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Identification of potential hub genes 
associated with skin wound healing based 
on time course bioinformatic analyses
Hai‑jun Zhu, Meng Fan and Wei Gao*   

Abstract 

Background:  The skin is the largest organ of the body and has multiple functions. Wounds remain a significant 
healthcare problem due to the large number of traumatic and pathophysiological conditions patients suffer.

Methods:  Gene expression profiles of 37 biopsies collected from patients undergoing split-thickness skin grafts at 
five different time points were downloaded from two datasets (GSE28914 and GSE50425) in the Gene Expression 
Omnibus (GEO) database. Principal component analysis (PCA) was applied to classify samples into different phases. 
Subsequently, differentially expressed genes (DEGs) analysis, Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway functional enrichment analyses were performed, and protein–protein interaction (PPI) 
networks created for each phase. Furthermore, based on the results of the PPI, hub genes in each phase were identi‑
fied by molecular complex detection combined with the ClueGO algorithm.

Results:  Using principal component analysis, the collected samples were divided into four phases, namely intact 
phase, acute wound phase, inflammatory and proliferation phase, and remodeling phase. Intact samples were used 
as control group. In the acute wound phase, a total of 1 upregulated and 100 downregulated DEGs were identified. 
Tyrosinase (TYR), tyrosinase Related Protein 1 (TYRP1) and dopachrome tautomerase (DCT) were considered as hub 
genes and enriched in tyrosine metabolism which dominate the process of melanogenesis. In the inflammatory and 
proliferation phase, a total of 85 upregulated and 164 downregulated DEGs were identified. CHEK1, CCNB1 and CDK1 
were considered as hub genes and enriched in cell cycle and P53 signaling pathway. In the remodeling phase, a total 
of 121 upregulated and 49 downregulated DEGs were identified. COL4A1, COL4A2, and COL6A1 were considered as 
hub genes and enriched in protein digestion and absorption, and ECM-receptor interaction.

Conclusion:  This comprehensive bioinformatic re-analysis of GEO data provides new insights into the molecular 
pathogenesis of wound healing and the potential identification of therapeutic targets for the treatment of wounds.
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Background
In humans, the skin is the largest, most exposed, and sus-
ceptible tissue. Wounds have become a significant health-
care problem due to the increasing number of trauma 

cases and pathophysiological conditions that clinicians 
treat [1]. To heal damaged skin, different cell types coor-
dinate their action at precise stages. These complex, 
multi-step stages involve hemostasis, inflammation, re-
epithelialization following keratinocyte migration and 
proliferation, and remodeling of the extracellular matrix 
(ECM), occurring in a temporally overlapping sequence 
[2]. Thus, skin repair is an elaborate process in humans. 
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Numerous experimental studies have been conducted 
that have assisted in establishing a better understanding 
of the wound healing mechanism. However, the cellular 
and molecular mechanisms underpinning tissue repair 
and their failure to heal remain poorly understood, and 
thus current therapies are limited.

Partial-thickness skin grafts create a superficial wound 
at the donor site [3], characterized by a standardized 
depth of injury that extends to the epidermis and papil-
lary dermis, which are renowned for their prolonged 
duration of healing, often resulting in a scar [4, 5]. There-
fore, this type of wound is ideal for comparing superfi-
cial wound healing (WH) and scar formation in clinical 
experimental studies [6].

Microarray and high-throughput sequencing technolo-
gies provide genome-wide profiling of gene expression, 
allowing researchers to study WH in both animal models 
and humans. It also provides a large choice of gene sets 
with data representing the differential stages of normal 
WH [7]. In particular, time course studies allow research-
ers to study the dynamic behavior of gene expression, and 
consequently variations in molecular and cellular sta-
tus over time [8]. A number of recent studies have used 
DNA microarrays to study the physiological and patho-
physiological transcriptional response during WH [8, 9]. 
However, the biological information from these studies 
has not been fully explored. As bioinformatic technology 
rapidly advances, numerous data profiles from the GEO 
database have been reanalyzed by researchers.

