting profiles,
allowing identification of sequence variants. The panels show model sequences and then representations of the resultant nor-
malised melting curves and Tm curves (negative first derivative of the melting curves).

Panel a: Single base changes. HRM can distinguish heterozygotes from homozygotes due to formation of heteroduplexes
(shown in blue). As heteroduplexes are less stable than homoduplexes (pink and purple), they will melt earlier.

Panel b: Homogeneous methylation. Detection of methylated cytosines via HRM (MS-HRM) relies upon sequence
changes introduced by bisulphite modification. Unmethylated cytosines (black Cs) are converted to uracils (Us), while methyl-
ated cytosines (red Cs) are resistant to modification. Only one strand is amplified. When a mixture of fully methylated and
unmethylated templates are analysed, heteroduplexes are not formed if there are four or more CpG sites in the amplicon.
Panel c: Heterogeneous methylation. When methylation is heterogeneous, heteroduplexes form because of the presence
of molecules that differ only by a few bases. The large number of potential heteroduplexes leads to complex melting patterns.
The original templates can be identified by digital analysis.

sperm and unmodified genomic control DNA), and the  sequencing to have been fully methylated and to have an

same result was obtained (data not shown).

Incomplete conversion was detected on one occasion as
the peak had a higher melting temperature than fully
methylated 'clones' (Figure 4a). This was shown by direct

additional unconverted cytosine (Figure 4c). Previous
reports show that conversion of cytosine to uracil is 97.0
to 99.8% complete, whilst still leaving 5-methylcytosines
intact [18,19]. Such a low non-conversion rate is not
expected to be a major problem for dAMS-HRM.

Page 4 of 10

(page number not for citation purposes)



Epigenetics & Chromatin 2008, 1:7

http://www.epigeneticsandchromatin.com/content/1/1/7

Q

1004

Normalised Fluorescence

=N ctrl
«« UM ctrl
—9164
—730-06
—3224
—4383
4156
4278

83 84

=M ctrl
«+ UM ctrl
—9164
—730-06
—3224

75 76 77

83 84

Figure 2 (see legend on next page)

Page 5 of 10

(page number not for citation purposes)



Epigenetics & Chromatin 2008, 1:7 http://www.epigeneticsandchromatin.com/content/1/1/7

Figure 2 (see previous page)

Acute myeloid leukaemia samples analysed using conventional methylation-sensitive high resolution melting.
Methylation-sensitive high resolution melting can distinguish homogeneous from heterogeneous DNA methylation as each
show characteristic melting profiles. The methylated DNA control is indicated by a solid black line (M ctrl), and the unmethyl-
ated whole genome amplification control by a broken grey line (UM ctrl). Six acute myeloid leukaemia (AML) samples are indi-
cated by unbroken coloured lines. (a) shows the normalised melting curves. (b) shows the negative first derivative (or Tm)
curves. It can be clearly seen that apart from sample 4278 which is unmethylated, none of the other five AML samples resemble
the controls. In the Tm plots, these AML samples show broad melting regions which would be expected as a consequence of
extensive heteroduplex formation. They begin melting before the unmethylated control, with three samples (3224, 9164, 730-
06) continuing to melt in the region indicative of methylation. It should be noted that the methylated DNA control is not fully

methylated and contains a typical left-shifted tail (see text).

Discussion

In our work on developing MS-HRM [10], we found that
many promoter regions were heterogeneously methylated
in cancer specimens (Candiloro et al, unpublished
results). Heterogeneously methylated DNA samples result
in multiple products after PCR. Not only will there be
many different homoduplexes, but multiple heterodu-
plexes will also form between similarly methylated
sequences, giving rise to distinctive melting curves. These
often do not lie within the range defined by fully methyl-
ated and unmethylated DNA controls due to the earlier
melting of heteroduplexes relative to homoduplexes.
Thus MS-HRM allows ready identification of heterogene-
ously methylated samples (Figure 2). Depending on the
amount of DNA methylation (and the amount of normal
cells present in the tumour sample), the resulting melting
curve is flattened and exhibits a complex melting pattern.

Quantification of the degree of heterogeneous methyla-
tion by MS-HRM remains problematic. MS-HRM shows
great sensitivity when the samples contains a mixture of
fully methylated and fully unmethylated templates [10] as
it has been empirically observed that the sequence differ-
ences between these are too great for heteroduplexes to
form. However, the sensitivity of MS-HRM is considerably
diminished for heterogeneously methylated samples due
to multiple heteroduplex formation creating a melting
profile that cannot be directly compared with methylated
and unmethylated controls.

To use a PCR-based technique, PCR bias needs to be elim-
inated or at least minimised. Given that the DNA methyl-
ation pattern in the entire interrogated sequence, and not
just the primer binding sites, influences PCR bias [20],
eliminating bias in a heterogeneous population of alleles
becomes nearly impossible. It must also be kept in mind
that cloning from a heterogeneous pool may introduce a
cloning bias [21,22].