In the present study, differentially expressed genes 
(DEGs) from two GEO datasets (GSE28914 [9] and 
GSE50425) in which intact and wounded skin samples 
over different phases of repair were compared, were 
reanalyzed. Principal component analysis (PCA) demon-
strated that the expression of genes in each sample could 
be categorized into four separate phases. We hypoth-
esized that those four phases related to the four emblem-
atic periods of WH, including intact tissue, acute wound 
phase, inflammation, and the remodeling phase. Fur-
thermore, using bioinformatic methods, the integrated 
DEGs within each phase were identified, followed by 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analyses. 
Subsequently, an analysis of PPI and hub genes was also 
performed.

Methods
Microarray data information
The gene expression profiles of patients undergoing 
split-thickness skin graft harvesting biopsies (Accession 
nos. GSE28914 and GSE50425) were obtained from the 
Gene Expression Omnibus (GEO) database (http://​www.​
ncbi.​nlm.​nih.​gov/​geo/). The data were downloaded and 

annotated using “GEOquery” [10] and “Bioconductor” 
[11] R packages using the R language platform (version 
3.5.1). The genomics platforms used were the GPL570 
[HG-U133_Plus_2] Affymetrix Human Genome U133 
Plus 2.0 Array for GSE28914 and GPL10558 Illumina 
HumanHT-12 V4.0 expression BeadChip for GSE50425.

The GSE28914 dataset represents 25 biopsies, of which 
8 are from samples of intact skin (IS), 6 from acute 
wounds (AW), 6 from the third-postoperative-day (3rd 
POD), and 5 from the seventh-postoperative-day (7th 
POD) from 8 different male patients undergoing split-
thickness skin graft harvesting. The GSE50425 dataset 
represents the data from 12 biopsies, including 4 from 
each of samples of intact skin (IS), the fourteenth-post-
operative-day (14th POD), and the twenty-first-postoper-
ative-day (21st POD) from four split-thickness skin graft 
donors. The IS samples in each array were considered as 
controls. All data are freely accessible and were created 
without the involvement of any additional human or ani-
mal experiments.

PCA of gene expression
In the present study, the quality of each microarray data 
was evaluated by conducting PCA [12] prior to analysis 
of the DEGs. The ‘pca3d’ algorithm in R language was 
used to evaluate the PCA of gene expression, resulting 
in a 3-dimensional graph demonstrating which DEGs 
were considered as variables and showing the differences 
between IS and wound samples at different time points.

Identification of DEGs
The DEGs between POD and IS samples were identified 
by adjusting the selection criteria of the DEGs for just 
those with P-values (adj-P) ≤ 0.05 and |log2FC|≥ 2. Both 
the normalization of data and the screening of DEGs 
were performed using the linear models of microarray 
data (limma) package (http://​bioco​nduct​or.​org/​packa​ges/​
relea​se/​bioc/​html/​limma.​html) within the R language 
environment. The DEGs scripts of each phase used in the 
analysis was presented in Additional file 2

GO and KEGG pathway enrichment analysis of DEGs
The role of DEGs in WH was established following the 
analysis of all DEGs using the DAVID network por-
tal (https://​david.​ncifc​rf.​gov/) [13] and their biological 
attributes extracted, including data about which biologi-
cal processes (BP), molecular functions (MF), and cellu-
lar components (CC) were involved.

ClueGO, a widely used Cytoscape plugin allowing 
visualization of nonredundant biological terms for large 
clusters of genes in a functionally grouped network 
[14], was used to decipher functionally grouped KEGG 
pathway annotations, using the ‘fusion’ feature for data 
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where P < 0.05. Finally, bar graphs and bubble plots of the 
results of functional enrichment were created using the 
“ggplot2” R package (version 3.2.0; CRAN.R-project.org/
package=ggplot2) in the R language environment. The 
scripts of KEGG pathway enrichment analysis of each 
phase used in the analysis was presented in Additional 
file 3, and the scripts of GO enrichment analysis of each 
phase used in the analysis was presented in Additional 
file 4.

PPI network and hub gene analysis
A PPI network of all DEGs was plotted using the Search 
Tool for the Retrieval of Interacting Genes (STRING) 
(http://​string-​db.​org/) tool to evaluate all interactional 
associations of the proteins. The PPI network was visu-
alized using Cytoscape software (v3.7.2). To identify 
high-level genes that play a key role in PPI network, the 
Cytohubba package based on Cytoscape was used to 
perform the hub gene analysis [24], and the top rank 10 
genes in all modules are considered to be the hub genes. 
The degree of all nodes in PPI network was calculated 
using the Cytoscape plugin MCODE and the most sig-
nificant cluster was selected. ‘Maximum number of 
interactors = 0’ and ‘confidence score ≥ 0.4’ were selected 
as cut-off criteria. To further clarify the identity of the 
genes in most significant cluster, KEGG analysis was per-
formed using ClueGO with the kappa score adjusted to 
reflect the relationship between terms where there was 
a similarity in related genes [15]. Each gene that repre-
sented a link in multiple pathways was identified as a 
key functional gene. The scripts of PPI network plotted 

by STRING of each phase used in the analysis were pre-
sented in Additional file 5.

Results
Validation of the datasets
The robust multi-array average (RMA) algorithm was 
used to display the distribution of test values after quan-
tile normalization, background correction, and quartile 
data normalization of the downloaded data [16]. The 
results demonstrated that following normalization, the 
median of the different samples was almost the same 
value, indicating a high degree of standardization (Addi-
tional file 1A and B). To further validate intra-group data 
repeatability, PCA was employed to evaluate the data dis-
tribution in each sample to guarantee that the data was 
accurate and reliable. The evaluation suggested that the 
data from IS and all samples periods up to 21 days post 
skin injury could be partitioned into four distinct tran-
scriptional phases, namely intact phase, acute wound 
phase, inflammation, and remodeling phase (Fig. 1A, B).

Bioinformatic analysis of the acute wound phase
Volcano plot analysis was used to present the DEGs in 
AW samples compared with intact samples (Fig. 2A). A 
total of 1 upregulated and 100 downregulated genes were 
identified in AW samples compared with IS.

DEG functional annotation was conducted using the 
DAVID network portal. A threshold of P < 0.001 selected 
for KEGG analysis identified enrichment in only one 
critical pathway, melanogenesis (Fig.  2B). Bar graphs of 
DEGs GO enrichment demonstrate the distribution of 
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Fig. 1  Principal component analysis (PCA) of differentially expressed genes (DEGs) between intact skin samples and the wound sample at different 
phases. Genes were plotted in 3D visualization, indicating that samples within each group shared more similarity. A The red dots showed the PCA 
values of 8 intact skin samples (IS), and the green dots indicate the PCA value of 6 acute wounds samples (AW), and the blue dots indicate the 
PCA value of 6 third-postoperative-day samples (3rd POD), and the yellow dots indicate the PCA value of 5 seventh-postoperative-day samples 
(7th POD) from GSE28914. B The red dots showed the PCA values of 4 intact skin samples (IS), and the green dots indicate the PCA value of 4 
fourteenth-postoperative-day samples (14th POD), and the blue dots indicate the PCA value of 4 twenty first-postoperative-day samples (21st POD) 
from GSE50425
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enriched GO terms in BP, CC, and MF categories. The 
most significantly enriched terms for each category is 
presented in Fig. 2C–E, for which a threshold of P < 0.001 
was selected. The results demonstrate that variations 
in DEGs linked with BP were mostly those enriched in 
keratinocyte differentiation, epidermis development, 
and melanin biosynthetic process (Fig.  2C). Variations 
in DEGs linked with CC were significantly enriched in 
melanosome membrane, cornified envelope, and mela-
nosome (Fig. 2D). For MF, DEGs were only significantly 
enriched in sequence-specific DNA binding (Fig. 2E).

To explore the biological characteristics of these DEGs, 
a PPI network was created using the STRING database. 
The PPI network consisted of 59 edges and 98 nodes after 
pairs were isolated from the major network (Fig. 3A). The 
PPI network was additionally analyzed through the use of 
the MCODE algorithm which indicated that the highest 
score cluster contained five key genes, including Melan-
A (MLANA), tyrosinase (TYR), tyrosinase Related Pro-
tein 1 (TYRP1), dopachrome tautomerase (DCT), and 
premelanosome protein (PMEL) (Fig.  3B). Additional 
KEGG enrichment analysis of those key genes resulted 
in the identification of three key functional genes (TYR, 
TYRP1, and DCT) involved in tyrosine metabolism 

which dominate the process of melanogenesis (Fig. 3C). 
Subsequently, the Hub genes from the PPI network were 
analyzed by using the MCC algorithm in the CytoHuba 
plugin, and top 10 Hub genes (Fig.  3D) were ranked 
based on the MCC scores, which were PMEL, MLANA, 
DCT, TYR, TYRP1, GATA Binding Protein 3 (GATA3), 
Fos Proto-Oncogene (FOS), Sciellin (SCEL), Keratin 2 
(KRT2) and Wnt Family Member 4 (WNT4).