Digital PCR from single templates eliminates these prob-
lems [23]. When single molecules are amplified, there is

no bias as there is no competition between different mol-
ecules within a single reaction.

We previously introduced dMS-HRM as a tool to count
the number of methylated and unmethylated alleles for
the BRCAI1 promoter [11]. In this communication, we
have adapted this methodology to examine the complex-
ity and the degree of methylation of the CDKN2B pro-
moter. Cameron et al determined that about 40% of the
CpG sites within the CDKN2B CpG island need to be
methylated to achieve complete silencing of the CDKN2B
gene, regardless of the exact CpG methylation pattern [4].
Detection of DNA methylation at the CDKN2B promoter
has been problematic as many methodologies are not well
suited to the study of heterogeneously methylated
regions.

A cost- and time-effective quantitative method is desirable
for analysis of both research and clinical specimens where
it is useful to know both the number of methylated tem-
plates and the degree of their methylation. Bisulphite
sequencing of individual clones is an effective research
approach but is too laborious and expensive for routine
clinical use [4,5]. Our results show that dMS-HRM can be
used as a more rapid alternative approach. In addition,
dMS-HRM products may be directly sequenced. As dMS-
HRM identifies the methylated templates, the need to
sequence unmethylated templates is eliminated. Sequenc-
ing of the individual dMS-HRM amplicons enabled the
identification of the exact methylation pattern. Sequenc-
ing confirmed that amplicons of similar Tm had similar
numbers of methylated CpGs, although the actual posi-
tions varied (Figure 4).

MS-HRM and dMS-HRM can be compared with two other
readily performed approaches that can recognise hetero-
geneous methylation. Denaturing gradient gel electro-
phoresis [6,24] is an effective way of visualising the
complexity of heterogeneous methylation, but the meth-
odology has not become widely used. Pyrosequencing is a
comparatively rapid and quantitative method for methyl-
ation analysis [25-27]. Its quantitative approach and the
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Figure 3

dMS-HRM profiles of the six AML samples analysed in detail. Negative first derivative (or Tm) curves are shown. The
methylated control is displayed as a solid red line (M ctrl), and the unmethylated whole genome amplification control is shown
as a dotted blue line (UM ctrl). The peaks from the digitally obtained amplicons are shown in green, while amplicons arising

from multiple templates are omitted for clarity. Replicates showing identical peaks to those already displayed are also omitted

for clarity.

characterisation of methylation pattern make it a useful
method in a clinical setting, as shown for CDKN2B [7,28]
and MGMT [29]. Heterogeneously methylated templates
can be recognised if there is marked variation in the
degree of methylation for the interrogated CpG positions.
The great advantage of MS-HRM and dMS-HRM is that
they are in-tube methodologies that are rapidly performed
and do not need post-PCR processing as the melting anal-
ysis is carried out in the same reaction vessel as the ampli-
fication.

Conclusion
MS-HRM can readily identify heterogeneously methylated
templates by their characteristic melting patterns. This

paper introduces dMS-HRM as an analytical method for
the rapid study of heterogeneous methylation using the
clinically important CDKN2B (p15) gene as an example.
Although MS-HRM will often be sufficient to assess the
methylation status of the CDKN2B gene, dMS-HRM will
provide a more readily interpretable visualisation which
may be quantified by scoring the individual peaks. dMS-
HRM can also rapidly generate clonal templates for
sequencing or pyrosequencing, eliminating the need for
conventional cloning. Moreover, dMS-HRM will signifi-
cantly reduce the amount of sequencing required as only
clearly methylated amplicons will need to be sequenced.
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Figure 4 (see previous page)

Sequencing analysis of dMS-HRM products from an acute myeloid leukaemia sample. PCR clones from sample
9164 were selected for sequencing as it showed the most variation, and was therefore the best example of the relationship of
peak position to the degree of methylation. One representative of each peak observed from dMS-HRM is shown (a). Peaks are
grouped within colours according to the number of CpG dinucleotides methylated as shown by sequencing and represented by
lollipops, where open and filled circles represent unmethylated and methylated CpG sites, respectively (b). The order of clones
in panel (b) reflects the order of peaks from left to right. The asterisk (*) marks PCR clone 69, as although it showed complete
methylation, it also contained an unconverted cytosine. This is shown in the sequencing trace in the centre panel of (c), com-
pared with an unmethylated sequence (above) and a methylated sequence (below). The incompletely converted cytosine is
indicated in red. This incomplete conversion explains the higher Tm of this clone with respect to the other clones showing

complete methylation.
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AML: acute myeloid leukaemia; dMS-HRM: digital meth-
ylation-sensitive high resolution melting; MS-HRM:
methylation-sensitive high resolution melting; WGA:
whole genome amplification.
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