Bioinformatic analysis of the inflammatory 
and proliferation phase
Volcano plot analysis was conducted to display the DEGs 
within the 3rd and 7th POD samples compared with IS in 
GSE28914 (Fig. 4A, B). In total, 360 upregulated and 146 
downregulated genes were identified in 3rd POD sam-
ples, and 232 upregulated and 94 downregulated genes 
in 7th POD samples, compared with IS. Genes in the 3rd 
and 7th POD samples were chummy in PCA. A total of 
249 overlapping DEGs, including 85 upregulated and 164 
downregulated genes were identified in the two databases 
(Fig. 4C).

Using the DAVID portal, functional annotation was 
performed on overlapping DEGs. A threshold of P < 0.01 
was selected from which the most significant KEGG 
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Fig. 2  Differentially expressed genes (DEGs) in the acute wound phase, and Gene Ontology (GO) and KEGG pathway analysis of DEGs. A Volcano 
plot representing DEGs in acute wound samples compared with intact skin samples (control). B The most significantly enriched KEGG pathways and 
numbers of genes involved (P < 0.01); C The most significantly enriched (P < 0.01) GO terms and numbers of genes involved in acute wound samples 
for biological processes, D cellular components, E molecular functions, compared to the control tissue
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pathways were determined. These DEGs were enriched 
in cytokine–cytokine receptor interaction, legionellosis, 
chemokine signaling pathway, amoebiasis, TNF signal-
ing pathway, salmonella infection, hematopoietic cell 

lineage, rheumatoid arthritis, pertussis, and staphylococ-
cus aureus infection (Fig. 4D). The enriched functions of 
the overlapping DEGs identified in GO analysis for BP 
were mainly those of immune response, inflammatory 
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Fig. 3  Hub clusters of DEGs in the acute wound phase analyzed by protein–protein interaction (PPI) analysis and hub genes related to KEGG 
pathway enrichment. A PPI interaction network. Green nodes represent downregulated genes; red nodes represent upregulated genes. B PPI 
molecular complex detection method (MCODE) component. The highest scoring module identified from the PPI network using the MCODE 
algorithm with a score of 5.00, with five key genes involved. C Key genes in cluster 1 were annotated in the context of the KEGG database by 
ClueGO, of which 3 (TYR, TYRP1, and DCT) were enriched in the tyrosine metabolism pathway, and defined as key functional genes. D The top 10 
hub genes in the PPI were screened by Cytoscape plugin cytoHubba based on their connectivity degree
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response, chemokine-mediated signaling pathway, chem-
otaxis, cell chemotaxis, cell–cell signaling, neutrophil 
chemotaxis, melanin biosynthetic process, cell division, 
and collagen catabolic process (Fig. 4E). The overlapping 
DEGs linked with CC were significantly enriched in extra-
cellular space, extracellular region, midbody, melano-
some membrane, condensed chromosome kinetochore, 
Ndc80 complex, condensed nuclear chromosome outer 
kinetochore, an integral component of the plasma mem-
brane, kinesin complex, and cell surface (Fig.  4F). In 
terms of MF, the overlapping DEGs were significantly 
enriched in chemokine activity, CXCR chemokine recep-
tor binding, metalloendopeptidase activity, serine-type 
endopeptidase activity, cytokine activity, protease bind-
ing, interleukin-1 receptor binding, endopeptidase activ-
ity, ferric-chelate reductase (NADPH) activity, and cupric 
reductase activity (Fig. 4G).

After the pairs were isolated from the entire network, 
the PPI network of shared DEGs comprised 1504 edges 
and 246 nodes (Fig.  5A). The PPI network of DEGs 
was further analyzed using the MCODE algorithm, in 
which two high-scoring clusters were found. In clus-
ter 1, the score as judged by the algorithm was 34.176, 
which included 35 key genes (Fig. 5B). In cluster 2, the 
score judged by the algorithm was 18.6, for which 21 
key genes were included (Fig.  5D). The key genes in 
each cluster identified by KEGG pathway enrichment 
were re-analyzed using the “ClueGO” and “CluePedia” 
plugins for Cytoscape software (P < 0.05). The results 
indicated that the key functional genes in cluster 1 
were checkpoint kinase 1 (CHEK1), CyclinB1 (CCNB1) 
and cyclin-dependent kinases 1 (CDK1), which were 
substantially enriched in cell cycle and P53 signaling 
pathway (Fig.  5C). The key functional genes in cluster 
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2 were interleukin (IL) 1B, IL6, C–C Motif Chemokine 
Ligand (CCL) 4, C-X-C motif chemokine (CXCL) 1, 
CXCL2, CXCL3, CXCL5, CXCL6, and CXCL10, which 
were considerably enriched in both cytokine–cytokine 
receptor interaction and IL-17 signaling pathway 
(Fig. 5E). Subsequently, the Hub genes from the PPI net-
work were analyzed by using the MCC algorithm in the 
CytoHuba plugin, and top 10 Hub genes were ranked 
based on the MCC scores (Fig. 5F), which were CDK1, 
BUB1 Mitotic Checkpoint Serine/Threonine Kinase B 
(BUB1B), BUB1 Mitotic Checkpoint Serine/Threonine 
Kinase (BUB1), NUF2 Component Of NDC80 Kine-
tochore Complex (NUF2), Cyclin A2 (CCNA2), NDC80 
Kinetochore Complex Component (NDC80), Cell Divi-
sion Cycle 20 (CDC20), Aurora Kinase A (AURKA), 
DLG Associated Protein 5 (DLGAP5) and Ubiquitin 
Conjugating Enzyme E2 C (UBE2C).

Bioinformatic analysis of the remodeling phase
Volcano plot analysis was conducted to display the DEGs 
in the 14th and 21st POD samples compared with IS 
from GSE50425, respectively. In total, 213 upregulated 
and 122 downregulated genes were identified in the 14th 
POD samples and 170 upregulated and 96 downregulated 
genes in the 21st POD samples compared with the IS 
(Fig. 6A, B). Since gene expression of the 14th and 21st 
POD samples were clustered when analyzed by PCA, a 
total of 170 overlapping DEGs, including 121 upregulated 
and 49 downregulated genes were identified in the two 
databases (Fig. 6C).

Using the DAVID network portal, functional anno-
tation was performed on the overlapping DEGs. Using 
a threshold of P < 0.01, KEGG pathways were sig-
nificantly enriched in pathways in cancer, amoebiasis, 
protein digestion and absorption, ECM-receptor inter-
action, focal adhesion, PI3K–Akt signaling pathway and 
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Fig. 5  Hub cluster of DEGs in the inflammatory phase analyzed by protein–protein interaction (PPI) and hub genes related to KEGG pathway 
enrichment. A PPI interaction network. Green nodes represent downregulated genes; red nodes represent upregulated genes. PPI molecular 
complex detection method (MCODE) component. Two highest-scoring modules identified in the PPI network using the MCODE algorithm with 
scores of 34.176 (cluster 1) and 18.6 (cluster 2). B In cluster 1, 35 key genes were involved, and D 21 key genes in cluster 2 were involved. Key genes 
in cluster 1 (C) and cluster 2 (E) were annotated in the context of the KEGG database. The relationships between these annotated terms were 
calculated and grouped by ClueGO to create an annotation module network. Genes with connections having more than two terms were defined as 
key functional genes. F The top 10 hub genes in the PPI were screened by Cytoscape plugin cytoHubba based on their connectivity degree
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cytokine–cytokine receptor interaction (Fig. 6D). From 
GO analysis of top 10 BPs, the overlapping DEGs were 
mainly functionally enriched in cell adhesion, extracel-
lular matrix organization, collagen catabolic process, 
response to wounding, basement membrane organiza-
tion, angiogenesis, collagen fibril organization, extra-
cellular matrix disassembly, and negative regulation of 
angiogenesis and the chronic inflammatory response 
(Fig.  6E). Differences in the overlapping DEGs linked 
with CC were significantly enriched in the extracel-
lular region, extracellular space, extracellular matrix, 
proteinaceous extracellular matrix, endoplasmic reticu-
lum lumen, basement membrane and collagen trimer 
(Fig. 6F), while for MF, the overlapping DEGs were sig-
nificantly enriched in calcium ion binding, serine-type 
endopeptidase activity, extracellular matrix structural 
constituent, integrin binding, metalloendopeptidase 

activity, collagen binding, platelet-derived growth fac-
tor binding and proteoglycan binding (Fig. 6G).

After the pairs were isolated from the complete net-
work, the PPI network of overlapping DEGs comprised 
201 edges and 168 nodes (Fig.  7A). The PPI network of 
DEGs was further analyzed using the MCODE algorithm, 
with the highest score cluster containing ten key genes 
(Fig.  7B). To elucidate the potential pathway of the key 
genes within the cluster, KEGG pathway enrichment was 
further analyzed using the “ClueGO” and “CluePedia” 
plugins in Cytoscape software (p < 0.05). The results indi-
cated that seven genes were involved in protein digestion 
and absorption, and ECM-receptor interaction. Three 
key functional genes, COL4A1, COL4A2, and COL6A1, 
connected those two pathways (Fig.  7C). Subsequently, 
the Hub genes from the PPI network were analyzed by 
using the MCC algorithm in the CytoHuba plugin, and 
top 10 Hub genes were ranked based on the MCC scores 
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(Fig.  7D), which were COL5A1, COL5A2, COL4A1, 
COL6A1, COL4A2, Fibronectin 1 (FN1), Nidogen 1 
(NID1), Nidogen 2 (NID2), Prolyl 4-Hydroxylase Subunit 
Alpha 3 (P4HA3) and COL22A1.

Discussion
The normal WH process includes a well-orchestrated and 
regulated process consisting of a series of events, namely 
hemostasis, inflammation, proliferation, and ECM 
remodeling [2]. Various studies have been conducted 
on WH, although the specific molecular mechanisms 
occurring within each phase remain elusive. Therefore, 
it is crucial that the pivotal molecules playing critical 
roles in the pathogenesis of WH are identified so that 
potential therapeutic targets can be developed, and thus 

this represents an important area of investigation. Gene 
expression microarrays provide a comprehensive analysis 
of genome-wide expression profiles of clinical samples 
and have been widely used to explore potential therapeu-
tic targets in a variety of diseases [17, 18].

In 2012, Kristo Nuutila and colleagues used genome-
wide expression profiling to investigate time-course gene 
expression in epidermal wounds via the use of 25 split-
thickness skin graft biopsies from 8 healthy adult patients 
(GSE28914) [9]. The samples were collected from graft 
donor site wounds promptly before and after harvesting, 
in addition to during the healing process, on the third 
and seventh day. Furthermore, in 2013, the same team 
collected 14 biopsies from patients undergoing split-
thickness skin graft harvesting (GSE50425), from intact 

A

B

C

Clutser1
Score = 8.889

D
Key functional genes

KEGG

Hub genes

Fig. 7  Hub clusters of DEGs in the remodeling phase analyzed by protein–protein interactions (PPI) and hub genes related to KEGG pathway 
enrichment. A PPI interaction network. Green nodes represent downregulated genes; red nodes represent upregulated genes. B PPI molecular 
complex detection method (MCODE) component. Highest scoring module identified from the PPI network using the MCODE algorithm with a 
score of 8.889 (cluster 1), with five key genes involved. C Key genes in the cluster were annotated in the context of the KEGG database and the 
relationships between these annotated terms were calculated and grouped using ClueGO to create an annotation module network. Genes with 
connections to more than two terms were defined as hub genes. D The top 10 hub genes in the PPI were screened by Cytoscape plugin cytoHubba 
based on their connectivity degree
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skin and from their wounds on the 14th and 21st post-
operative days. However, in these studies, only the fold 
change in DEGs was reported and no functional analy-
sis data was evaluated. With the recent development of 
bioinformatic technology, the comprehensive analysis 
of microarray data from multiple centers has become a 
focus of research attention. Thus, in the present study, 
the gene expression profiles from the laboratory of Kristo 
Nuutila (GSE28914 and GSE50425) were downloaded 
and reanalyzed. Using bioinformatic methods, integrated 
DEGs were identified, and GO and KEGG pathway 
enrichment analysis performed. Analysis of PPI networks 
and hub genes was also subsequently conducted.

Previous studies have reported that the process of 
WH can be categorized into three to five distinct phases 
that occur sequentially over time [19, 20]. In the present 
study, reanalysis of the microarray expression data dem-
onstrated, through the use of PCA, that the WH process 
could be divided into four phases. We hypothesized that 
the four phases were intact phase, acute wound phase, 
inflammatory and proliferation phase, and remodeling 
phase (Fig. 1). DEGs were reanalyzed in each phase from 
split-thickness skin graft biopsies at different healing 
time points.

The first phase of physiological or acute WH is hemo-
stasis and the formation of a provisional wound matrix 
occurring promptly after injury and completed within a 
few hours [20]. Our KEGG enrichment results of acute 
wound phase, principally concerning downregulated 
genes, included those involved in melanogenesis path-
way when P < 0.01 (Fig. 2B). Although the P-values of the 
signaling pathways regulating pluripotency of stem cells 
and the Hippo signaling pathway were 0.03 and 0.04, not 
very much different (Additional file 3). Stem cells play an 
essential role in WH and have been widely studied, they 
also participate in accelerating the recovery of skin. Addi-
tionally, no hemostasis-related pathway was identified in 
the KEGG enrichment analysis, possibly supporting the 
notion that physiological capillary rupture following skin 
injury may not be required [21, 22]. In addition, the GO 
analysis in present study demonstrated that the biologi-
cal process of keratinocyte differentiation was initiated 
early in the acute wound phase (Fig. 2C), consistent with 
previous reports that keratinocyte migration is an early 
event in wound re-epithelialization [23, 24].

Subsequent analysis clarified the proposition that 
tyrosine metabolism is the key pathway during the ini-
tial stage of WH, with three key functional genes, TYR, 
TYRP1 and DCT, that are involved (Fig. 3C). TYR, which 
converts tyrosine to dopaquinone, is the key enzyme 
involved in the rate-limiting step of tyrosine metabo-
lism, and TYRP1 is an important melanosomal enzyme 

belonging to the TYR family. DCT is an important par-
alog of TYRP1 [25]. Similarly, TYR, TYRP1, and DCT 
in this study were all significantly down-regulated in the 
acute wound samples compared with intact skin. Inter-
estingly, combined with Hub genes analysis, we found 
that DCT, TYR, TYRP1 are both Hub and keg functional 
genes. This possibly suggests that the inhibition of tyros-
ine metabolism may play an important role in the initial 
stage of skin repair. Combined with the KEGG results of 
acute wound phase, we speculated that targeting TYRP1 
or DCT to inhibit the tyrosine metabolic pathway in 
keratinocyte will become a potential therapeutic strategy 
for alleviating or treating acute wound. Moreover, this 
speculate has been implemented in the recent studies 
[26, 27], but there is no clinical research.

The inflammatory phase begins with edema due to 
increased vascular hyperpermeability, generally occur-
ring 72  h following skin injury [28]. We analyzed over-
lapping DEGs in the samples harvested on the third and 
seventh day after skin injury and compared them to the 
control group. Interestingly, from a total of 249 DEGs, 
the trend in expression of all overlapping DEGs remained 
the same on the 3rd and 7th POD (data not shown). Sub-
sequently, the GO terms and KEGG pathways of the 
overlapping DEGs that were significantly enriched were 
found to be closely associated with the immune response, 
especially the chemokine signaling pathway, as found in 
previous studies [2, 29].

Interestingly, when the high-scoring clusters in the PPI 
network were analyzed using MCODE combined with 
the ClueGO algorithm, we found that the highest scor-
ing cluster was not immune-related, but cell cycle-related 
(Fig.  5B–E). Cell proliferation is an essential feature of 
immune cell activation. The p53 signaling pathway is a 
classic cell cycle regulatory pathway applicable in mul-
tiple cell types. The results of the present study demon-
strated that CHEK, CCNB1, and CDK1 play vital roles in 
this phase. Furthermore, combined with Hub genes anal-
ysis, only CDK1 was found to be the Hub and key func-
tional gene.

In addition, considerable effort has been expended over 
recent decades to identify the impact of each cytokine on 
various parameters of WH in diverse experimental mod-
els. The results here reveal that the key functional genes 
include IL1B, IL-6, CCL4, CXCL1, CXCL2, CXCL3, 
CXCL5, CXCL6, and CXCL10, which can co-express and 
play essential roles in cytokine–cytokine receptor inter-
actions and the IL-17 signaling pathway. Of these, the 
majority are chemokine receptors, except for IL-1B and 
IL-6, which are pro-inflammatory cytokines. A previous 
study found that IL-6 knockout mice suffered delayed 
healing. The results of the present study reveal that 
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upregulated IL-6 expression is key in skin healing, con-
sistent with phenotypes observed in IL-6 knockout mice 
[30]. Another study also found that IL-1B and IL-6 were 
elevated significantly during healing and could increase 
keratinocyte motility in wounds [31]. Furthermore, a dif-
ferent study also found that low expression of CXCL1 
and CXCL5, both of which are chemoattractant for neu-
trophils, inhibited mouse WH [32].

The third phase of wound healing is remodeling which 
begins 2 to 3 weeks after the onset of the lesion and can 
last for a year or more [2]. The core purpose of this stage 
is to achieve maximum tensile strength through reorgan-
ization, degradation, and resynthesis of the extracellular 
matrix [2]. In the final stage of healing, some attempt to 
restore normal tissue structure occurs, with the gradual 
remodeling of the granulation tissue, resulting in scar tis-
sue that is less cellular and vascular, exhibiting a progres-
sive increase in the concentration of collagen fibers [33]. 
In the present study, the essential terms from the KEGG 
and GO enrichment analysis in this phase were ECM-
receptor interaction pathway and cell adhesion biological 
process (Fig.  6), consistent with previous research. The 
BP enrichment further showed that collagen, the most 
abundant component of the basement membrane organi-
zation, plays the critical role. Beside, we also found that 
cytokine–cytokine receptor interaction continues to play 
a role, even on the 21st POD, suggesting that inflamma-
tory still play an important role in this phase.

To further explore potential targets, we identified 
COL4A1, COL4A2, and COL6A1 as key functional 
genes which co-express both with protein digestion and 
absorption and ECM-receptor interaction (Fig.  6C). 
Together with Hub gene analysis, results showed that 
COL4A1, COL4A2, and COL6A1 are both Hub and key 
functional genes. The proteins encoded by COL4A1 and 
COL4A2 are two of the six subunits of type IV collagen. 
The protein encoded by COL6A1 is the alpha 1 subunit 
of type VI collagen. Although 28 types of collagen have 
been identified, collagens I and III, comprise approxi-
mately 90% and 10% of the total collagen in the skin. 
However, less prevalent collagen types are also essen-
tial for normal skin function. Type IV collagen is a type 
in skin found primarily within the basement membrane 
zone. One study demonstrated that type IV collagen 
could be observed through the use of immunolocaliza-
tion around the cutaneous sensory nerve, blood vessels, 
and sweat glands [34, 35]. Unfortunately, the mechanism 
by which collagen IV achieves wound-healing in the skin 
remains elusive [33]. Type VI collagen is a non-fibrillar 
form expressed in many connective tissues and involved 
in the organization of matrix, and contributing to tissue 

remodeling [36]. Mutations in any of the three genes that 
encode the type VI collagen chains (COL6A1, COL6A2, 
and COL6A3) can cause disorders that affect muscle and 
connective tissue, with such clinical features as muscular 
weakness, joint contractures, and laxity [37]. However, 
another study with Col6a1 null mice found that Col6a1 
deficiency did not result in a visible WH defect, although 
it resulted in decreased tensile strength of the skin and an 
altered collagen fibril and basement membrane architec-
ture [38]. Thus, we speculated that the overexpression of 
COL4A1 and COL4A2 and resulting in type IV collagen 
hyperplasia is the cause of scar tissue formation.

In summary, this comprehensive GEO bioinformatic 
data re-analysis provides new insights into the molecu-
lar pathogenesis of WH and the identification of poten-
tial therapeutic targets for the treatment of each phase of 
wounds. The present study highlights co-expression gene 
networks associated with WH in each phase. However, 
further study, such as the analysis of single-cell sequenc-
ing data is required to establish the precise identity of 
hub genes in the specific cell types in WH. Moreover, 
the main limitation of this study is the lack of experi-
mental verification. In the future, it will be of great sig-
nificance to conduct a further systematic study on those 
hub and key functional genes to investigate the detailed 
mechanisms.

Conclusions
The present study systematically investigated multiple 
microarray gene expression profiles. The identity of hub 
genes at different time points was closely associated with 
the onset, development, and prognosis of WH. However, 
future studies are required to elucidate the biological 
function of these genes in WH.
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